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Abstract

Recently, a number of Few-Shot Fine-Grained Image Clas-
sification (FS-FGIC) methods have been proposed, but they
primarily focus on better fine-grained feature extraction while
overlooking two important issues. The first one is how to
extract discriminative features for Fine-Grained Image Clas-
sification tasks while reducing trivial and non-generalizable
sample-level noise introduced in this procedure, to overcome
the over-fitting problem under the setting of Few-Shot Learn-
ing. The second one is how to achieve satisfying feature
matching between limited support and query samples with
variable spatial positions and angles. To address these issues,
we propose a novel Cross-layer and Cross-sample feature op-
timization Network for FS-FGIC, C2-Net for short. The pro-
posed method consists of two main modules: Cross-Layer
Feature Refinement (CLFR) module and Cross-Sample Fea-
ture Adjustment (CSFA) module. The CLFR module further
refines the extracted features while integrating outputs from
multiple layers to suppress sample-level feature noise inter-
ference. Additionally, the CSFA module addresses the fea-
ture mismatch between query and support samples through
both channel activation and position matching operations.
Extensive experiments have been conducted on five fine-
grained benchmark datasets, and the results show that the
C2-Net outperforms other state-of-the-art methods by a sig-
nificant margin in most cases. Our code is available at:
https://github.com/zenith0923/C2-Net.

Introduction
With the ongoing advancement of deep learning (He et al.
2016; Du et al. 2023; Yang et al. 2022b), Fine-Grained
Image Classification (FGIC) (Fu, Zheng, and Mei 2017)
has made significant progress under the condition of hav-
ing sufficient training samples. However, the cost of col-
lecting large-scale label-rich fine-grained images is expen-
sive, so many researchers have shifted their focus to Few-
Shot Learning (FSL) (Munkhdalai et al. 2018; Vinyals et al.
2016) to avoid this issue. Built based on meta-learning, met-
ric learning, and some other strategies, FSL methods aim to
learn task-transferable knowledge according to related base
classes, to reduce over-fitting and achieve satisfying classifi-
cation results on testing (query) samples belonging to novel
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Figure 1: Visualization results of features extracted by the
backbone on the CUB and Stanford-Dogs datasets. The first
row shows the raw images, the second row displays the vi-
sualization of features extracted from the last layer of the
backbone, and the third row shows the visualization of fea-
tures extracted from the penultimate layer.

classes with extremely limited training (support) samples.
By combining the idea of FSL with the FGIC task, several
effective methods have been proposed recently for Few-Shot
Fine-Grained Image Classification (FS-FGIC), but there are
still several issues to be further addressed in this new task.

Generally speaking, feature learning is the most critical
point to fine-grained related tasks. However, there exists a
potential contradiction in the design of the feature learn-
ing module for the FS-FGIC task. Specifically, on the one
hand, the task of FGIC requires that the model can ob-
tain sufficient detailed information to achieve adequate fine-
grained discriminating power. On the other hand, the FSL
task requires the model to effectively learn semantic con-
cepts at the category level and identify inter-class differ-
ences from extremely limited training data. Although ex-
ploring and incorporating more detailed information can im-
prove the fine-grained discrimination capability of models,
it inevitably leads to the expansion of the final feature space
and introduces more trivial and non-generalizable sample-
level noise, which will exacerbate the over-fitting problem
under the FSL setting. For example, as shown in Fig. 1, al-
though combining feature maps from multiple layers is a
well-tested strategy for FGIC methods (Du et al. 2020; Yang
et al. 2022a) because the features extracted from different
layers of the backbone are complementary, it also introduces
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more sample-level and background noise. Inheriting the tra-
ditional idea of the FGIC methods, current FS-FGIC meth-
ods (Huang et al. 2021; Xu et al. 2022; Wang, Fu, and Ma
2022) generally tend to focus on exploring more local infor-
mation to enhance the discrimination ability of the model,
while neglecting this potential contradiction between FSL
and FGIC task, which may limit their applicability to ad-
dressing the FS-FGIC problem. In this paper, we argue that
one of the keys to designing a promising FS-FGIC model
lies in striking a balance between the requirements of both
FSL and FGIC tasks, rather than simply mining and stack-
ing fine-grained features. In other words, it means the model
should not only effectively learn and integrate sufficient fine-
grained features, but also be able to further refine the ex-
tracted features by discarding or reducing trivial and non-
generalizable information.

