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Abstract

Correspondence pruning aims to establish reliable correspon-
dences between two related images and recover relative cam-
era motion. Existing approaches often employ a progressive
strategy to handle the local and global contexts, with a promi-
nent emphasis on transitioning from local to global, resulting
in the neglect of interactions between different contexts. To
tackle this issue, we propose a parallel context learning strat-
egy that involves acquiring bilateral consensus for the two-
view correspondence pruning task. In our approach, we de-
sign a distinctive self-attention block to capture global con-
text and parallel process it with the established local context
learning module, which enables us to simultaneously capture
both local and global consensuses. By combining these lo-
cal and global consensuses, we derive the required bilateral
consensus. We also design a recalibration block, reducing the
influence of erroneous consensus information and enhancing
the robustness of the model. The culmination of our efforts is
the Bilateral Consensus Learning Network (BCLNet), which
efficiently estimates camera pose and identifies inliers (true
correspondences). Extensive experiments results demonstrate
that our network not only surpasses state-of-the-art method-
s on benchmark datasets but also showcases robust general-
ization abilities across various feature extraction techniques.
Noteworthily, BCLNet obtains significant improvement gain-
s over the second best method on unknown outdoor dataset,
and obviously accelerates model training speed.

Introduction
Accurate two-view correspondences play a pivotal role
in various computer vision applications, including stereo
matching (Yao et al. 2021), simultaneous localization and
mapping (SLAM) (Kazerouni et al. 2022), and structure
from motion (Xiao et al. 2021), etc. Standard sparse match-
ing pipeline relies on off-the-shelf methods (SIFT (Lowe
2004) or Superpoint (DeTone, Malisiewicz, and Rabinovich
2018)) to establish initial correspondences. However, these
initial correspondences often harbor a considerable number
of outliers (false correspondences) due to the intricate image
variations (Jin et al. 2021; Ma et al. 2021), such as illumina-
tion changes, repeated textures, image blurs and occlusion-
s. Therefore, to alleviate the repercussions on downstream
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Figure 1: Bilateral consensus acquisition process. Both lo-
cal and global contexts are inevitably affected by outlier-
s, neglecting the interaction between them tends to exacer-
bate the propagation of erroneous information. There may
be multiple models in the network that satisfy global con-
straints (a) and (b). Neighbors based on k-nearest neighbor
search also contain many outliers (c). Given a set of putative
correspondences (d), we adopt existing blocks and the de-
signed BCMA block (e) to extract local and global consen-
suses, respectively. Subsequently, we facilitate their interac-
tion to achieve bilateral consensus, which ultimately gen-
erates the network’s prediction (f). The red lines represent
outliers, green lines represent inliers, and blue represents s-
elected correspondences.

tasks, the incorporation of a correspondence pruning algo-
rithm emerges as an indispensable stride.

Existing correspondence pruning algorithms can cur-
rently be categorized into two classes: traditional and
learning-based algorithms. Among traditional algorithms,
RANSAC (Fischler and Bolles 1981) and its diverse adapta-
tions (Chum and Matas 2005; Barath, Matas, and Noskova
2019; Torr and Zisserman 2000; Torr and Bishop 2002) are
the most popular ones, which primarily rely on a generate-
and-verify strategy. Although they demonstrate promising
results on specific tasks, their theoretical execution time
tends to experience exponential growth as the proportion of
outliers increases (Zheng et al. 2022).

Fortunately, the advancement of deep learning offers a
novel solution for the correspondence pruning task. Follow-
ing the pioneering work LFGC (Yi et al. 2018), learning-
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based works mostly partition correspondence pruning into
a correspondence classification task and a camera pose es-
timation task. Then, CLNet (Zhao et al. 2021) initially in-
troduces a progressive local-to-global learning strategy and
it has gradually become the default standard for subsequent
researches. The most recent work, ConvMatch (Zhang and
Ma 2023), firstly adopts convolutions to solve this problem
by mapping correspondences onto grids, but it also abides
by the progressive local-to-global strategy. It’s worth men-
tioning that while this progressive strategy yields favorable
results, a crucial aspect has frequently been neglected–the
interaction between local and global contexts. As depicted
in Figure 1 (a)-(c), challenging scenarios reveal that both
local and global contexts are susceptible to significant outli-
er contamination. Neglecting the precise information shared
between these contexts could potentially lead to an ampli-
fication of erroneous information, will this have a negative
impact on our task?

