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Abstract

8 years after the visual question answering (VQA) task was
proposed, accuracy remains the primary metric for automatic
evaluation. VQA Accuracy has been effective so far in the
IID evaluation setting. However, our community is undergo-
ing a shift towards open-ended generative models and OOD
evaluation. In this new paradigm, the existing VQA Accuracy
metric is overly stringent and underestimates the performance
of VQA systems. Thus, there is a need to develop more robust
automatic VQA metrics that serve as a proxy for human
judgment. In this work, we propose to leverage the in-context
learning capabilities of instruction-tuned large language
models (LLMs) to build a better VQA metric. We formulate
VQA evaluation as an answer-rating task where the LLM is
instructed to score the accuracy of a candidate answer given
a set of reference answers. We demonstrate the proposed
metric better correlates with human judgment compared to
existing metrics across several VQAmodels and benchmarks.
We hope wide adoption of our metric will contribute to better
estimating the research progress on the VQA task. We plan to
release the evaluation code and collected human judgments.

Introduction
Visual question answering (VQA) (Antol et al. 2015) has
become an essential benchmark for assessing the progress of
multimodal vision-language systems. 8 years after the task
was proposed, accuracy remains the primary metric for auto-
matically evaluating model performance. VQA Accuracy is
based on exact string matching between a candidate answer
predicted by the model and a set of reference answers an-
notated by humans. As pointed out in Agrawal et al. (2023),
this metric has been effective so far because the VQA evalu-
ation primarily followed the the independent and identically
distributed (IID) paradigm, where the training and testing
data distributions are quite similar. Thus, models could learn
to adapt to the test answer distribution. However, recently,
our community has been shifting its focus towards out-of-
distribution (OOD) evaluation, either via zero-shot transfer
to unseen VQA tasks or via finetuning on one VQA dataset
and evaluating on another (Agrawal et al. 2023). In these
settings, the answers generated by VQA models might not
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Question: What color is the plane?
Reference answers: ‘red white 
blue’, ‘white, red, blue’, ‘white, red, 
and blue’, ‘white red blue black’, …
Candidate answer: white and red

VQA Accuracy
0.00

METEOR
0.52

BERTScore
0.59

Rationale: The candidate 
answer is correct 
because it includes both 
'white' and 'red', which 
are mentioned in the 
reference answers.

Human Score
1.00

LAVE
1.00

Question: When will the train 
move?
Reference answers: after the 
passengers have boarded
Candidate answer: soon

VQA Accuracy
0.00

METEOR
0.00

BERTScore
0.09

Rationale: The candidate 
answer is ambiguous 
because 'soon' does not 
provide a specific 
timeframe for when the 
train will move.

Human Score
0.50

LAVE
0.50

Figure 1: Existing VQA metrics and other strong baselines
tend to miss out on correct answers generated by VQAmod-
els. Our proposed metric, LAVE, is more aligned with hu-
man judgment and provides a rationale for its rating, making
it also more interpretable.

match any of the reference answers, while still being correct
answers to the question! For instance, the generated answer
might differ from the reference answers due to the format,
specificity, different interpretations of the question, etc.
(Sec. ). To address this limitation, some recent methods (Li
et al. 2023b) have attempted to artificially modify the format
of generated answers to align with the reference answers.
However, we argue this adjustment is a consequence of the
flawed evaluation metric and should not influence modeling.
Although human evaluation is the most reliable method for
assessing generative models, it is costly and not scalable.
Thus, there is a need to develop more robust automatic
VQA metrics that serve as a proxy for human judgment.
A potential solution towards this issue would be to use

soft evaluation metrics based on answer similarity (e.g.,
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BERTScore (Zhang et al. 2020), Sentence-BERT (Reimers
and Gurevych 2019)). While these metrics might be effec-
tive in matching synonyms and paraphrases, they fail when
the compared texts have fine-grained yet major differences
(e.g., “the man on the left” vs. “the man on the right”, “there
is a dog” vs. “there is no dog”). We empirically evaluated
the performance of such soft metrics for VQA, and found
that their correlation with human judgement is even weaker
than that of VQA Accuracy (Sec. ).
Inspired by recent advances in using large language

