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Abstract

The incredible generative ability of large-scale text-to-image
(T2I) models has demonstrated strong power of learning
complex structures and meaningful semantics. However, re-
lying solely on text prompts cannot fully take advantage of
the knowledge learned by the model, especially when flex-
ible and accurate controlling (e.g., structure and color) is
needed. In this paper, we aim to “dig out” the capabilities that
T2I models have implicitly learned, and then explicitly use
them to control the generation more granularly. Specifically,
we propose to learn low-cost T2I-Adapters to align inter-
nal knowledge in T2I models with external control signals,
while freezing the original large T2I models. In this way, we
can train various adapters according to different conditions,
achieving rich control and editing effects in the color and
structure of the generation results. Further, the proposed T2I-
Adapters have attractive properties of practical value, such
as composability and generalization ability. Extensive exper-
iments demonstrate that our T2I-Adapter has promising gen-
eration quality and a wide range of applications. Our code is
available at https://github.com/TencentARC/T2I-Adapter.

Introduction
Thanks to the training on massive data and huge computing
power, text-to-image (T2I) generation (Saharia et al. 2022;
Rombach et al. 2022; Nichol et al. 2022; Ramesh et al.
2021; Ding et al. 2021; Zhou et al. 2021; Ramesh et al.
2022a; Gafni et al. 2022), which aims to generate images
conditioned on a given text/prompt, has demonstrated strong
generation ability. The generation results usually have rich
textures, clear edges, reasonable structures, and meaningful
semantics. This phenomenon potentially indicates that T2I
models can actually capture information of different levels
in an implicit way.

Although promising synthesis quality can be achieved, it
heavily relies on well-designed prompts (Liu and Chilton
2022; Pavlichenko and Ustalov 2022), and the generation
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Figure 1: Our T2I-Adapter has several attractive properties
to provide external guidance to pre-trained text-to-image
models while not affecting their original generation ability.

pipeline also lacks flexible user control capability that can
guide the generated images to realize users’ ideas accurately.
For an unprofessional user, the generated results are usu-
ally uncontrolled and unstable. For example, the recently
proposed Stable Diffusion (SD) (Rombach et al. 2022) can
not perform well in some imaginative scenarios, e.g., “A
car with flying wings” and “A banana and two apples on a
plate” as shown in Fig. 2. We believe that this does not mean
that T2I models do not have the ability to generate such
structures, just that the text cannot provide accurate struc-
ture guidance in random generation. In this paper, we are
curious about whether it is possible to “dig out” the capabil-
ities that T2I models have implicitly learned, especially the
high-level structure and semantic capabilities, and then ex-
plicitly use them to control the generation more accurately.

Recently, some works provide guidance in T2I genera-
tion by efficient network tuning, such as Lora (Ryu 2023)
inspired by rank decomposition (Hu et al. 2021) in NLP,
DreamBooth (Ruiz et al. 2023) for generating specific char-
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acters, Textual Inversion (Gal et al. 2022), etc. However,
these works focus on fine-tuning the generation of specific
objects/style and cannot provide structural control over the
generated results. In this work, we achieve precise struc-
ture control over the generated results through efficient
adapter tuning. We also noticed that the concurrent work
ControlNet (Zhang and Agrawala 2023) studies this issue
and achieves impressive results. In comparison, we regard
external control as an alignment ability by several low-
complexity adapters rather than a siamese network of the
UNet encoder. Meanwhile, ControlNet, as a part of the de-
noiser, needs to participate in each diffusion step, while our
T2I-Adapter only requires a single inference to inject the
guiding information into each diffusion step. As shown in
Fig. 1, the proposed T2I adapters have the following proper-
ties of practical value:

• Plug-and-play. They do not affect the original network
topology and generation ability of existing T2I diffusion
models (e.g., Stable Diffusion).

• Simple and small. They can be easily inserted into ex-
isting T2I diffusion models with low costs (∼ 77 M pa-
rameters and ∼ 300 M storage space), and they only
need one inference during the diffusion process.