To address this concern, we introduce a novel parallel s-
trategy that concurrently models both local and global con-
textual information while capturing their interaction. Specif-
ically, we employ the existing Order-Aware (OA) block as
the module for capturing local consensus and design a novel
Bilateral Consensus Mining Attention (BCMA) block that
operates in parallel with it, serving as the module for cap-
turing global consensus. As demonstrated in Figure 1 (e),
for each correspondence, the BCMA block not only estab-
lishes global dependencies but also highlights local infor-
mation, akin to the matching process performed by the hu-
man central and peripheral vision. This embedding of local
context is achieved by employing k-nearest neighbor (KNN)
search separately in the query, key and value feature spaces
to seek consistent neighbors. Subsequently, we concatenate
the learned local consensus by OA block and global con-
sensus by BCMA block in the channel dimension and fa-
cilitate their interaction through several additional ResNet
blocks, resulting in a more dependable bilateral consensus.
As shown in Figure 1 (d)-(f), through the acquisition of bi-
lateral consensus, our network demonstrates remarkable per-
formance in the correspondence pruning task.

In addition, we discover that inliers have higher consisten-
cy in the bilateral consensus feature space, a simple interac-
tion operation is inadequate in the face of complex match-
ing scenarios. To enhance the robustness of our network, we
present the Bilateral Consensus Recalibrate (BCR) block to
revalidate bilateral consensus at both local and global scales.
To elaborate further, BCR block entails direct compression
of bilateral consensus feature maps to generate a global s-
calar, along with the utilization of a KNN search search a-
gain to acquire a local vector. The fusion of these two tensors
facilitates a soft selection process on the bilateral consensus,
thereby amplifying the feature map’s representational capac-
ity. Finally, with all the proposed blocks, we formulate a Bi-
lateral Consensus Learning Network tailored for the task of
two-view correspondence pruning.

We summarize our contributions as follows:
• We propose a novel consensus learning strategy for the

two-view correspondence pruning task. In contrary to
previous progressive learning strategy, we concurrently

learn local and global consensuses in parallel and obtain
bilateral consensus by establishing interdependencies be-
tween them. To our knowledge, it is the first time lever-
aging bilateral consensus to handle the task of two-view
correspondence pruning.

• We propose a simple yet effective BCMA block as the
global consensus learning module in bilateral consensus
and a BCR block to rectify bilateral consensus. Through
the process of learning and recalibration, our network is
equipped to handle intricate matching scenarios.

• We develop an effective BCLNet for correspondence
pruning task. Extensive experiments demonstrate the ef-
fectiveness of our proposed BCLNet on the correspon-
dence classification task and the camera pose estima-
tion task. Noteworthily, BCLNet obtains 3.98% mAP5◦
gains over the second best method on unknown outdoor
dataset, and obviously accelerates model training speed.

Related Work

Correspondence Pruning

Over the years, correspondence pruning method has under-
gone extensive development and gradually divided into two
branches, i.e., traditional hand-craft methods and learning-
based methods. In traditional methods, hypothesize-and-
verify strategy is a prevalent paradigm, e.g., RANSAC (Fis-
chler and Bolles 1981), PROSAC (Chum and Matas
2005), MAGSAC (Barath, Matas, and Noskova 2019),
LO-RANSAC (Chum, Matas, and Kittler 2003), NG-
RANSAC (Brachmann and Rother 2019), etc. To be specif-
ic, RANSAC (Fischler and Bolles 1981) repeatedly select-
ing a random subset of the data to fit models until the num-
ber of inliers meets a specified threshold. PROSAC (Chum
and Matas 2005) exploits LMI constraints to accelerate
the model optimization process based on RANSAC, while
MAGSAC (Barath, Matas, and Noskova 2019) proposes σ-
consensus to eliminate the need of user-defined threshold.
But these methods are mostly task-specific, and the compu-
tation time adds exponentially with outliers increases, which
is not enough to deal with the complex reality scenes.