models (LLMs) to evaluate natural language generation
(NLG) (Fu et al. 2023; Liu et al. 2023; Zheng et al. 2023), we
explore the potential of leveraging LLMs as superior eval-
uators of answer quality in VQA. We believe that LLMs
have the potential to capture human preference given their
extensive training in modeling human language, and hence
present a compelling choice as proxy for human judgment.
By employing LLMs, we can harness the benefits of soft
metrics while mitigating their limitations, resulting in a more
robust evaluation framework.
To this end, we propose a novel automatic VQA evalua-

tion metric, LAVE (LLM-Assisted VQA Evaluation), which
leverages the in-context learning capabilities of instruction-
tuned LLMs. In particular, we formulate VQA evaluation as
an answer-rating task where the LLM is instructed to score
the correctness of a candidate answer given the correspond-
ing question and a set of reference answers. To evaluate
the effectiveness of the proposed metric, we collect human
judgments on the correctness of answers generated by sev-
eral state-of-the-art VQA models across three popular VQA
benchmarks. Our results demonstrate that LAVE correlates
better with human judgment compared to existing metrics in
diverse settings (Fig. 1). We also systematically categorize
the failure modes of VQA Accuracy and show that LAVE
is able to recover most missed correct candidate answers. In
addition, we conduct ablation studies to assess the impact of
each design choice on the performance of LAVE. In sum-
mary, our contributions are:
• We propose a novel metric for automatic VQA evalua-
tion, LAVE, leveraging the in-context learning capabili-
ties of instruction-tuned LLMs.

• We rigorously assess the effectiveness of LAVE by com-
puting its correlation with human judgment, and show its
robustness across various VQA models and benchmarks.

• We benchmark several strong baseline metrics in ad-
dition to VQA Accuracy, such as BERTScore or S-
BERTScore, and show LAVE outperforms all of them.

• We systematically categorize the failure modes of VQA
Accuracy and show LAVE fixes most of its pitfalls.

• We conduct thorough ablation experiments to measure
the effect of each component of LAVE.

Related Work
Metrics for VQA VQA evaluation has received limited
attention since the original VQA Accuracy metric was in-
troduced by Antol et al. (2015). In a later study, Luo et al.
(2021) propose enhancing the reference answers with al-
ternative answer sets (AAS), focusing on the case where

only one reference answer per question is provided. More
recently, Hu et al. (2022) devise a soft VQA Accuracy met-
ric as part of their data filtering pipeline. We implement this
metric as one of our baselines for comparison (Sec. ).

Metrics for GenQA VQA and QA both involve answer-
ing questions related to a given context, either visual or
textual. Generative QA evaluation faces similar challenges
as VQA, relying primarily on metrics such as exact-match
(EM) and F1 Score. Similarly to Luo et al. (2021), Si, Zhao,
and Boyd-Graber (2021) also propose expanding reference
answers with equivalent ones mined from knowledge bases.
Lee et al. (2021) introduce a metric that weights answer to-
kens via keyphrase prediction. Chen et al. (2019) found that
a straightforward application of BERTScore fails to provide
stronger correlation with human judgements. Instead, other
works (Risch et al. 2021; Bulian et al. 2022) train a seman-
tic answer similarity metric based on BERT, showing im-
proved correlation with human judgment. In contrast, we
explore the capabilities of instruction-tuned LLMs in com-
paring candidate and reference answers.

Using LLMs as evaluators Recently, several works (Fu
et al. 2023; Liu et al. 2023; Kamalloo et al. 2023; Li
et al. 2023a; Zheng et al. 2023; Rajani et al. 2023) have
explored the possibility of using LLMs (Flan-T5 (Chung
et al. 2022), OPT (Zhang et al. 2022), GPT-X (Brown
et al. 2020; OpenAI 2023)) to evaluate text generation for
different tasks (e.g., summarization, dialogue generation,
machine translation, QA, ...). Closer to our work, Zhou et al.
(2023) propose using ChatGPT to automatically evaluate
model outputs on a Likert scale. However, the quality of
their metric remains uncertain as they do not provide any
evidence of its alignment with human judgment. In this
work, we aim to rigorously assess the effectiveness of
LLMs in evaluating VQA by measuring their correlation
with human judgment in diverse settings.

Analysis of VQA Accuracy Failure Modes
The motivation for developing a new VQA metric arises
from the limitations of VQA Accuracy in handling open-
ended model responses, which are not suitable for exact

Figure 2: Example of a VQA Accuracy failure mode from
the multiple answers category (Tab. 1). Q: What are the
sticks for? A: balance, pushing, skating, ...
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Category Definition Examples %
Multiple
answers

Subjective, answers might focus on
different aspects of the scene/activity.