After the feature learning procedure, because of the ex-
tremely limited number of training instances under the FSL
setting, there is also a feature mismatch issue to be consid-
ered for fine-grained samples collected from real-world en-
vironments. As illustrated in Fig. 1, the key discriminative
regions in support and query images can be mismatched in
both semantic information (e.g., the presence of the body of
a dog or the head of a bird in the query, but not in the sup-
port sample) and spatial position (e.g., the head of a dog,
the wings of a bird). Under the setting of FSL, there are usu-
ally no sufficient training instances for a specific category to
ensure the model’s generalization ability on the target task.
As a result, the negative impact caused by this problem will
be much more severe in the FSL task than that in conven-
tional classification tasks, especially for the FS-FGIC task
that deals with highly similar fine-grained categories. There-
fore, to reduce performance degradation resulting from the
information loss during support-query instance matching, an
additional mechanism is necessary to adjust the extracted
features and ensure alignment between input samples from
the perspective of information and position.

Based on the above discussion, we propose a novel Cross-
layer and Cross-sample feature optimization Network (C2-
Net) for FS-FGIC, to achieve effective feature learning and
accurate classification. In response to the aforementioned
two issues, the C2-Net consists of two main modules, i.e.,
the Cross-Layer Feature Refinement (CLFR) module as
well as the Cross-Sample Feature Adjustment (CSFA) mod-
ule. The CLFR module aims to overcome the contradic-
tions between FSL and FGIC tasks with an extracting-and-
refining procedure. Specifically, to meet the requirements of
the FGIC task, the CLFR module draws on a typical fine-
grained feature learning strategy, which integrates informa-
tion learned from multiple backbone network layers to com-
bine both mid-level features and high-level semantic con-
cepts for a comprehensive feature representation. However,
in contrast to traditional methods that simply aggregate ex-
tracted features for final classification, the CLFR module
goes a further step to refine extracted features with a re-
constructing procedure based on cross-layer feature corre-
lation matrices. While maintaining fine-grained discrimina-
tive power, this procedure can significantly suppress noise
and non-generalizable sample-level characteristics, leading

to the reduction of over-fitting indirectly under the setting of
FSL. Subsequently, to address the issue of feature mismatch
between support and query samples caused by diverse fac-
tors, such as position and angle variations, the CSFA module
incorporates a channel activation operation that adaptively
re-calibrates channel-wise features based on trainable chan-
nel weights to enhance shared information and suppress un-
shared query information, as well as a position matching op-
eration to adjust the position of targets by learning a dynamic
adjustment matrix,

Contributions of this paper can be summarized as follows:
• By analyzing the FSL and FGIC task, we raise two criti-

cal issues that are needed to be addressed in the design
of the FS-FGIC methods. The first one is how to ex-
tract fine-grained features while reducing trivial and non-
generalizable sample-level noise. The second one is ad-
dressing the feature mismatch between query and sup-
port samples caused by positions and angles. Then we
propose a novel C2-Net to address these issues.

• To overcome the feature learning contradiction between
FSL and FGIC tasks, we design the CLFR module to in-
tegrate feature maps from multiple network layers, and
further refine extracted features with a cross-layer feature
correlation-based reconstructing procedure.

• To address the issue of feature mismatch between sup-
port and query samples, we propose the CSFA module
to improve sample match results by adjusting the query
features from both channel and position perspectives.

• We conduct extensive experiments and analyses on five
widely-used fine-grained benchmarks, and experimental
results demonstrate the superiority of the C2-Net.