Fortunately, the advent of deep learning makes it possi-
ble. As a pioneering work, LFGC (Yi et al. 2018) first pro-
poses a PointNet-like architecture that treats correspondence
pruning as a collection of correspondence classification and
camera pose regression tasks. The impressive efficacy of it
makes the adoption of permutation invariant pattern to han-
dle correspondences a de facto standard. Subsequent works
primarily focus on designing additional modules to capture
richer context. Notably, OANet (Zhang et al. 2019) implic-
itly captures local context by mapping correspondences to
clusters through differential pooling operation. CLNet (Zhao
et al. 2021) initially proposes a local-to-global learning s-
trategy and incorporates pruning operations. However, they
only consider the improvement of a certain context or sep-
arately utilize detached contexts, ignoring the potential in-
teractions between them, which limits the improvement of
network performance.
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Figure 2: Architecture of BCLNet for correspondence pruning. We take putative correspondences C ∈ RN×4 as inputs and
finally output the inlier probabilities ω ∈ RN×1. The entire process involves two pruning modules, systematically refining cor-
respondences into more reliable subsets. Each pruning module consists of our proposed Bilateral Consensus Mining Atttention
block, Bilateral Consensus Recalibrate block and existing Order-Aware block.

Consensus in Correspondences
The inliers between two images satisfy epipolar geometry
constraint or homography transformation, while outliers are
randomly distributed. This correspondence consensus has
been studied predates the popularity of learning-based meth-
ods, e.g., GMS (Bian et al. 2017) represents consensus as
the statistical number of supported correspondences in a s-
mall area. LPM (Ma et al. 2019) considers the topological
structure within the neighborhood of keypoints is always
consistent. Inspired by these methods, learning-based meth-
ods also introduce the concept of consensus. CLNet (Zhao
et al. 2021), for instance, firstly differentiates between glob-
al and local consensus and proposes a local-to-global learn-
ing strategy. As an improved version of CLNet (Zhao et al.
2021), NCMNet (Liu and Yang 2023) achieves significant
improvements in exploring neighbor consistency in differ-
ent feature spaces. ConvMatch (Zhang and Ma 2023) maps
correspondences onto grids and learns motion consistency
using convolutions. In this paper, we also leverage the con-
cept of consensus, but emphasize on interacting with differ-
ent consensus information.

Method
Problem Formulation
Given a pair of images (I , I ′), we first extract keypoints
by existing feature detectors (Lowe 2004; DeTone, Mal-
isiewicz, and Rabinovich 2018). Then a nearest neighbor
matching algorithm is used to obtain the initial correspon-
dence set C:

C = {c1, c2, c3, . . . , cn} ∈ RN×4, ci = (xi, yi, x
′
i, y
′
i) (1)

where ci is the i-th correspondence. (xi, yi) and (x′i, y
′
i) rep-

resent the coordinates of keypoints that are normalized by
camera intrinsics in the image I and I ′, respectively.

It is worth noting that the initial correspondence set C is
dominated by outliers. With C as input, the goal of corre-
spondence pruning is to predict the probability of each cor-
respondence as an inlier and recover the relative camera mo-
tion. Specifically, reference to literature (Zhao et al. 2021),

BCLNet contains two pruning modules to progressive prun-
ing C into a more reliable candidate subsets Ĉ. As show in
Figure 2, the complete architecture can be expressed as:

(ω1, C1) = f ′θ(C), (ω2, C2) = f ′ϕ(C1), (2)

Ê = g(C2, ω2), ω = h(Ê, C) (3)

where f ′θ(·), f ′ϕ(·) represent different network weights of the
two pruning modules; g(·) denotes the weight eight-point al-
gorithm; h(·) is full-size verification operation. Particularly,
here C1 ∈ RN1×4 and C2 ∈ RN2×4 are pruned correspon-
dence sets, in which N > N1 > N2; ω1 ∈ RN×2 and
ω2 ∈ RN1×2 are the weights predicted by bilateral consen-
sus learning modules; ω ∈ RN×1 is the inlier probabilities
of the final prediction.