Q: What are the sticks for? A: balance, pushing, skating, ... (Fig. 2) 34.25

Over- or under-
specifying and
verbosity

The candidate answer contains more/-
less details than the references or is
more/less verbose.

Q: Where is the hydrant? A: on the right, right; Q: What color are
the flowers? A: pink, pink and orange and red

27.75

Synonym Includes “almost-synonym“ relation. Q: What is the setting of this picture? A: field, plains, grassland; Q:
What is the sign telling you to do or not do?A: no entry, do not enter

21.0

Broad/bad ques-
tion or generic
response

Question is near impossible to answer
or highly subjective; model avoids an-
swering by being overly generic.

Q: How many sheep are there? A: many; Q: What is the current
condition of these animals? (image simply shows a baby elephant)

18.0

Incorrect Human judgment is incorrect. - 8.25

Same stem Reference and candidate share the
same stem (plural vs. singular or
gerund); different formatting or
whitespace.

Q: What are the people doing? A: playing video games/game; Q:
What shape is the building? A: rectangular, rectangle; Q: What
colors are in the surfer’s shirt? A: blue and white, white and blue

5.75

Hypernym “Subcategory-of” relation. Q: What are the people doing?A: playing wii, playing video games;
Q: What is in the blender? A: vegetables, carrots

5.0

Unknown issue Model responds with “unknown”. - 3.75

Ambiguous
object

Phrase could refer to multiple objects
in the image.

Q: What kind of sign is this? A: billboard, street sign (image shows
multiple signs/billboards)

2.0

Table 1: Failure modes of the strict VQA Accuracy where correct responses are marked as incorrect. Model generated answers
are marked in italics and reference answers underlined.

string matching. To understand the specific failure modes
a new metric should address, we conducted a small study
where we manually categorized 400 VQA examples. We
looked at examples where VQA Accuracy is below 0.5
(at most 1 out of 10 reference answers matches with the
model’s response), but at least 4 out of 5 humans rated
the model’s response as correct. In other words: when are
actually correct responses marked as incorrect the way
current VQA systems are evaluated? We annotated 100
examples for each of four model-dataset pairs: (BLIP-2,
VQAv2), (BLIP-2, VG-QA), (BLIP-2, OK-VQA), and
(PromptCap, VQAv2). We focus on BLIP-2 and PromptCap
since their generation is most open-ended.
Our initial set of failure modes is inspired from Luo et al.

(2021), and manual inspection resulted in several additional
categories. For clarity and conciseness, we decided to merge
certain categories. Tab. 1 shows the consolidated nine cate-
gories with definitions, examples and frequencies.
We identified four prevalent failure modes: (1) multiple

answers, (2) over- or under-specification and verbosity,
(3) synonyms and (4) broad/bad question or generic
response. We observe that certain question types naturally
lead to various possible correct answers. For instance,
many where-questions (e.g., “Where is the clock?”) can
be answered using either absolute positioning or relative
positioning to other objects. Other open-ended questions,
such as asking what a person is doing or feeling, can be
interpreted in multiple ways (e.g., “Why is she posing
for picture?”). Luo et al. (2021) introduced the category
ambiguous object when a phrase in the question could point

to several objects (e.g., “What color is the shirt?” when
there are several shirts). However, our inspection showed
only a few occurrences of it and we speculate it often also
falls into the multiple answers category.
In summary, our analysis revealed that the open-ended na-

ture of visual question answering can lead to multiple com-
plex failure modes in VQA Accuracy.

Method
We present LAVE, an LLM-based evaluation framework to
automatically assess the quality of answers generated by
VQA models. Each VQA example comprises an image i,
a question about the image q, and a set of reference answers
R provided by human annotators. Given i and q, a VQA
model f generates a candidate answer c, i.e., c = f(i, q).
Our goal is to automatically evaluate the quality of the gen-
erated answer c by comparing it with the references R. To
enhance the evaluation process, we can additionally leverage
the contextual information from the question q and the im-
age i. We build a textual prompt using R, c, and optionally
q and i (as an image description). This prompt is then fed to
an LLM to generate a quality rating. The following sections
describe the key design decisions underlying our approach.