Related Work
Few-Shot Image Classification
Recent Few-Shot Image Classification methods can be
roughly categorized into three groups: meta-learning based
methods (Finn, Abbeel, and Levine 2017; Lee et al. 2019),
metric-learning based methods (Snell, Swersky, and Zemel
2017; Sung et al. 2018; Vinyals et al. 2016), and data-
augmentation based methods (Hariharan and Girshick 2017;
Chen et al. 2019b; Tang et al. 2020). Meta-learning based
methods try to find a suitable gradient-based optimization
strategy that can quickly adapt to new tasks with few gradi-
ent updates. For example, MAML (Finn, Abbeel, and Levine
2017) aims to learn a parameter initialization that can be eas-
ily adapted to a new task with few gradient updates. Metric-
learning based methods try to learn a generalizable embed-
ding and a suitable metric function that can measure the sim-
ilarity of two samples. The most representative one is Pro-
toNet (Snell, Swersky, and Zemel 2017), which computes
prototypes as the mean feature of each class in the support
and measures the distance from a query to each class using
them. FRN (Wertheimer, Tang, and Hariharan 2021) recon-
structs the query features using the support feature pools to
calculate their similarity, which achieves more performant
efficient. Data-augmentation based methods try to learn a
generator from base classes and use it to generate novel sam-
ples or features for data augmentation.
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Figure 2: The proposed C2-Net. (a) is the overall of C2-Net, consisting of the backbone network, the Cross-Layer Feature
Refinement (CLFR) module, the Cross-Sample Feature Adjustment (CSFA) module, and the Similarity module; (b) is the
schemetic illustration of the CLFR module; (c) is the schemetic illustration of the CSFA module.

Few-Shot Fine-grained Image Classification

FS-FGIC (Li et al. 2021; Wu et al. 2023) is a challeng-
ing problem that requires more effective feature learning
power than traditional FSL task. (Wei et al. 2019) first de-
fine the few-shot fine-grained recognition task and use bilin-
ear features to learn a piecewise mapping classifier. There-
after, PoseNorm (Tang, Wertheimer, and Hariharan 2020)
explores the effect of part annotations and shows that learn-
ing part features can significantly improve the performance
of few-shot learning methods on the fine-grained dataset.
MattML (Zhu, Liu, and Jiang 2020) uses a task embedding
network to automatically learn a task-specific initialization
with attention mechanisms. (Xu et al. 2022) uses spatial at-
tention to capture the fine-grained details of the object and
channel attention to capture the global context of the im-
age. HelixFormer (Zhang et al. 2022) is a transformer-based
double-helix model that solves the FS-FGIC task by learn-
ing cross-image object semantic relations in local regions
of images. BiFRN (Wu et al. 2023) utilizes a bidirectional
reconstruction process to increase inter-class variations and
decrease intra-class variations.

In addition, AGPF (Tang et al. 2022) tries to take advan-
tage of multiple network layer fusion, but it ignores the neg-
ative impact resulting from such operation under the setting
of FSL. In contrast, we further refine the extracted features
while integrating multi-layer outputs, thereby suppressing
the interference of instance-level feature noise and achieving

better performance. OLSA (Wu et al. 2021) aims to align the
spatial features of the object and learns the long-range se-
mantic correspondence across different tasks. However, this
alignment method only involves spatial adjustment and can
damage the integrity of extracted features, which may exac-
erbate the over-fitting problem caused by sample-level fea-
tures. The C2-Net adjusts extracted and refined features as a
complete object, achieving optimized feature matching be-
tween query and support samples through both channel ac-
tivation and position matching operations.

Method
Problem Definition and Overall Framework
The objective of FSL is to acquire transferable knowledge
from the base classes Dbase so that the model can perform
well in the novel classes Dnovel with the help of limited la-
beled samples, where Dbase ∩ Dnovel = ∅. In accordance
with the standard setting of FSL, we adopt the episodic train-
ing strategy. During the meta-training phase, each episode
can be referred to as an ”N-way K-shot” classification prob-
lem, where N classes are randomly chosen from Dbase.
Each class in the support set S contains K labeled sam-
ples, and each class in the query set Q contains U unlabeled
samples. During the meta-testing phase, the model is eval-
uated on the novel classes Dnovel using the knowledge ac-
quired from the meta-training phase. This evaluation helps
measure the model’s generalization capability to the novel
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classes. Without loss of generality, we assume the following
discussion is within one episode.