Bilateral Consensus Mining Attention Block
To achieve bilateral consensus, it is imperative to mod-
el local and global consensuses primarily. The existing
Order-Aware block has demonstrated commendable accura-
cy in extracting local consensus. Consequently, an additional
module must be fashioned to capture global consensus in-
formation. The potency of the self-attention mechanism in
establishing global dependencies instills us with optimism.
Therefore, we design a distinctive and lightweight Bilateral
Consensus Mining Attention (BCMA) block. What’s more,
acknowledging the significance of local information in the
correspondence pruning task, BCMA block embeds local
context before acquiring global consensus.

Local Context Embedding In contrast to conventional
self-attention (Vaswani et al. 2017), BCMA computes sim-
ilarity score across channels, rather than in the spatial di-
mension, which gives it linear complexity while encodes the
global context implicitly. We also introduce annular convo-
lution (Zhao et al. 2021) to highlight local context before ob-
taining global attention map. From input tensorX ∈ RN×d,
where d represents channel dimensions, we first generate
query Q, key K and value V via a layer normalization
followed by MLP layers. Then, three neighbor embedding
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graphs are constructed using KNN search for each corre-
spondence on value, query and key projections:

GQi =
{
VQi , E

Q
i

}
,GKi =

{
VKi , EKi

}
,GVi =

{
VVi , EVi

}
(4)

Towards graph GQi , nodes VQi =
{
cQi,1, c

Q
i,2, · · · , c

Q
i,k

}
,

cQi,m denotes the m-th neighbor of cQi according to Euclidean
distance between cQi and cQm in the query feature space.

Edges EQi =
{
eQi,1, e

Q
i,2, · · · , e

Q
i,k

}
is formulated as (Wang

et al. 2019):

eQi,j =
[
zQi , z

Q
i − z

Q
j

]
, 1 ≤ j ≤ k (5)

where [·] denotes the concatenation operation, zQi − z
Q
j rep-

resents residual feature between cQi and cQj .
Whereafter, in order to effectively tapping local consensus

through graph GQ ∈ RN×2d, we categorize the neighbors
into g groups based on their affinity to the anchor node cQi ,
where each group contains k/g nodes. The final feature of
cQi is then obtained by a convolution layer with 1× k/g ker-
nels followed by a convolution layer with 1× g kernels. By
aggregating all correspondences, we acquire a new feature
mapping Qlocal, that encapsulates local information. Let us
do the same operation for GK and GV , so that correspon-
dence in each feature space aggregates different local con-
texts and we get Klocal, Vlocal.

Attention Mechanism We alter the computation order
of Q,K, V in conventional self-attention (Vaswani et al.
2017), so that the similarity map A generated by the dot
product of Q and K has only the size of Rd×d, instead
RN×N . Thus, its computational complexity is linear for the
number of correspondences. The attention process is defined
as:

X̂ =WP ·Vlocal ·Softmax
(
Qlocal ·KT

local · α
)
+X (6)

where X and X̂ are the input and output tensor; WP rep-
resents a MLP layer; α is a learnable scaling parameter to
adjust the magnitude of the similarity map A.

After completing the above operations, the resulting fea-
ture X̂ undergoes further refinement to achieve the desired
global consensus, which involves an additional layer nor-
malization and a ResNet block. Finally, we concatenate the
obtained global consensus with the local consensus learned
by the Order-Aware block in the feature dimension. This
combined feature undergoes thorough interaction and recal-
ibration through followed Bilateral Consensus Recalibrate
block, resulting in the reliable bilateral consensus.

Bilateral Consensus Recalibrate Block
We find that inliers have higher consistency in the feature s-
pace after the convergence of bilateral consensus. However,
when facing some challenging scenarios, the feature repre-
sentation simply learned through a interaction operation is
deficient. It remains susceptible to inaccuracies in the fea-
tures when performing correspondence pruning. Hence, we
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Figure 3: Illustration of the proposed (a) Bilateral Consensus
Mining Attention (BCMA) block and (b) Bilateral Consen-
sus Recalibrate (BCR) block.

propose to model the interdependence between channels as
SENet (Hu, Shen, and Sun 2018) does to adaptively recali-
brate the feature response across channels.