• Flexible. We can train various adapters for different ex-
ternal conditions, including spatial structure control and
spatial color distribution of images.

• Composable. More than one adapter can be easily com-
posed to achieve multi-condition control.

• Generalizable. Once trained, they can be directly used
on custom models as long as they are fine-tuned from the
same T2I model.

Our contributions are summarized as follows: 1). We pro-
pose T2I-Adapter, a simple, efficient yet effective method to
well align the internal knowledge of T2I models and exter-
nal control signals at a low cost. 2). T2I-Adapter can provide
accurate controllable guidance to existing T2I models while
not affecting their original generation ability. 3). Extensive
experiments demonstrate that our method works well with
various conditions, and these conditions can also be easily
composed to achieve multi-condition control.

Related Work
Text-to-image generation. Recently, autoregressive mod-
els (Gafni et al. 2022; Ramesh et al. 2021; Wu et al. 2022; Yu
et al. 2022) and diffusion models (Nichol et al. 2022; Rom-
bach et al. 2022; Ramesh et al. 2022b; Saharia et al. 2022)
are dominant in the community of text-to-image (T2I) gen-
eration. Among autoregressive models, DALL-E (Ramesh
et al. 2021) demonstrates the zero-shot T2I capability, make-
a-scene (Gafni et al. 2022) presents attractive T2I genera-
tion quality. At the same time, abundant diffusion-based T2I
methods are presented with promising performance. For in-
stance, Glide (Nichol et al. 2022) proposes to combine the
text feature into transformer blocks in the denoising pro-
cess. Subsequently, DALL-E2 (Ramesh et al. 2022b), Stable
Diffusion (Rombach et al. 2022) and Imagen (Saharia et al.
2022) vastly improve the performance in T2I generation. In
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Figure 2: In some complex scenarios, SD (Rombach et al.
2022) fails to generate accurate results conforming to the
text, as shown in the first row. In such cases, our T2I-Adapter
can serve as a plugin to help SD generate reasonable results,
as shown in the second row.

particular, Stable Diffusion, which performs diffusion gen-
eration in the latent space, achieves state-of-the-art perfor-
mance. Although they achieve promising synthesis quality,
the text prompt can not provide the synthesis results with
reliable structural guidance, resulting in highly random and
uncontrollable results.
Conditional image generation. Conditional image genera-
tion aims to generate images with specific content by giv-
ing several relevant conditions. Most early works are based
on generative adversarial networks (GAN) (Creswell et al.
2018), e.g., (Isola et al. 2017; Park et al. 2019a; Wang et al.
2018; Zhu et al. 2017; Huang et al. 2022) propose generat-
ing natural images conditioned on specific condition maps
in other domains (e.g., sketch, semantic segmentation). Due
to the significant improvement in generation quality and sta-
bility of diffusion models (Ho, Jain, and Abbeel 2020), most
recent works focus on conditional image generation based
on diffusion models. For instance, (Voynov, Aberman, and
Cohen-Or 2022) guides image generation by using the sim-
ilarity gradient produced by the target sketch and interme-
diate results. (Wang et al. 2022) proposes mapping the spa-
tial structure control to the original text embedding of the
T2I model (Nichol et al. 2022). Some methods (Song et al.
2022; Yang et al. 2023) introduce target object information
into text tokens to achieve the insertion of specific objects
in the generated results. (Cheng et al. 2023; Zheng et al.
2023; Li et al. 2023; Zeng et al. 2023) incorporate layout
information into the diffusion generation process, enabling
customized layouts in the generated results. As concurrent
works, (Zhang and Agrawala 2023) learns task-specific Con-
trolNet to enable conditional generation for the pre-trained
T2I model. (Huang et al. 2023) proposes to retrain a new
diffusion model conditioned on a set of control factors.
Efficient tuning on large models. Training large models is
costly, and therefore, it is not efficient to fine-tune the en-
tire large model for each downstream task. There has been
extensive research on efficient fine-tuning of large language
models (LLM), e.g., (Houlsby et al. 2019) utilizes several
adapters to transfer LLM to downstream tasks. LoRA (Hu
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Figure 3: The overview of T2I-Adapter pipeline, which is composed of two parts: 1) a pre-trained stable diffusion with fixed
parameters; 2) several T2I-Adapters trained to align internal knowledge in SD with external control signals. Different adapters
can be composed by directly adding with adjustable weight ω.