As illustrated in Fig. 2(a), given support image ISp,q , where
p ∈ {1, ..., N} and q ∈ {1, ...,K}, and query image IQi,j ,
where i ∈ {1, ..., N} and j ∈ {1, ..., U}, the backbone
network B(·) first takes them as input, and feature maps
(FS

p,q,m, FS
p,q,h, FQ

p,q,m, and FQ
p,q,h) from last L layers will be

obtained, where L=2 in this paper in consideration of perfor-
mance and model complexity. Then the CLFR module inte-
grates and refines the two feature maps extracted from each
image with a feature reconstruction procedure. Thereafter,
the CSFA module adjusts the refined feature maps in both
channel and position perspectives for better support-query
matching. Finally, the Similarity module calculates the dis-
tances between query and support samples, the mean of two
distances is used for query sample classification.

Cross-Layer Feature Refinement
Given the insufficient discriminative power of the final layer
output of the network in describing fine-grained objects,
the strategy of combining features extracted from multiple
network layers has been adopted by several existing FGIC
methods (Du et al. 2020). This strategy can integrate both
high-level semantic information and mid-level detailed char-
acteristics to comprehensively describe and identify fine-
grained objects, and it is also easier to implement and
more flexible than spacial localization-based fine-grained
feature learning. However, mid-level features usually intro-
duce more trivial and non-generalizable noise as illustrated
in Fig. 1, and integrating more information also results in the
expansion of feature space. As mentioned in the Introduc-
tion, this is unfavorable for the FSL task. To solve this prob-
lem, we design the Cross-Layer Feature Refinement (CLFR)
module, whose detail is illustrated in Fig. 2(b), to reconstruct
feature maps based on cross-layer feature correlation.

Specifically, given an image I (superscript and subscript
are omitted for clarity), inputs to the CLFR module can be
obtained by

Fh,Fm = B(I), (1)

where Fh ∈ RC×H×W and Fm ∈ RC′×H′×W ′
are feature

maps obtained from the last and penultimate layer. Because
the size of Fh and Fm are different, two sub-networks gϕh
and gϕm, both of which consist of two convolutional layers,
are applied to transfer these feature maps into the same size,
which can be formulated as

Fh = gϕh(Fh) ∈ RC×H×W , (2)

Fm = gϕm(Fm) ∈ RC×H×W . (3)

Thereafter, the feature map Fh and Fm are reshaped into 2-
D matrices with the size of C×HW , and then a cross-layer
feature correlation matrix can be obtained as follows,

Mh,m = tanh
(( Fm

||Fm||2

)T Fh

||Fh||2

)
∈ RHW×HW , (4)

where || · ||2 represents the L2-norm. Based on Mh,m, the
feature map obtained from the last layer could be further

reconstructed and refined, which can be formulated as
F̂h = (FmMh,m) + Fh. (5)

Afterward, a similar process can be used to further refine the
feature map obtained from the penultimate layer as follows,

Mm,h = tanh
(( F̂h

||F̂h||2

)T Fm

||Fm||2

)
, (6)

F̂m = (F̂hMm,h) + Fm. (7)
Following the above procedure, given support samples

ISp,q and query samples IQi,j , corresponding refined feature

maps F̂
S

p,q,h, F̂
S

p,q,m, F̂
Q

i,j,h, and F̂
Q

i,j,m can be obtained. They
are reshaped back to the size of C ×H ×W for the next
module.

Through the above procedure, the features shared by two
input feature maps can be highlighted, and the influence of
unshared features can be reduced, resulting in two main ad-
vantages. Firstly, noise caused by background or sample-
level trivial characteristics typically exists primarily in mid-
level feature maps. Therefore, this reconstruction operation
can significantly suppress such noise. Secondly, if features
are shared by both high-level and mid-level feature maps,
it also means that they are capable of describing both the
overall semantics and the detailed characteristics of the tar-
get object. The above feature refining procedure enhances
such features while suppressing the rest, which can achieve
the compression of the feature space while maximizing the
retention of the fine-grained discriminative capability.

Cross-Sample Feature Adjustment
After suppressing or removing unimportant features with
the CLFR module, the Cross-Sample Feature Adjustment
(CSFA) module is designed to reduce critical information
loss caused by spatial diversity and enhance the consis-
tency between samples belonging to the same category dur-
ing support-query matching. For the sake of clarity, in this
subsection, we simplify the symbols of refined feature maps
(F̂

S

p,q,h, F̂
S

p,q,m, F̂
Q

i,j,h, and F̂
Q

i,j,m) to F̂
S

a and F̂
Q

a unless nec-
essary, where a = {h,m}, because feature maps related to
different layers and each query-support pair are processed in
the same way in this module. The overall architecture of the
CSFA module is illustrated in Fig. 2(c), the CSFA module
incorporates two sequential operations for channel weights
adjustment and feature positions adjustment.