For each feature map, SENet (Hu, Shen, and Sun 2018)
compresses all spatial information into a scalar, which un-
fortunately neglects the vital local context containing mo-
tion consistency that is crucial for our task. To overcome this
limitation, literature (Zheng et al. 2022) introduces a multi-
scale attention block, but it only addresses this issue by using
extra MLP layers to process correspondences individually.
Inspired by this concept, we seize the opportunity to devise
a Bilateral Consensus Recalibrate (BCR) block capable of
capturing both local and global contexts concurrently.

Specifically, given the input feature X ∈ RN×d , we first
apply a global average pooling operation to obtain the global
feature map Xavg ∈ R1×d. Thus, point-wise convolutional
layers with a bottleneck structure are employed to get the
global feature scalar Xglobal ∈ R1×d. The operations are
formulated as:

Xglobal = Conv1 (Conv2 (AV G (X))) (7)

where the weights of Conv1 and Conv2 are d×d/r×1 and
d/r × d × 1 respectively; r is the channel reduction ratio;
Xglobal is the recalibrated global scalar. For simplicity, we
omit the Batch Normalization layer and ReLU layer.

Next, considering the strong consistency of inliers at the
bilateral consensus level, we adopt the approach that men-
tioned in the previous local context embedding section to
get the local feature vector Xlocal. At last, we combine the
features Xglobal and Xlocal and apply a sigmoid function to
obtain the final weight for softly selecting X by an element-
wise multiplication operator. The entire process is represent-
ed as:

Xout = Sigmod (Xlocal +Xglobal)�X (8)
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What’s more, to effectively manage the bilateral consensus
features post recalibration, we also add three Resnet blocks
at the end to adequately handle the features.

Network Framework
The overall architecture of the BCLNet proposed by us is
shown in Figure 2. BCLNet primarily consists of two prun-
ing modules, a camera motion estimation module, and a
full-size verification module. The camera motion estimation
module is responsible for computing essential matrix from
the last pruned reliable correspondence subset and subse-
quently passes it to the full-size verification module for clas-
sification of all correspondences.

Principally, each pruning module is composed of a MLP
layer, three ResNet blocks and two Bilateral Consensus
Learning Modules. We use MLP layer to elevate features
to higher dimensional spaces d and ResNet block serving
as the basic module for extracting correspondence features,
which incorporates several MLP layers and normalization
layers. An Order-Aware block is incorporated into the Bi-
lateral Consensus Learning module alongside the proposed
BCMA block, allowing simultaneous extraction of both lo-
cal and global contextual information. Subsequently, these
two forms of contextual information are combined to form
bilateral consensus, which is then revalidated using the BCR
block. Combining the above modules, we get a progressive
correspondence pruning network.

Loss Function
Follow (Yi et al. 2018), to balance the correspondence clas-
sification task and the camera pose estimation task, we de-
velop a hybrid loss function to optimize the proposed B-
CLNet:

L = Lcls + λLess (9)
where Lcls represents correspondence classification loss,
Less denotes essential matrix estimation loss, λ is the weight
factor used to balance the two losses.

In Lcls, to mitigate the effects of label ambiguity, we add
adjustable temperature τ (Zhao et al. 2021). For inliers, τi is
negatively correlated with the epipolar distance di, while for
outliers τi = 1. The loss Lcls is given as:

Lcls(ω, y) =
Nk∑
i=1

H(τi � ωi, yi) +H(τ̂ � ω̂, ŷ) (10)

where ωi is the predicted logit vector of the i − th bilateral
consensus learning module; ω̂ indicates the output of the last
MLP layer; yi and ŷ are ground-truth labels;H indicates the
binary cross entropy loss function; � denotes the Hadamard
product and Nk represents the num of bilateral consensus
learning modules.
Less can be write as a geometry loss (Ranftl and Koltun

2018):

Less(Ê, E) =
(p′T Êp)2

‖ Ep ‖2
[1]

+ ‖ Ep ‖2
[2]

+ ‖ ET p′ ‖2
[1]

+ ‖ ET p′ ‖2
[2]

(11)

where Ê and E denote the predicted essential matrix and
ground-truth essential matrix respectively; ‖ · ‖[i] represents
the i-th element of this vector; p and p′ are the virtual corre-
spondence coordinates generated by using E.