et al. 2021) proposes to freeze the pre-trained LLM and in-
ject trainable rank decomposition matrices into each layer of
the Transformer architecture, greatly reducing the number
of trainable parameters for downstream tasks. (Ryu 2023)
applies the idea of LoRA to diffusion models, enabling the
pre-trained Stable Diffusion (Rombach et al. 2022) (SD) to
generate specific characters or styles. Subsequently, several
efficient fine-tuning methods (Ruiz et al. 2023; Gal et al.
2022) for SD are proposed. In this paper, we insert several
low-cost adapters to guide the generation of SD.

Method
Preliminary: Stable Diffusion
In this paper, we implement our method based on the recent
T2I diffusion model (i.e., Stable Diffusion (SD) (Rombach
et al. 2022)). SD is a latent diffusion model (LDM), contain-
ing an autoencoder and an UNet denoiser. The autoencoder
can convert the image x0 into latent space z0 and then re-
construct it. The diffusion process is performed in the latent
space by a modified UNet denoiser. The optimization pro-
cess can be defined as the following formulation:

L = Ezt,C,ϵ,t(||ϵ− ϵθ(zt, t,C)||22), (1)

where zt represents the noised latent at time step t. C repre-
sents the conditional text embedding generated by the pre-
trained CLIP (Radford et al. 2021) text encoder. ϵθ refers to
the function of UNet denoiser. During sampling, the latent
zt are gradually denoised from the initial random Gaussian
noise through ϵθ conditioned on C and t. Finally, the de-
noised latent is converted to an image by the decoder of the
autoencoder.

Overview of T2I-Adapter
As shown in the first row of Fig. 2, the text can hardly pro-
vide structural guidance to image synthesis, leading to ran-
dom and unstable composition of generated results in terms
of spatial structure. Based on this observation, we want to
provide customized spatial alignment for the generation of
SD, which cannot be provided by text alone. We believe that
the alignment should not be considered as a new genera-
tion capability for large T2I models to relearn, but rather
as a capability that can be easily learned through external
plugins. An overview of our method is presented in Fig. 3,
which is composed of a pre-trained SD model and several
T2I adapters. The adapters are used to extract guidance fea-
tures from different types of conditions, e.g., sketch, canny,
keypoints, color, depth, and semantic segmentation. The pre-
trained SD has fixed parameters to generate images based on
the input text feature and external guidance feature. As can
be seen from our pipeline, all trainable parameters are in the
additional adapters, which can be removed at any time with-
out affecting the original T2I model.

Adapter Design
Our proposed T2I-Adapter is simple and lightweight, as
shown in the right corner of Fig. 3. It is composed of
four feature extraction blocks and three downsample blocks
to change the feature resolution. The condition input has
the resolution of w × h. Here, we utilize the pixel un-
shuffle (Shi et al. 2016) operation to downsample it to
w
8 × h

8 . In each scale, one convolution layer and two resid-
ual blocks (RB) are utilized to extract the condition fea-
ture Hi, i = 1, 2, 3, 4. Finally, multi-scale condition fea-
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Figure 4: Illustration of spatial color condition. We erase im-
age details by extreme downsampling while retaining the ap-
proximate color information and its spatial distribution.

tures H = {H1,H2,H3,H4} are generated. Note that the
dimension of H is the same as the intermediate feature
Fenc = {F1

enc,F
2
enc,F

3
enc,F

4
enc} in the encoder of UNet

denoiser. H is then added with Fenc at each scale. Mathe-
matically, the condition feature extraction and condition in-
jection are formulated as:

H = A(y) (2)

F̂i
enc = Fi

enc +Hi, i ∈ {1, 2, 3, 4}, (3)

where y is the condition input. A is function of T2I-Adapter.
Structure controlling. Our T2I-Adapter demonstrates
strong generalization capabilities, supporting a wide range
of structure controls such as sketch, canny, depth, seman-
tic segmentation, and keypoint. These controls are obtained
through specific operators, with details provided in the ex-
periment section. The condition maps are directly input into
task-specific adapters to extract condition features H. These
adapters share the same structure as described above.
Spatial color palette. In addition to spatial structure, color
is also an important component of images. Similarly, color
has spatial attributes, defining the color at different posi-
tions. In this paper, we design a spatial color palette to
roughly control the color distribution of the generated im-
ages. The representation of this condition is shown in Fig. 4.
Specifically, we use aggressive (×64) bicubic downsam-
pling to remove the semantic and structural information of
the image while preserving enough color information. Then
we apply the nearest upsampling to restore the original size
of the image. Finally, the spatial color condition is repre-
sented by several spatial-arrangement color blocks, and the
guidance information is injected into the diffusion process
in the same way as other structure conditions.
Multi-adapter controlling. In addition to using a sin-
gle adapter to guide the generation, our T2I-Adapter also
supports multi-condition control. It is completed through
weighted sum without additional training, and the control
strength of different conditions can be adjusted by weights.
Mathematically, this process is defined as:

H =
N∑

n=1

ωnAn(yn), (4)

where N represents the number of conditions. ωn is the ad-
justable weight to control the strength of each adapter. This
composable property leads to several useful applications.

Guidance in begining 
stage

Guidance in middle 
stage

Guidance in late stageSketch guidance

“A car with flying wings ”

Figure 5: We evenly divide the DDIM inference sampling
into 3 stages, i.e., beginning, middle and late stages. We
show the results of adding guidance at these three stages.
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Figure 6: The first curve represents the loss (MSE) caused
by adding noise and then denoising at different time steps on
the same image. The second curve is the mapping between
uniform sampling and cubic sampling. The second row visu-
alizes the effectiveness of cubic sampling in adapter training.

For instance, we can use the sketch map to provide struc-
ture guidance while using the spatial color palette to color
the results. An example is presented in Fig. 11.

Adapter Training
During training, we fix the parameters in SD and only op-
timize the T2I-Adapter A. Each training sample is a triplet,
including the original image x0, condition map y, and text
embedding C. The optimization process is similar to SD.
Specifically, given an image x0, we first embed it to the
latent space z0 via the encoder of autoencoder. Then, we
randomly sample a time step t from [0, T ] and add cor-
responding noise to z0, producing zt. Mathematically, our
T2I-Adapter is optimized via:

L = Ez0,t,H,ϵ∼N (0,1)

[
||ϵ− ϵθ(zt, t,C,A(y))||22

]
(5)

Non-uniform time step sampling during training. In dif-
fusion models, the time step t is an important condition, in-
dicating the noise intensity at each time step. In this paper,
we study its role in training low-cost adapters and design a
non-uniform sampling strategy to improve adapter training.

There is an observation, shown in Fig. 5. Specifically, we
evenly divide the 50-step DDIM sampling into 3 stages, i.e.,
beginning, middle and late stages. We then add guidance in-
formation to each of the three stages. We find that adding
guidance in the middle and late stages have little effect on
the result. It indicates that the main content of the gener-
ation results is determined in the early sampling stage. To
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Sketch Canny Depth Keypoint Semantic segmentation
SPADE -/- -/- -/- -/- 23.44/0.2314
OASIS -/- -/- -/- -/- 18.71/0.2274