Channel Activation Operation In the beginning, given
refined feature maps generated by the CLFR module, they
are first performed intra-sample channel weighting, which
serves as a complement to the previous module, in order to
better activate discriminative features while suppressing po-
tential background noise that might still be present. Specif-
ically, two sub-networks consisting of two fully connected
layers, i.e., gδa and a = {h,m}, are applied to generated
channel-wise attention and the input feature maps will be
re-weighted accordingly. This can be formulated as

Sa = F̂
S

a ⊙ gδa(gmp(F̂
S

a )),

Qa = F̂
Q

a ⊙ gδa(gmp(F̂
Q

a )),
(8)
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Methods Backbone
Stanford-Dogs Stanford-Cars

1-shot 5-shot 1-shot 5-shot
DN4 (CVPR-19) Conv-4 45.41 ± 0.76 63.51 ± 0.62 59.84 ± 0.80 88.65 ± 0.44
CovaMNet (AAAI-19) Conv-4 49.10 ± 0.76 63.04 ± 0.65 56.65 ± 0.86 71.33 ± 0.62
MattML (IJCAI-20) Conv-4 54.84 ± 0.53 71.34 ± 0.38 66.11 ± 0.54 82.80 ± 0.28
ATL-Net (IJCAI-20) Conv-4 54.49 ± 0.92 73.20 ± 0.69 67.95 ± 0.84 89.16 ± 0.48
BSNet (TIP-21) Conv-4 43.13 ± 0.85 62.61 ± 0.73 44.56 ± 0.83 63.72 ± 0.78
LRPABN (TMM-21) Conv-4 45.72 ± 0.75 60.94 ± 0.66 60.28 ± 0.76 73.29 ± 0.58
TOAN (TCSVT-21) Conv-4 49.30 ± 0.77 67.16 ± 0.49 65.90 ± 0.72 84.24 ± 0.48
OLSA (MM-21) Conv-4 55.53 ± 0.45 71.68 ± 0.36 70.13 ± 0.48 84.29 ± 0.31
DAN (AAAI-22) Conv-4 59.81 ± 0.50 77.19 ± 0.35 70.21 ± 0.50 85.55 ± 0.31
AGPF (PR-22) Conv-4 60.89 ± 0.98 78.14 ± 0.62 78.14 ± 0.84 87.42 ± 0.57
PaCL (MM-22) Conv-4 59.76 ± 0.70 77.50 ± 0.48 72.21 ± 0.68 88.02 ± 0.36
HelixFormer (MM-22) Conv-4 59.81 ± 0.50 73.40 ± 0.36 75.46 ± 0.37 89.68 ± 0.25
BiFRN (AAAI-23) Conv-4 61.39 ± 0.23 78.86 ± 0.15 76.22 ± 0.20 90.66 ± 0.11
Ours Conv-4 66.42 ± 0.50 81.23 ± 0.34 81.29 ± 0.45 91.08 ± 0.26
BSNet (TIP-21) ResNet-18 - - 60.36 ± 0.98 85.28 ± 0.64
OLSA (MM-21) ResNet-12 64.15 ± 0.49 78.28 ± 0.32 77.03 ± 0.46 88.85 ± 0.46
HelixFormer (MM-22) ResNet-12 65.92 ± 0.49 80.65 ± 0.36 79.40 ± 0.43 92.26 ± 0.15
BiFRN (AAAI-23) ResNet-12 72.54 ± 0.22 85.86 ± 0.13 88.43 ± 0.17 96.34 ± 0.07
Ours ResNet-12 75.50 ± 0.49 87.65 ± 0.28 88.96 ± 0.37 95.16 ± 0.20

Table 1: 5-way classification accuracy (%) on the Stanford Dogs and Stanford Cars datasets. The highest results are highlighted,
while the second-highest results are underlined.

where gmp(·) is global max pooling and ⊙ denotes element-
wise product operation with the broadcasting mechanism. In
addition, to improve efficiency, we follow ProtoNet to gen-
erate prototypes for each class to replace original support
samples for final sample matching (classification). Specifi-
cally, the prototype of p-th class can be obtained by