Choosing a Large Language Model
It is crucial to choose an appropriate LLM as LAVE’s per-
formance directly hinges on its capabilities. We pose VQA
evaluation as a close-ended answer-verification task and
adapt a frozen LLM through in-context learning. Hence, we
opt for an instruction-tuned LLM, which has demonstrated
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You are given a question, a set of 
gold-standard reference answers written by 
experts, and a candidate answer. Please rate 
the accuracy of the candidate answer for the 
question considering the reference answers. 
Use a scale of 1-3, with 1 indicating an 
incorrect or irrelevant answer, 2 indicating 
an ambiguous or incomplete answer, and 3 
indicating a correct answer. Give the 
rationale before rating.
THIS IS VERY IMPORTANT: A binary question 
should only be answered with 'yes' or 'no', 
otherwise the candidate answer is incorrect.

Task description

Question: What's the weather 
like?
Reference answers: sunny, 
clear, bright, sunny, sunny
Candidate answer: cloudy
Output: The candidate answer 
is incorrect because it 
contradicts the reference 
answers that suggest clear 
weather. So rating=1

+

Demonstrations

+

The candidate answer is correct 
because the right window is 
slightly open. So rating=3

Completion

Language 
Model

❄

Question: Which window is 
slightly open?
Reference answers: right, 
right one, one on right, one 
in back, right window, yes, 
right, yes, second one
Candidate answer: the right 
window
Output:

Test example

Figure 3: VQA evaluation with an LLM via in-context learning.

superior performance in transferring to new tasks with lim-
ited demonstrations (Wei et al. 2022a). Instruction-tuned
LLMs are also more robust to prompt selection, and they
can match the few-shot performance of much larger LLMs
pretrained with self-supervised objectives. Considering all
these factors, we first select the Flan-T5 (Chung et al. 2022)
model family for our metric. In addition, Flan-T5 is fine-
tuned on chain-of-thought (CoT) data, enabling it to provide
reasoning for its answers.
To demonstrate LAVE’s robustness across different

LLMs, we also consider Vicuna-v1.3 (Chiang et al. 2023)
and GPT-3.5-Turbo (aka ChatGPT (OpenAI 2022)). We op-
timize our prompt for Flan-T5 (Sec. ) and subsequently
use the same prompt with the other LLMs. This opens the
possibility of enhancing our metric without extra effort as
stronger LLMs become available in the future.

Prompt for VQA Evaluation
We frame VQA evaluation as an answer-rating task
amenable to in-context learning with LLMs. We adopt a rat-
ing scale ranging from 1 to 3 (as opposed to a binary rat-
ing) to account for ambiguous questions or incomplete an-
swers. Our prompt (Fig. 3) comprises the typical compo-
nents: task description, a few demonstrations of input/out-
put, and the input for a test example. We draw inspira-
tion from SNI (Wang et al. 2022) to structure our task de-
scription, as it is one of the main sources of training data
for instruction-tuned LLMs. We also append “Give the
rationale before rating.” to elicit a justification
for the assigned rating, which improves explainability. Each
demonstration consists of a question q, a set of reference an-
swers R, the candidate answer c, the answer rating r, and an
explanation e for the rating. We observed binary questions
are particularly challenging to evaluate (App. ), so we manu-
ally curate two sets of 8 demonstrations, one for binary ques-
tions and the other for general questions. We ensure demon-
strations are diverse and cover various question types, num-

bers of reference answers, levels of agreement, candidate an-
swer precision and verbosity, ratings, etc (refer to App. for
the complete list). While these sets of demonstrations are de-
signed to be comprehensive, users of our metric could also
provide their own demonstrations to cover different cases.
Additionally, to account for noise in the annotations, we fil-
ter out outlier reference answers that have a frequency lower
than 25% of the maximum answer frequency. Finally, the
test example only includes q, R and c, and the LLM is ex-
pected to generate an explanation e followed by a rating r.
We found incorporating visual context from the image i into
the prompt does not provide significant benefits (see Sec.
and App. for more details).

Scoring Function
Given the LLM’s generated text for the test example, we ex-
tract the rating r from the last character (either 1, 2 or 3) and
linearly map it to a score s in the range [0, 1]: s = (r�1)/2.
Inspired by Liu et al. (2023), we also explored the possibil-
ity of using the probabilities of output tokens to normalize
the ratings and take their weighted sum as the final rating,
but we did not observe any improvements in our task.