Methods Known Scene Unknown Scene
P (%) R (%) F (%) P (%) R (%) F (%)

RANSAC 47.44 52.64 49.90 43.51 50.68 46.82
PointNet++ 49.84 86.41 63.22 46.60 84.17 59.99

LFGC 56.64 86.30 68.39 54.67 84.76 66.47
OANet++ 60.03 89.31 71.80 55.78 85.93 67.65
MSA-Net 61.98 90.53 73.58 58.70 87.99 70.42

CLNet 76.04 79.27 77.62 75.05 76.41 75.72
MS2DG-Net 63.17 90.98 74.57 59.11 88.40 70.85
ConvMatch 63.07 91.55 74.69 58.77 89.39 70.92
NCMNet 78.49 81.72 79.69 77.07 78.27 77.41

Ours 78.49 82.56 80.10 77.39 79.77 78.31

Table 1: Performance comparisons of our network and oth-
er models about the Precision, Recall and F-score on the
YFCC100M dataset in the correspondence classification
task.

Experiments
We first introduce the datasets and evaluation metrics used
in the experiment. Subsequently, by comparing with some
state-of-the-art methods, we validate the effectiveness of B-
CLNet in both correspondence classification task and cam-
era pose estimation task. At last, we conduct some ablation
experiments to discuss the setting of hyperparameters and
evaluate the role of each module.

Evaluation Protocols
Dataset Towards an effort to demonstrate the effectiveness
of BCLNet, we conduct experiments on both indoor and out-
door scenes. For the outdoor dataset, we utilized Yahoo’s
YFCC100M (Thomee et al. 2016), a vast collection contain-
ing 100 million pieces of multimedia data. As for the indoor
setting, we relied on SUN3D (Xiao, Owens, and Torralba
2013), which is an RGBD video dataset encompassing en-
tire rooms. Followed the data division approach outlined in
(Zhang et al. 2019), we train all models at the same training
setting to ensure an equitable comparison.

Evaluation Metrics Our proposed network addresses two
key tasks: correspondence classification and camera pose es-
timation. For classification task, we employ precision (P),
recall (R), and F-score (F) as evaluation metrics to measure
the performance of classification task. Precision is the ratio
of correctly identified correspondences to preserved corre-
spondences, while Recall is the ratio of correctly identified
correspondences to all correct correspondences in the ini-
tial set. The F-score combines Precision and Recall for a
comprehensive measure, defined as 2 ∗P ∗R/(P +R). For
camera pose estimation task, we use mean average precision
(mAP) of angular differences under various error thresholds
as evaluation metric. The angular difference is determined
by comparing the rotation and translation vectors predicted
by our model with the corresponding ground truth values.

Implementation Details
In our experiments, feature detectors(SIFT (Lowe 2004),
Superpoint (DeTone, Malisiewicz, and Rabinovich 2018))
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Methods YFCC100M(%) SUN3D(%)

Known Unknown Known Unknown

RANSAC 5.81 9.07 4.52 2.84
PointNet++ 10.49 16.48 10.58 8.10
LFGC 17.45 25.95 11.55 9.30
OA-Net++ 32.57 38.95 20.86 16.18
MSA-Net 39.53 50.65 18.64 16.86
CLNet 38.27 51.80 19.20 15.83
MS2DG-Net 38.36 49.13 22.20 17.84
ConvMatch 43.48 54.62 25.36 21.71
NCMNet 49.10 62.10 24.91 19.57
BCLNet(Ours) 52.62 66.08 24.59 19.96

Table 2: Comparative results about our network and oth-
er networks when using SIFT as feature extractor on the
YFCC100M and SUN3D datasets, with mAP5◦ (%) is re-
ported.

and nearest neighbor matching method are adopted to es-
tablish N = 2000 initial correspondences and then our net-
work. We go through two pruning modules with a pruning
ratio of 0.5 and end up with a reliable set of correspondences
of N/4. Throughout both pruning modules, we increase the
feature dimension d to 128. For the first pruning module, we
use the initial set of correspondences as input and the num-
ber of k neighbors is empirically set to 9. For the second
pruning module, we set k to 6 and use the weights predict-
ed in the previous module along with the pruned correspon-
dences set as input. Within the BCMA layer and BCR layer
of the two pruning modules, we set the number of groups
g to 3 and 2, respectively. Additionally, in the Order-Aware
block, we set the cluster number to 150 for outdoor scenes
and 250 for indoor scenes. All networks are implemented in
PyTorch (Paszke et al. 2019) and trained using the Adam op-
timizer (Kingma and Ba 2014) with an initial learning rate
of 10−3 and a batch size of 32. The training process consists
of 500k iterations. In Equation 9, the weight λ is initialized
to 0, and then fixed at 0.5 after the first 20k iterations.