Pp,a =
1

K

K∑
q=1

Sp,q,a. (9)

Similarly, the above output can be also simplified to Pa.
To reduce the influence of semantic information mismatch

resulting from the angle or some other factors, we further
address this issue from a cross-sample perspective. Firstly,
a query sample Qa and a support prototype Pa are concate-
nated into a cross-sample representation as follows,

Ca = gap(Pa||Qa) ∈ R2C×1×1, (10)
where gap(·) is global average pooling and || represents the
concatenation operation.

Thereafter, a group of trainable channel weights are used
to adaptively modify the feature maps of the query sam-
ples, activating shared features between query samples and
corresponding prototypes while suppressing query-specific
features. Specifically, we use two fully connected layers gµa
to generate channel weights wc

a ∈ RC×1×1, then, the cali-
brated feature Qc

a ∈ RC×H×W can be computed as follows,
wc

a = 1 + tanh(gµa (Ca)), (11)
Qc

a = Qa ⊙ wc
a, (12)

where ⊙ denotes element-wise product operation with the
broadcasting mechanism. To some extent, this operation can
also contribute to reducing the over-fitting problem by fea-
ture space compressing.

Position Matching Operation As the name indicates, this
operation aims to achieve feature alignment between the
crucial feature regions in the query Qc

a and the support
prototype Pa by adjusting the query feature map. Specifi-
cally, a feature matching network gθa, which includes two
fully connected layers, takes the cross-sample representation
C

′

a = gap(Pa||Qc
a) as input and generates position match-

ing matrices Mθ
a and M∆

a as follows,

Mθ
a, M∆

a = gθa(C
′

a) = {θ1, θ2}, {∆x, ∆y}, (13)

Afterward, generate a regular grid with the same size as Qc
a

within a range of [−1, 1]2×H×W , where the number 2 repre-
sents the x and y coordinates respectively. Next, the position
matching matrices Mθ

a and M∆
a are applied to the original

coordinates (x, y) to obtain the adjusted coordinates (xt, yt)
as follows,

(xt, yt)T = Mθ
a(x, y)

T + M∆
a . (14)

Finally, use bilinear sampling to map the original features
Qc

a to the adjusted coordinates (xt, yt), resulting in the posi-
tion matching feature Qout

a ∈ RC×H×W . The output Qout
a is

obtained by adjusting the features in both channel and posi-
tion perspectives to enhance consistency among sample fea-
tures, thereby alleviating the issues of both semantic infor-
mation and position features mismatch between support and
query samples.

To sum up, given the feature maps (F̂
S

p,q,h, F̂
S

p,q,m, F̂
Q

i,j,h,

and F̂
Q

i,j,m), the corresponding support prototypes (Pp,h and
Pp,m) and adjusted query feature maps (Qout

i,j,h and Qout
i,j,m)

can be obtained through the CSFA module.
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Methods 1-shot 5-shot
Closer (ICLR-19) 60.53 79.34
SAML (ICCV-19) 69.35 81.37
DN4 (CVPR-19) 64.02 ± 0.92 82.97 ± 0.66
CovaMNet (AAAI-19) 58.87 ± 1.00 70.46 ± 0.84
MattML (IJCAI-20) 66.29 ± 0.56 80.34 ± 0.30
PoseNorm (CVPR-20) 64.17 81.96
FEAT (CVPR-20) 68.87 82.90
BSNet (TIP-21) 55.81 ± 0.97 76.34 ± 0.65
FRN (CVPR-21) 69.45 ± 0.22 85.16 ± 0.14
OLSA (MM-21) 73.07 ± 0.46 86.24 ± 0.29
DAN (AAAI-22) 72.89 ± 0.50 86.60 ± 0.31
FRN+TDM (CVPR-22) 71.37 ± 0.22 86.45 ± 0.14
AGPF (PR-22) 74.03 ± 0.90 86.54 ± 0.50
PaCL (MM-22) 74.04 ± 0.70 88.75 ± 0.38
BiFRN (AAAI-23) 74.36 ± 0.20 88.64 ± 0.10
Ours 78.66 ± 0.46 89.43 ± 0.28

Table 2: 5-way classification accuracy (%) using Conv-4
backbone on the CUB (using raw images) dataset. The high-
est results are highlighted, while the second-highest results
are underlined.