Experiments
Experimental Setup
VQA models and benchmarks We evaluate LAVE on
answers generated by several VQA models across multi-
ple VQA benchmarks. In particular, we consider two rep-
resentative state-of-the-art VQA models: BLIP-2 Flan-T5-
XXL (Li et al. 2023b) and PromptCap GPT-3 (Hu et al.
2022). Our selection criteria were based on their public
availability, their zero-shot VQA capability, and their archi-
tectural diversity. We also include BLIP (Li et al. 2022)
finetuned on VQAv2 (BLIPVQA) and VG-QA (BLIPVG),
which represents the finetuning-OOD paradigm. We use
these VQA models to generate answers for three VQA

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

4174



datasets:VQAv2 (Goyal et al. 2017),VG-QA (Krishna et al.
2017) and OK-VQA (Marino et al. 2019). The selection
of these datasets was driven by their diverse answer dis-
tributions. VQAv2 was prioritized due to its popularity as
one of the most widely-used VQA benchmarks, providing
10 reference answers per question. VG-QA was chosen for
its notably distinct answer distribution compared to VQAv2
(as shown by Agrawal et al. (2023)), and it provides a sin-
gle reference answer per question. Lastly, OK-VQA was se-
lected for its unique answer distribution, differing from both
VQAv2 and VG-QA, as some of its questions require exter-
nal knowledge to answer.

Baselines We evaluate LAVE against several strong base-
lines for VQA evaluation which involve comparing a can-
didate answer with a set of references. We consider the
original VQA Accuracy (Antol et al. 2015), based on ex-
act string matching; soft VQA Accuracy (Hu et al. 2022),
which replaces exact-match by edit distance (CER); ME-
TEOR (Banerjee and Lavie 2005), which uses unigram
matching on surface form, stemmed form and meaning;
CIDEr (Vedantam, Lawrence Zitnick, and Parikh 2015),
which captures consensus among multiple references;
BERTScore (Zhang et al. 2020), which calculates pair-
wise cosine similarity of contextualized token embeddings;
and S-BERTScore (Reimers and Gurevych 2019), which
measures cosine similarity of sentence embeddings. Both
BERTScore and S-BERTScore compute similarity between
pairs of sentences, so when there are multiple reference an-
swers, the maximum score with the candidate is selected.

Implementation details We consider Flan-T5-XXL and
Vicuna-v1.3-13B as open-source LLMs, and GPT-3.5-Turbo
(gpt-3.5-turbo-0613) as a closed-source LLM. We
leverage the HuggingFace Transformers’ (Wolf et al. 2020)
implementation of Flan-T5 and LLaMA (for Vicuna), and
use GPT-3.5-Turbo through OpenAI’s API1. To make gener-
ation deterministic, we perform greedy decoding, or equiva-
lently set the temperature to 0 in OpenAI’s API.

Collecting Human Judgments
We collected human judgments about answer quality using
Amazon Mechanical Turk (MTurk) with the same web in-
terface as Agrawal et al. (2023). Specifically, we collected
judgments for answers generated by BLIP-2 on VQAv2,
VG-QA and OK-VQA, PromptCap on VQAv2 and OK-
VQA, BLIPVQA on VG-QA and OK-VQA, and BLIPVG
on VQAv2 and OK-VQA (2450 questions each2). In total,
our test set contains 22.1k questions. We additionally col-
lected validation/development sets of human judgments for
answers generated by BLIP-2 on VQAv2 and VG-QA, and
BLIP on VQAv2 and VG-QA (1000 questions each). In to-
tal, our validation set contains 4k questions, which serve to
guide our design choices. We emphasize that PromptCap
and OK-VQA are completely unseen during metric develop-
ment to show LAVE’s generality. Following (Agrawal et al.

1https://platform.openai.com/docs/api-reference
2We initially collected human judgments on 2500 questions per

model-dataset pair, but had to remove some to control data quality.

