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Abstract

Federated learning collaboratively trains machine learning
models among different clients while keeping data privacy
and has become the mainstream for breaking data silos. How-
ever, the non-independently and identically distribution (i.e.,
Non-IID) characteristic of different image domains among
different clients reduces the benefits of federated learning and
has become a bottleneck problem restricting the accuracy and
generalization of federated models. In this work, we propose
a novel federated image segmentation method based on style
transfer, FedST, by using a denoising diffusion probabilis-
tic model to achieve feature disentanglement and image syn-
thesis of cross-domain image data between multiple clients.
Thus it can share style features among clients while protect-
ing structure features of image data, which effectively allevi-
ates the influence of the Non-IID phenomenon. Experiments
prove that our method achieves superior segmentation perfor-
mance compared to state-of-art methods among four different
Non-IID datasets in objective and subjective assessment. The
code is available at https://github.com/YoferChen/FedST.

Introduction
Federated learning (FL) has become one of the main-
stream learning paradigms to take advantage of multiple data
sources while protecting data privacy (Li et al. 2019; Voigt
and Von dem Bussche 2017). In FL, clients collaboratively
train a model while keeping the training data decentralized
(Kairouz et al. 2021). It provides an opportunity for collabo-
rative learning across multiple clients without infringing pri-
vacy (Jiang et al. 2020), which enables it to be used in many
fields where data security is of importance, such as medical
data analysis (Brisimi et al. 2018; Liu et al. 2021) and wire-
less communication (Niknam, Dhillon, and Reed 2020).

Despite the rich opportunities offered by FL, non-
independent and identically distributed (Non-IID) data
among different clients often bring great challenges to FL,
resulting in worse performance and slower convergence
(Kopparapu and Lin 2020; Kopparapu, Lin, and Zhao 2020).
Especially, the Non-IID phenomenon, caused by cross-
domain data on image segmentation tasks, is a common is-
sue in practical FL applications, as shown in Figure 1. For in-
stance, in materials science, researchers usually analyze dif-
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Figure 1: The Non-IID phenomenon, caused by cross-
domain data in different clients, is a common issue in prac-
tical FL-based segmentation tasks, such as the segmentation
of material microscopic images, medical images, and face
images. While the images of different clients have similar
underlying structures, the different stylistic appearance in-
formation among clients will result in worse performance
and slower convergence of an FL model.

ferent microscopic images of different materials. Austenitic
alloys are composed of iron and many other elements. It ren-
ders a different appearance compared to pure iron in micro-
scopic images, even though they have similar grain struc-
tures. On the other hand, in clinical practice, doctors often
use different image modalities to observe the same human
tissue and organ, such as the CT and MRI image modality
of the liver. In natural images, cross-domain image segmen-
tation under an FL framework is also common, such as face
segmentation of different races or different ages. In these
scenarios, while the images in all clients have similar un-
derlying structures, the Non-IID problem caused by differ-
ent stylistic appearances still hinders the performance of FL
model.

To solve the Non-IID problem in image segmentation
tasks in FL, our insight is that most participated clients gen-
erally have similar underlying structure information and dif-
ferent style information, as shown in Figure 1 and Figure
2. And the goal of image segmentation is to remove the
style information in the image and get the segmentation re-
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Figure 2: An example of a material microscopic image de-
composition.

sult (structure information), which is required by the down-
stream application. Thus, in most cases, structure informa-
tion is generally useful to users, and style information is not.
Take grain structure information as an example, the size and
shape distribution is significant information to build the in-
trinsic relationship between composition, structure, process,
and properties, which is fundamental to material design (Hu
et al. 2017). The style information, such as color and bright-
ness in the material microscopic images, is caused by differ-
ent element compositions and preparation processes. In this
regard, the structure information in the material microscopic
images is user-concerned, while the style information is not.
This observation is also applicable to medical image seg-
mentation: researchers generally want to analyze the shape
of organs maintained in the structure information (or ground
truth label), while the style information caused by different
modalities is not user-concerned information.

Based on this observation, we develop a novel network,
dubbed as federated style transfer network (FedST). It uses
a denoising diffusion probabilistic model (DDPM) to extract
and exchange style information among clients, and keep
structural information private. Thus each client can access
different data distributions within other clients, which alle-
viates the influence of the Non-IID phenomenon.