Overall Objectives
The meta-training process: In a ”N-way K-shot” training
episodic, the loss function for features from each layer is
formulated as follows,

La = − 1

N

1

U

N∑
i=1

U∑
j=1

log
exp

(
−τad

(
Qout

i,j,a,Pi,a

))∑N
p=1 exp

(
−τad

(
Qout

i,j,a,Pp,a

)) ,
(15)

where a = {h,m}, τa is learnable scaling parameter
and d(·) represents the similarity scores between queries
and support prototypes measured by Euclidean distance. The
overall objective function to train the C2-Net can be ex-
pressed as follows,

Ltotal = αLh + (1− α)Lm, (16)

where α is a balancing hyper-parameter within a range of
[0, 1].
The meta-validation/testing process: After the meta-
training process, given an unlabeled query sample Iq and
support samples in a ”N-way K-shot” testing episodic, this
query sample can be classified as the i-th class as follows,

arg mini

1

2

(
d
(
Qout

m ,Pi,m

)
+ d

(
Qout

h ,Pi,h

))
. (17)

where Qout
m and Qout

h are the obtained features given Iq , and
Pi,m and Pi,h are feature maps corresponding to prototypes
of support samples.

Experiments
Dataset
Stanford Dogs (Khosla et al. 2011) comprises 20,580 im-
ages and 120 classes of dogs. Following (Zhu, Liu, and Jiang
2020), we use 70, 20, and 30 classes for meta-training, meta-
validation, and meta-testing, respectively.

Methods
meta-iNat tiered meta-iNat

1-shot 5-shot 1-shot 5-shot
ProtoNet (NIPS-17) 53.78 73.80 35.47 54.85
Covar. Pool (CVPR-19) 57.15 77.20 36.06 57.48
DN4 (CVPR-19) 62.32 79.76 43.82 64.17
DSN (CVPR-20) 58.08 77.38 36.82 60.11
CTX (NeurIPS-20) 60.03 78.80 36.83 60.84
DeepEMD (CVPR-20) 54.48 68.36 36.05 48.55
FRN (CVPR-21) 61.98 80.04 43.95 63.45
FRN+TDM (CVPR-22) 63.97 81.60 44.05 62.91
MCL (CVPR-22) 64.66 81.31 44.08 64.61
Ours 71.47 85.47 49.04 67.25

Table 3: 5-way classification accuracy (%) using Conv-4
backbone on the meta-iNat and tiered meta-iNat datasets.
The highest results are highlighted, while the second-highest
results are underlined.

Stanford Cars (Krause et al. 2013) has 16,185 images from
196 classes of cars. We follow the dataset split introduced in
(Zhu, Liu, and Jiang 2020), which employs 130, 17, and 49
classes for meta-training, meta-validation, and meta-testing.
CUB-200-2011 (Wah et al. 2011) is a dataset of 11,788 im-
ages of birds from 200 classes. We use the same class split
as (Wertheimer, Tang, and Hariharan 2021), which uses 100,
50, and 50 classes for meta-training, meta-validation, and
meta-testing. It should be emphasized that we use raw im-
ages without annotated bounding boxes.
meta-iNat (Horn et al. 2018; Wertheimer and Hariharan
2019) which has 13 super categories and 1,135 species.
The dataset is split into 908 training classes and 227 test-
ing classes according to (Wertheimer and Hariharan 2019).
tiered meta-iNat (Wertheimer and Hariharan 2019) is a
more challenging variant of meta-iNat. The dataset com-
prises 781 classes for training and 354 classes for testing.

Implementation Details
We adopt widely used two backbone networks in few-shot
classification tasks: Conv-4 and ResNet-12, which are con-
sistent with the common protocols. Following convention
settings, the input images are resized to 84 × 84. We uti-
lize the same standard data augmentation techniques, includ-
ing random crop, horizontal flip, and color jitter as existing
methods. During the meta-training stage, we use SGD with
a Nesterov momentum of 0.9. The initial learning rate is set
to 0.1 and weight decay is set to 5e-4. The value of α is
set to 0.5. The entire process lasts for 150 epochs, and the
learning rate decays to 0.01 and 0.001 at the 70 and 110
epochs, respectively. During the meta-testing stage, we ap-
ply the standard 5-way 1-shot and 5-way 5-shot settings, us-
ing 15 query images per class in both settings. We test on
the best-performing model on the validation set and report
the 95% confidence interval results for 2,000 test episodes.