2023), each answer was assessed by 5 annotators who were
asked to provide a binary rating (correct/incorrect) based on
the corresponding image and question. An important differ-
ence between the task posed to turkers and to the LLM is that
the LLM is provided with a list of reference answers anno-
tated by humans, while turkers are not. After filtering out
low-quality annotations, we obtain an inter-annotator agree-
ment measured by Krippendorff’s ↵ of 62.0. Upon man-
ual inspection, we observed that model responses (and even
questions) are often ambiguous in nature, which would ex-
plain the relatively low inter-annotator agreement (see App.
for more details). We derive a single “quality” score from
the 5 binary ratings per answer as follows: 1.0 if at least 4
annotators rate the answer as correct, 0.5 if only 2 or 3 did
so, and 0.0 otherwise. Considering partial scores is crucial
to acknowledge the ambiguity inherent in certain questions,
particularly when dealing with generative models which can
produce technically accurate answers that may not align
with the intended meaning of the question.

Correlation with Human Judgment
To evaluate LAVE, we measure its correlation with human
judgment using two widely accepted rank correlation coef-
ficients: Spearman’s ⇢ and Kendall’s ⌧ (in the appendix).
These provide a robust measure of the association between
metrics, without assuming a linear relationship or a specific
distribution of the data. Both coefficients range from �1 to
1, with �1/+1 meaning perfect inverse/direct correlation.
Spearman correlations between VQA metrics (ours and

baselines) and human judgment on every evaluated pair of
VQA model and dataset are shown in Tab. 2 (see App.
for additional results and observations). We verify statistical
significance by bootstrapping with 5000 resamples and run-
ning a t-test with a significance level of 5% between pairs of
correlations. For each setting, we bold the best results which
are significantly better than the second-best result. The main
observations are summarized as follows:
Overall, LAVE is significantly more aligned with

human judgment than all the considered baselines, in-
dependently of the underlying LLM. Among the considered
LLMs, we observe GPT-3.5 provides the highest overall
correlation with human judgment. This is in line with recent
LLM leaderboards (Zheng et al. 2023) which, at the time
of writing, place GPT-3.5 (along GPT-4 (OpenAI 2023) and
Claude (Anthropic 2023)) one step above any other LLM
across a diverse set of benchmarks. However, we are excited
to report that, on the VQA evaluation task, open-source
LLMs such as Flan-T5 or Vicuna also outperform all
baselines on average. Interestingly, despite being trained
on user-shared conversations with ChatGPT, Vicuna falls
behind Flan-T5 in our task.
LAVE generalizes to new VQA models and bench-

marks. We did not use human judgments of answers pro-
duced by PromptCap (across all datasets) or to OK-VQA
questions (from all models) to guide our prompt design (see
Sec. ). Still, our metric correlates better with human judg-
ment than all baselines in these hold-out settings. This indi-
cates our design choices are not overfitted to the particular
settings used during metric development, and that LAVE ap-
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BLIP-2 PromptCap BLIPVG BLIPVQA OverallVQAv2 VG-QA OK-VQA VQAv2 OK-VQA VQAv2 OK-VQA VG-QA OK-VQA

Baselines
VQA Acc. 71.54 41.19 48.65 65.82 48.24 84.85 70.38 41.90 68.84 60.13
Soft VQA Acc. 73.23 49.88 47.65 67.06 53.46 83.59 66.79 52.04 67.87 63.91
METEOR 64.75 48.70 50.97 57.74 51.76 83.45 71.42 51.65 68.44 58.68
CIDEr 69.55 47.78 53.23 63.26 49.81 85.07 71.08 46.50 70.25 63.88
BERTScore 50.61 11.73 38.62 41.14 42.73 72.14 59.42 15.88 60.51 31.47
S-BERTScore 60.44 42.10 47.84 47.44 47.11 77.65 68.04 47.61 65.61 56.61

Ours
LAVE FT5 71.19 59.94 59.85 64.18 58.67 71.67 66.03 54.50 63.87 64.99
LAVE Vicuna 72.35 51.65 58.45 67.23 54.81 77.77 71.45 48.19 68.44 64.05
LAVE GPT-3.5 74.25 60.19 61.47 71.99 57.39 83.63 69.97 58.47 67.57 68.91

Table 2: Spearman correlation (⇢) between VQA metrics and human judgment.