PITI 21.21/0.2129 -/- -/- -/- 17.36/0.2287
GLIGEN -/- 19.01/0.2520 21.05/0.2609 32.41/0.2496 23.79/0.2490

ControlNet 19.84/0.2638 15.73/0.2613 19.09/0.2631 28.93/0.2640 18.78/0.2653
T2I-Adapter (Ours) 18.30/0.2593 17.96/0.2608 18.14/0.2656 29.77/0.2617 16.78/0.2652

Table 1: Quantitative comparison (FID↓ / CLIP Score↑ (ViT-L/14)) on COCO (Lin et al. 2014) validation set between our
T2I-Adapter and other methods. ControlNet and T2I-Adapter employ 20 DDIM steps for fast evaluation.

Figure 7: User study on generation quality and alignment ac-
curacy of different methods (condition is labeled in bracket).

further verify it, we added noise with different time steps
t ∈ [0, 1000] to z0, producing zt. Then we use SD for de-
noising generation starting from zt. Note that a larger t indi-
cates stronger noise and is closer to the beginning stage. We
calculated the mean square error (MSE) between the gener-
ated result and the original image, as shown in the first curve
in Fig. 6. It can be seen that adding noise in the middle and
later stages has little impact on the final generated result.
Only under the influence of high-intensity noise in the begin-
ning stage, the generated result will show a larger deviation.
Therefore, if too many time steps are sampled in the middle
and later stages during training, the external guidance can be
easily ignored by the network, because the noisy latent has
enough information to reconstruct the original image.

To fully train the adapter, we adopt cubic time step sam-
pling (i.e., t = (1 − ( t

T )
3) × T ), as shown in the second

curve in Fig. 6. It allows more time steps to be sampled in
the high-intensity noise region, enhancing the role of exter-
nal guidance during training. The importance of this sam-
pling strategy is more evident in color control, as color, be-
ing low-level visual information, is more difficult to erase
than structural information. The second row in Fig. 6 shows
that the spatial color adapter has weak color control with-
out cubic sampling strategy. After using cubic sampling, the
spatial color adapter can converge rapidly and well control
the color distribution.

Experiment
Implementation Details
We choose the pre-trained SD-V1.5 (Rombach et al.
2022) as the base model. During training, we utilize

Adam (Kingma and Ba 2014) as the optimizer with the
learning rate of 1 × 10−5. The input images and condition
maps are resized to 512 × 512. The training process is per-
formed on 4 NVIDIA Tesla 32G-V100 GPUs with a batch
size of 8, which can be completed within 3 days.
Training data. Experiment includes 6 types of conditions:

• Semantic segmentation. In this application, we utilize
COCO-Stuff (Caesar, Uijlings, and Ferrari 2018) as the
training data, which contains 164K images. Its semantic
segmentation contains 80 thing classes, 91 stuff classes
and 1 ‘unlabeled’ class.

• Sketch & Canny & Color & Depth. For these
applications, we use images from LAION-
AESTHETICS (Schuhmann et al. 2022) dataset as
the training data. The sketch and canny are obtained
through edge detection algorithms (Su et al. 2021; Xu,
Baojie, and Guoxin 2017), and the depth is obtained
through MiDaS (Ranftl et al. 2022).

• Keypoint. For keypoint, we use openpose (Cao et al.
2019) to extract the keypoint map of each image from
LAION-AESTHETICS dataset and finally select about
500K images containing human bodies.

Benchmark and metrics. To validate the performance of
different methods, we choose COCO validation set (Lin
et al. 2014) as the test set, which contains 5,000 image-text
pairs. Since each image contains 5 text descriptions, we use
the first text of each group as input during testing. To quan-
tify performance, we use user study, FID (Seitzer 2020), and
CLIP score (Radford et al. 2021) as evaluation metrics. The
computational complexity is also considered.