Experimental Results
In this section, we compare our proposed C2-Net with a
number of state-of-the-art methods, experimental results are
summarized in Table 1-3.
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Figure 3: Visualization results of features extracted by Backbone, CLFR, and CSFA on the CUB and Stanford-Dogs datasets.

Baseline CLFR CSFA
CUB Stanford-Dogs

1-shot 5-shot 1-shot 5-shot
✓ 54.87 79.09 44.65 67.74
✓ ✓ 69.81 86.05 58.54 78.02
✓ ✓ 76.51 88.15 63.32 78.77
✓ ✓ ✓ 78.66 89.43 66.42 81.23

Table 4: Module-wise ablation study using Conv-4 backbone
on the CUB (using raw images) and Stanford Dogs datasets.

Baseline
CSFA CUB Stanford-Dogs

CA PM 1-shot 5-shot 1-shot 5-shot
✓ 54.87 79.09 44.65 67.74
✓ ✓ 75.93 87.97 62.60 78.17
✓ ✓ 75.46 87.56 61.33 77.85
✓ ✓ ✓ 76.51 88.15 63.32 78.77

Table 5: Ablation study of CSFA using Conv-4 backbone on
the CUB (using raw images) and Stanford Dogs datasets.

According to the results, it can be observed that: Firstly,
our proposed method is tested on five fine-grained datasets,
including three widely-used datasets, including Stanford-
Dogs, Stanford-Cars, and CUB and the more challenging
meta-iNat and tiered meta-iNat datasets, and consistently
achieved the state-of-the-art results, demonstrating the ef-
fectiveness of the proposed C2-Net. Secondly, compared to
FS-FGIC methods, including alignment-based OLSA and
multi-layer feature fusion-based AGPF, our method also
shows significant performance improvement, demonstrating
the rationality of the two issues we addressed regarding the
FS-FGIC problem, as well as the effectiveness of the mod-
ules proposed to tackle these two issues. Finally, our method
shows an even more prominent performance advantage on
the 1-shot setting, indicating that the C2-Net can better adapt
to the FSL task with extremely limited training samples, in-
directly demonstrating the effectiveness of the two proposed
modules in preventing over-fitting.

Analyses
Since the overall C2-Net has been proven to be effective in
the former section, we give more analyses and experimental
results to further demonstrate the effectiveness of C2-Net.

Ablation Study of the Overall Model In order to verify
the validity of the two modules proposed, we conduct an ab-
lation study of submodules in this section, and the results are
shown in Table 4. It can be seen that both module CLFR and
module CSFA consistently improve the performance of the
baseline, and the complete C2-Net consisting of both mod-
ules achieves the best performance.

Ablation Study of the CSFA Module In consideration
that there are two operations in the CSFA module, Table 5
shows the impact of the Channel Activation (CA) operation
and Position Matching (PM) operation separately. CA and
PM both bring stable performance improvement to the base-
line, further validating the effectiveness of adjusting query
features from two perspectives with this module.

Visualization
To gain a deeper understanding of the role of each modules,
we visualize the query and support feature maps processed
by the backbone, the CLFR, and the CSFA module, respec-
tively. As shown in Fig. 3, CLFR can extract both category
semantic and detail features while suppressing background
noise and non-generalizable features, and the CSFA module
can further adjust the feature maps of the query samples ac-
cording to input support-query pairs for better feature match.

Conclusion
In this paper, we propose the C2-Net to address the is-
sues in the design of the FS-FGIC method. The C2-Net
consists of the CLFR module and the CSFA module. The
CLFR module resolves the contradiction between FSL and
FGIC tasks through feature extraction and refinement. The
CSFA module addresses the feature mismatch between sup-
port and query samples from the perspective of both seman-
tic information and spatial position. Our proposed method
achieves comprehensive superiority in results on five bench-
mark datasets.
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