BLIP-2 BLIPVG BLIPVQA OverallVQAv2 VG-QA VQAv2 VG-QA

LAVE FT5 67.50 61.57 74.82 63.09 66.74

1-shot 55.43 61.04 59.79 57.45 59.07
4-shot 68.92 60.30 73.37 60.50 65.40
w/o rationale 58.67 63.87 68.01 65.36 65.57
w/o filter refs. 62.53 61.58 74.09 63.05 64.89
w/ caption 68.47 63.50 71.33 64.25 66.94

Table 3: Spearman correlation (⇢) between LAVE FT5 and
human judgment when ablating for prompt design choices.

pears promising for evaluating answers generated by various
models and across different datasets.
Questions from VQAv2 and OK-VQA answered by

BLIP follow a different trend. In these settings, VQA
Accuracy’s correlation with human judgment is consid-
erably higher than for zero-shot VQA models, whereas
LAVE has only a slightly higher correlation. We observe
human score is much higher for BLIP-2 and PromptCap
answers (0.7552 on average) compared to BLIP answers
(0.5293 on average). Therefore, BLIP answers are more
frequently incorrect or incomplete, which is expected as
open-ended generative models are known to perform better
on OOD data. The higher correlation for VQA Accuracy in
these settings can be attributed to its efficacy in identifying
incorrect candidate answers, while LLMs might label some
as correct. For instance, GPT-3.5 labels “sink“ as a correct
answer to the question “What is this kind of sink called?”, or
“refrigerator” as a correct answer to “What does this device
generally do?”. Thus, the different trend in correlation with
human judgment can be explained by a higher frequency
of incorrect answers. This trend does not hold for VG-QA
because LAVE outperforms the baselines when there is a
single reference answer (see App. ).

Ablation Studies
We compute correlation between LAVE FT5 and human
judgment when ablating for different prompt design choices.
The best overall configuration is used to compute correlation

on the test sets. Tab. 3 summarizes our ablation results.

Number of demonstrations Our results suggest a posi-
tive correlation between the number of demonstrations and
LAVE FT5’s effectiveness. As the number of demonstrations
increases, the correlation with human judgment tends to
improve. However, there is a tradeoff between number of
demonstrations and computational overhead (and financial
cost for GPT-3.5), so we tested up to 8 demonstrations.

Rationalization Wemeasure the effect of asking the LLM
to generate a rationale before rating candidate answers. Two
trends arise when including rationalization: significantly im-
proved performance on VQAv2 and slightly worse perfor-
mance on VG-QA. We hypothesize a single reference an-
swer (VG-QA) simplifies the answer-rating task, while hav-
ing multiple reference answers (VQAv2) opens the door to
discrepancies among annotators, leading to a more complex
evaluation which can benefit from step-by-step reasoning.

Filtering of reference answers When using 10 ref-
erence answers (VQAv2), we observe that filtering out
low-frequency answers consistently improves correlation,
likely attributed to the reduction of noise in the reference
answers. Note that this filtering has no effect when using a
single reference answer (VG-QA).

Visual context We evaluate the effect of incorporating
visual context into the prompt via an image description.
Concretely, we use ground-truth captions from COCO
and VG, modify the beginning of our task description
as “You are given an image description,
a question about the image, ...” and add
“Image description: {caption}” to each exam-
ple. Including visual context appears to be beneficial only
in certain cases, especially when the dataset has a single
reference answer (VG-QA). Notably, the overall correlation
remains comparable to that observed without leveraging
visual context. Moreover, in order to deploy our metric with
visual context, we would need to add a captioning module
to obtain the image description. Considering that visual
context substantially increases the computational overhead
due to image captioning and increased prompt length, we
opted for excluding it from our final method.
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Image Question Reference Candidate VQA LAVE Rationaleanswers answer Acc. GPT-3.5

(a)

What kind of
ecological sys-
tem is this?

water, lake, unanswer-
able, tropical, lush,
cloudy, warm

aquatic 0.0 1.0 The candidate answer is
correct because it is syn-
onymous with ‘water’ and
‘lake’, which are mentioned
in the reference answers.

(b)

What is ironic
about this photo?

no water, boat, boat is
out of water, boat not
in water, boat is not in
water, boat on dry land,
boat is on dry land, boat
on land, boat is on land

there is a
boat on the
street

0.0 1.0 The candidate answer is
correct because it captures
the irony of the situation
where a boat is on the street
instead of in the water.

(c)

What country’s
flag is shown?

usa, united states of
america

american 0.0 1.0 The candidate answer is
correct because ’american’
is equivalent to ’usa’ in this
context.