Comparison
In this part, we compare our method with some GAN-
based methods (i.e., SPADE (Park et al. 2019b), OA-
SIS (Schönfeld et al. 2021)) and diffusion-based methods
(i.e., PITI (Wang et al. 2022), GLIGEN (Li et al. 2023)
and ControlNet (Zhang and Agrawala 2023)). The quan-
titative comparison in Tab. 1 shows that the performance
of our method is comparable to ControlNet under 5 con-
ditions and is superior to other methods. We also conduct
a user study in Fig. 7, including three aspects: (1) genera-
tion quality; (2) matching with text; (3) matching with con-
dition. Participants should select the best one for each met-
ric from each comparison group. We collect votes from 24
participants with 12 cases. One can see that SD is indeed
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Figure 8: The visual comparison between our T2I-Adapter and ControlNet (Zhang and Agrawala 2023) under 5 control condi-
tions, i.e., sketch, depth, canny, keypoint, and semantic segmentation.

a good text-based generation prior, leading ControlNet and
our T2I-Adapter to be significantly better than other meth-
ods in terms of generation quality, text alignment and condi-
tion alignment. Compared with ControlNet, our method can
achieve comparable performance with a smaller cost.

In Fig. 8, we show visual comparisons between our T2I-
Adapter and ControlNet under 5 conditions on SD-V1.5.
We present the complexity comparison in Tab. 2. Note that
the inference speed is measured by generating 512x512 im-
ages on a single NVIDIA A100 GPU. Both our method and
ControlNet use XFormers (Lefaudeux et al. 2022) for ac-
celeration. We use the number of diffusion iterations per
second (it/s) to represent the inference speed. We can find
that our method has comparable performance to Control-
Net, while the model parameters and inference speed are 1

7
and 1.5 times that of ControlNet, respectively. In addition,
we compare our T2I-Adapter and ControlNet on larger SD
i.e., SDXL (Podell et al. 2023), which has 2.6B parameters.
On SDXL, we use the T2I-Adapter with similar structures
and parameters to that in SD-V1.5. The visual and com-
plexity comparison are presented in Fig. 9 and Tab. 2, re-
spectively. One can see that the performance of 79M T2I-
Adapter-XL and 1250M ControlNet-SDXL has close per-
formance. Therefore, the gains from larger control models
are limited and do not continue to increase with model size.

Other Capabilities
Spatial color palette. Our method also supports spatial
color control, as shown in Fig. 10. The input spatial color

Ctrl T2I Ctrl-XL T2I-XL
Param.↓ 567M 77M 1250M 79M

Speed(it/s)↑ 18.78 27.96 10.85 6.40

Table 2: Complexity comparison between our T2I-Adapter
(T2I) and ControlNet (Ctrl) on SD and SDXL.

T2I-Adapter-SDXL (79M Params)ControlNet-SDXL (1251M Params)Canny Condition

Figure 9: The performance and complexity comparison be-
tween T2I-Adapter and ControlNet on SDXL.

grid can effectively control the color of the generated result
in different regions.
Composability of different conditions. We find that
adapters for each condition can be well combined after being
trained separately, and this ability does not require additional
training. The combination is completed by the weighted sum
of different condition features as shown in Eq. 4. In Fig. 11,
we present the generation results of T2I-Adapter under mul-
tiple conditions. It can be seen that the input of the four con-
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Figure 10: Results of T2I-Adapter on spatial color control.

Color Depth

‘’A cool man and a Pikachu in an office, high quality’’

KeypointSketch 

Figure 11: Results of our T2I-Adapter under the control of
multiple conditions, i.e., keypoint, color, depth and sketch.

ditions achieves their respective generation goals, and these
generated contents are naturally blended together.
Generalization to other fine-tuned SD models. The gen-
eralization ability of the adapter is an interesting and use-
ful property. Concretely, once adapters are trained, they can
be directly used on custom models as long as they are
fine-tuned from the same T2I model. As shown in Fig. 12,
we download custom models fine-tuned on SD from https:
//civitai.com/ and then directly insert our T2I-Adapter into
them. One can see that even without specific training, our
method still achieves good control effects. This generaliza-
tion ability allows our T2I-Adapter to have a wider range of
applications after a single training.