Correspondence Classification
We compare BCLNet with RANSAC (Fischler and Bolles
1981) and recent state-of-the-art learning-based methods for
both known and unknown outdoor scenes, which includ-
ed PointNet++ (Qi et al. 2017), LFGC (Yi et al. 2018),
OANet (Zhang et al. 2019), MSANet (Zheng et al. 2022),
CLNet (Zhao et al. 2021), MS2DNet (Dai et al. 2022), Con-
vMatch (Zhang and Ma 2023), and NCMNet (Liu and Yang
2023). Table 1 presents the comparative results in the classi-
fication task, measured using Precision, Recall, and F-score
metrics. For all correspondences, we consider them as in-
liers if their epipolar distance is less than a certain threshold
(10−4).

From Table 1, we can observe that BCLNet achieves the
best results on Precision and F-score metrics across all sce-
narios. However, it is worth noting that both our method and
CLNet (Zhao et al. 2021), NCMNet (Liu and Yang 2023)
show a significant decrease on Recall compared to other
learning-based networks. This reduction is attributed to the
adoption of pruning strategy, leading to the removal of in-

(a) RANSAC (b) CLNet (c) BCLNet(Ours)

Figure 4: Visualization results of two-view correspondence
pruning on the unknown outdoor scenes and unknown in-
door scenes. From left to right are the results of RANSAC,
CLNet and BCLNet, respectively. Inliers(green lines) and
outliers(red lines) retained by algorithms are exhibited.

liers during the pruning process. Although full-size verifi-
cation restores some inliers, the predicted geometric mod-
el still implicitly inherits this attribute. Specifically, NCM-
Net (Liu and Yang 2023) represents an improved version of
CLNet (Zhao et al. 2021), capturing richer local consensus
and being the most effective model prior to our work. But
our network demonstrates improvements over NCMNet (Li-
u and Yang 2023) in all performance indicators, proving
that learning bilateral consensus effectively suppresses the
spread of erroneous context. Furthermore, with compara-
ble parameters, the training time of BCLNet has been re-
duced by nearly 25 hours compared to NCMNet (Liu and
Yang 2023), thanks to our key improvements in the atten-
tion mechanism. Additionally, we also visualized some vi-
sualization results of RANSAC, CLNet and BCLNet in Fig-
ure 4. As can be seen, BCLNet achieves the best results.

Camera Pose Estimation
The camera pose estimation aims to calculate the position-
al changes (translation and rotation) between two cameras
when capturing an image pair. We compare BCLNet with
other methods described in the previous section on both in-
door and outdoor scenes to verify the generalization of our
network. In addition, since the quality of the initial corre-
spondences will inevitably affect the effect of camera pose
estimation, we also utilize traditional (SIFT) and learn-based
methods (SuperPoint) as feature extractors respectively to
prove that the network has strong robustness.

As shown in Table 2, the comparison results for indoor
and outdoor scenes are presented. We report mAP5◦ (%) for
both known and unknown scenes. It is evident that BCLNet
achieves state-of-the-art performance in nearly all scenar-
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Matcher Known Scene Unknown Scene

5◦ 20◦ 5◦ 20◦

SIFT

RANSAC 5.81 16.88 9.07 22.92
PointNet++ 10.49 31.17 16.48 42.09
LFGC 13.81 35.20 23.95 52.44
OA-Net++ 32.57 56.89 38.95 66.85
MSA-Net 39.53 61.75 50.65 77.99
CLNet 38.27 62.48 51.80 75.76
MS2DG-Net 38.36 64.04 49.13 76.04
ConvMatch 43.48 66.14 54.62 77.24
NCMNet 49.10 70.80 62.10 81.67
BCLNet(Ours) 52.62 72.89 66.08 83.38