Table 4: Selected questions from VQAv2 answered by BLIP-2, evaluated by VQA Accuracy and LAVE GPT-3.5, along with the
rationale for the answer rating. Duplicate reference answers have been omitted for conciseness.

Figure 4: Average score of VQA evaluation metrics for cases
where VQA Accuracy misses correct candidate answers,
broken down by failure mode category.

Does LAVE Fix VQA Accuracy’s Failures?
Aside from having better overall correlation with human
judgment, we would like to know how LAVE behaves in
the failure modes of VQA Accuracy highlighted in Sec. .
As a reminder, these are all cases where human annotators
collectively labeled the candidate answer as correct (score
of 1.0), while VQA Accuracy was below 0.5 (either 0.3 or
0.0). Therefore, we would expect our metric to give these
candidate answers a score of 1.0 (excluding incorrect cases
– 8.25%)3. Out of the 22.1k questions from our test sets, this
is the case for 3601 questions (16.33%). For completeness,
we found the reverse scenario, collective human score of
0.0 and VQA Accuracy above 0.5, occurs in 379 questions
(1.72%); these are cases where the new human annotators
disagree with the original annotations of the VQA datasets,

3Note that, in this setting, it is not possible to compute correla-
tion with human judgment since it is constant (1.0).

indicating some noise in our collected human judgments.
Fig. 4 shows the average score of VQA Accuracy, Soft

VQA Accuracy, LAVE FT5 and LAVE GPT-3.5 on the 400
manually-labeled examples analyzed in Sec. . We observe
that LAVE is significantly more aligned with human judg-
ment than both VQA Accuracy and Soft VQA Accurarcy,
especially when candidate answers are more verbose or
they are a synonym of the reference answers. As previously
mentioned, broad questions or which have multiple correct
answers may be overly subjective, so it is harder for an
LLM to determine whether the candidate answer is correct.
It is interesting to see, however, that in these cases Flan-T5
generally performs better than GPT-3.5. In summary, this
indicates that LAVE is able to recover a considerable
fraction of correct candidate answers wrongly labeled as
incorrect by VQA Accuracy.
Tab. 4 contains a few selected examples where

LAVE GPT-3.5 fixes failures of VQA Accuracy. For in-
stance, example (a) shows our metric is able to identify that
the candidate answer is a synonym of several references,
even though the form is different. Example (b) demonstrates
our metric is robust to answers of diverse verbosity. In ex-
ample (c), our metric is capable of identifying the candidate
answer is equivalent to the references, even though they
belong to different lexical categories.

Conclusions
We present LAVE, a new automatic VQA evaluation metric
leveraging the in-context learning capabilities of instruction-
tuned LLMs. Through a comprehensive study involving di-
verse VQA models and benchmarks, we demonstrate that
LAVE is significantly more aligned with human judgment
compared to existing metrics. We hope wide adoption of our
metric will contribute to better estimating the progress of
vision-language systems on the VQA task.
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Ethical Statement
In this work, we propose a novel VQA evaluation metric
leveraging the power of instruction-tuned LLMs. While this
advancement has the potential to significantly improve the
evaluation and development of VQA systems, it also raises
several ethical and societal considerations that warrant
careful attention.
First, while LAVE shows improved correlation with hu-

man judgment, we must acknowledge that the diversity and
representativeness of the human annotators could influence
the results. If the pool of annotators is not diverse, there may
be biases in their judgments that could influence the perfor-
mance of the proposed metric. We made a concerted effort to
ensure that our pool of human annotators was as diverse as
possible, but further research and mitigation strategies may
be necessary to address this concern fully.
Second, the use of LLMs in any context brings up the is-

sue of potential biases encoded in these models. As LLMs
are typically trained on large-scale datasets scraped from the
internet, they can inadvertently learn and perpetuate harmful
biases present in those datasets. Such biases could result in
discriminatory or otherwise unethical outcomes, so it is cru-
cial to consider them when deploying or further developing
LAVE. Future work should continue to investigate methods
to identify and mitigate these biases.
Lastly, it is important to consider the broader impact

of our research on society, particularly as it relates to the
automation of tasks traditionally performed by humans.
While improving VQA evaluation metrics could lead to
more efficient and accurate systems, the potential displace-
ment of jobs traditionally performed by humans could
have significant societal impacts. It is essential to consider
these potential consequences and to work towards solutions
that leverage the benefits of AI while also considering the
human factor.
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