Ablation Study
In this part, we conduct ablation study on the guidance accu-
racy by adding conditions at different positions of the UNet
denoiser. The experiment is conducted on the COCO vali-
dation set with sketch guidance. To measure the matching
between the generated results and the condition, we extract
the sketch from the generated results and calculate its sim-
ilarity with the input sketch using the mean squared error
(MSE). The smaller the value, the higher the matching.

The result is presented in Tab. 3. Specifically, we evaluate
the performance of adding guidance information to the en-
coder and decoder of the UNet denoiser. The result presents
that our T2I-Adapter has better control capabilities when
guidance information is added to the encoder. This is mainly
because the control information can flow through a longer
network pipeline (i.e., encoder and decoder), allowing the
guidance information to be fully integrated with the inter-
mediate features. It serves as a performance compensation
for our low-complexity adapters. Adding guidance to both
the encoder and decoder leads to better performance, but the
complexity will double. In addition, we also conducted abla-
tion study on the four scales of the UNet encoder, and it can
be seen that the multi-scale control injection is beneficial for
improving control accuracy. Finally, considering both per-
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Figure 12: The controlling performance of our T2I-Adapter
on other custom models without additional training.

Mode Scale Num. Enc. Dec. MSE.↓
1 4 ✓ ✗ 0.1280
2 4 ✗ ✓ 0.1455
3 4 ✓ ✓ 0.1207
4 3 ✓ ✗ 0.1427
5 2 ✓ ✗ 0.1878
6 1 ✓ ✗ 0.2023

Table 3: Ablation study of how the guidance information is
injected into the SD model.

formance and computational complexity, we choose to add
guidance information to the UNet encoder with four scales.

Conclusion and Limitation

In this paper, we aim to dig out the capabilities that T2I mod-
els have implicitly learned, e.g., the colorization and struc-
turing capabilities, and then explicitly use them to control
the generation more accurately. We present that a low-cost
adapter model can achieve this purpose, as it is not learn-
ing new generation abilities but learning an alignment be-
tween external control signals and internal knowledge in
pre-trained T2I models. Even in larger diffusion models,
e.g., SDXL, our method can drive it effectively. In addition
to the simplicity and lightweight structure, our T2I-Adapter
1) does not affect the original generation ability of the pre-
trained T2I model; 2) has a wide range of applications in
spatial color control and elaborate structure control. 3) More
than one adapter can be easily composed to achieve multi-
condition control. 4) Once trained, the T2I-Adapter can be
directly used on custom models as long as they are fine-
tuned from the same T2I model. Finally, extensive experi-
ments demonstrate that the proposed T2I-Adapter achieves
excellent controlling and promising generation quality. One
limitation of our method is that in the case of multi-adapter
control, the combination of guidance features requires man-
ual adjustment. In our future work, we will explore the adap-
tive fusion of multi-modal guidance information.
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Pietikäinen, M.; and Liu, L. 2021. Pixel difference networks
for efficient edge detection. In Proceedings of the IEEE/CVF
international conference on computer vision, 5117–5127.
Voynov, A.; Aberman, K.; and Cohen-Or, D. 2022. Sketch-
Guided Text-to-Image Diffusion Models. arXiv preprint
arXiv:2211.13752.
Wang, T.; Zhang, T.; Zhang, B.; Ouyang, H.; Chen,
D.; Chen, Q.; and Wen, F. 2022. Pretraining is all

you need for image-to-image translation. arXiv preprint
arXiv:2205.12952.
Wang, T.-C.; Liu, M.-Y.; Zhu, J.-Y.; Tao, A.; Kautz, J.; and
Catanzaro, B. 2018. High-resolution image synthesis and
semantic manipulation with conditional gans. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 8798–8807.
Wu, C.; Liang, J.; Ji, L.; Yang, F.; Fang, Y.; Jiang, D.; and
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