SuperPoint

RANSAC 12.85 31.22 17.47 38.83
PointNet++ 11.87 33.35 17.95 49.32
LFGC 12.18 34.75 24.25 52.70
OA-Net++ 29.52 53.76 35.27 66.81
MSA-Net 30.63 53.74 38.53 68.56
CLNet 27.56 50.82 39.19 67.37
MS2DG-Net 31.15 55.16 39.19 70.36
ConvMatch 38.34 60.25 48.80 74.59
NCMNet 40.33 62.37 48.60 75.38
BCLNet(Ours) 40.56 62.71 48.07 75.84

Table 3: Comparative results about our network and other
networks when using SIFT and SuperPoint as feature ex-
traction methods on the YFCC100M dataset. mAP5◦ (%)
and mAP20◦ (%) are reported.

ios, particularly with significant improvements of 3.52% and
3.98% in outdoor known and unknown scenarios compared
to the second best method respectively. In indoor scenarios,
our performance slightly lags behind that of ConvMatch, al-
beit with the advantage of our model size being almost one-
third smaller.

In addition, Table 3 presents comparison results obtained
using learning-based feature extractor and hand-craft feature
extractor on the YFCC100M dataset, with mAP5◦ (%) and
mAP20◦ (%) reported. BCLNet continues to demonstrate
superior performance across all scenarios, affirming the ro-
bustness of our network to the quality of the initial corre-
spondence set.

Ablation
In this section, we conduct ablation studies on the unknown
scene of YFCC100M to verify the role of each key compo-
nent in our network. We also perform some parameter anal-
ysis to balance performance and efficiency.

Main Components The proposed BCLNet comprises
three main modules i.e. BCMA block, BCR block, and
OA block. Utilizing the pruning strategy from the reference
(Zhao et al. 2021) as a baseline, we evaluate the performance
gains of these key components. The BCMA block is em-
ployed to run in parallel with the OA block to separately
obtain local and global consensus, while the BCR block is
used to re-verify bilateral consensus. As depicted in Table
4, with the integration of each module, the network’s perfor-
mance shows gradual improvement. When all modules are
combined, we achieve the best result.

Parameter Analysis In ours experiments, we observe a
significant enhancement in the network’s performance upon

IPS BCMA BCR OA MAP5◦(%) MAP20◦(%)
√

51.80 75.76√ √
59.98 80.72√ √ √
61.03 81.18√ √ √ √
66.08 83.38

Table 4: Ablation studies regarding performance gains of the
key components in each pruning module on outdoor dataset.
mAP5◦ (%) and mAP20◦ (%) are reported. IPS: the iterative
pruning strategy. BCMA: the Bilateral Consensus Mining
Attention block. BCR: the Bilateral Consensus Recalibrate
block. OA: the Order-Aware block.

Figure 5: Impact of cluster number on BCLNet performance.

incorporating the Order-Aware block. This is attributed to
the importance of local context in the correspondence prun-
ing task. As bilateral consensus seems to weaken the local
consensus, therefore, we adjust cluster number in the Order-
Aware block to compensate for this deficiency. Intuitively,
higher values of the cluster in the Order-Aware block are ex-
pected to improve network performance. However, this al-
so bring in increased network parameters and computational
burden. To strike a balance between model size and efficien-
cy, we conduct tests to analyze the impact of different cluster
values on outdoor dataset, as shown in Figure 5. Ultimately,
we set it to 150 on outdoor scenes.

Conclusion
In this paper, we propose an effective Bilateral Consensus
Learning Network (BCLNet) to cope with correspondence
pruning problem. Considering the complementarity between
local and global contexts, we interact these two types of in-
formation to get a bilateral consensus for accurately iden-
tify inliers. Simultaneously, to handle complex matching s-
cenarios and mitigate the impact of incorrect information,
we further design a Bilateral Consensus Recalibrate block
that enhances the feature representation capability. Numer-
ous experiments conducted on public benchmarks consis-
tently demonstrate the superiority of our method over the
current state-of-the-art technologies.
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