Our method has two variations, FedST-separate and
FedST-join, depending on whether the diffusion model
participates in federation aggregation. The FedST-separate
trains a style transfer generator in each client separately and
trains a segmentation module across all clients by federa-
tion aggregation. The FedST-join trains a unified control-
lable generator and a segmentation module by federation
aggregation. These two variations both enable feature dis-
entanglement and image synthesis of cross-domain image
data between multiple clients. In addition, while our method
shares the style information among clients, it is maintained
in the network parameters and is inexplicable to users. And
even if being attacked, it can’t restore the structural informa-
tion, thus it has little impact on users.

In general, our main contributions are highlighted as fol-
lows:

• We propose a novel network to tackle the non-IID prob-

lem in FL segmentation, FedST, which uses a denoising
diffusion probabilistic model to achieve feature disentan-
glement and image synthesis of cross-domain image data
between multiple clients. Thus alleviating the influence
of the Non-IID phenomenon.

• We discuss the two variants of the proposed FedST, in-
cluding FedST-separate and FedST-join, depending on
how to train a style transformation network.

• We conduct extensive experiments among four differ-
ent Non-IID tasks, including material microscopic im-
age segmentation, medical image segmentation, face seg-
mentation with different races, and face segmentation
with different ages. Our method achieves superior per-
formance compared to SOTA methods in objective and
subjective assessments. And even if structure informa-
tion between clients is not similar, sharing style informa-
tion will also lead to performance improvement.

Related Work
Federated learning(Konečnỳ et al. 2016; Yang et al. 2019;
McMahan et al. 2017) which provides a promising privacy-
preserving solution to train machine learning models on pri-
vate data across massively distributed devices has emerged
many research interests. (McMahan et al. 2017) first pro-
posed the federated averaging algorithm (FedAvg) for
communication-efficient federated training of deep net-
works which has become a basic paradigm for federated
learning.

There have been quite some studies trying to improve
FedAvg on non-IID data. Those studies can be divided
into four categories: optimization-based, aggregation-based,
architecture-based, and data distribution based.

As for the optimization-based methods, FedProx(Li et al.
2020) introduces a proximal term into the loss function dur-
ing local training. The proximal term constrains the L2-norm
distance of the local model and global model which reduce
the parameters divergence between different clients caused
by statistical heterogeneity. SCAFFOLD (Karimireddy et al.
2019) corrects the local updates by introducing control vari-
ates. Each client has a local control variate while sharing
a global control variate, the control variates are updated by
each client during local training. The difference between the
local control variate and the global control variate is used to
correct the model gradients in local training. FedDyn(Acar
et al. 2021) adds penalty terms to the local loss function and
performs global updates to guide the model of each client
converges to the global optimal.

As for the aggregation-based methods, FedDF(Lin et al.
2020) uses model distillation to perform federated aggrega-
tion, it can not only aggregate heterogeneous models but also
enhance the model performance while facing data heteroge-
neous. FedAMP(Huang et al. 2021) encourages collabora-
tion between users with similar data distribution and inhibits
collaboration between users with large data distribution dif-
ferences to get the client’s optimal model. FedAvgM (Hsu,
Qi, and Brown 2019) applies additional global updates on
the server side to perform a robust aggregation.

As for the architecture-based methods, (Qu et al. 2022)
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find self-attention-based architectures are more robust to dis-
tribution shifts and hence improve federated learning over
heterogeneous data. By switching to the transformer, feder-
ated learning gains in multiple image classification tasks.

As for the data distribution-based methods, a data-sharing
strategy is used to address this problem(Zhao et al. 2018).
They distribute a global sharing dataset, which consists of
a public dataset of specific task, to every client in order to
slightly reduce the EMD(Rubner, Tomasi, and Guibas 2000)
between different client’s local models. Experiment shows
that little globally shared data brings obviously performance
improvement, but this kind of data-sharing method is not
suitable for some researchers due to the lack of large-scale
public datasets. (Wu et al. 2022) shares the mean and co-
variance of local data to perform contrastive learning, which
is hard to model cross-domain data. (Dong and Voiculescu
2021) used InstaHide to encrypt the raw images and used
the encrypted image to perform federated training which re-
duces the risk of data privacy leakage but leads to drop in
performance (Huang et al. 2020). (Zhu, Hong, and Zhou
2021) used a generator to learn feature representations of
global data by distilling aggregated global models, but it
needs to gather raw image and label which may lead to in-
formation leakage.

In this work, we study from the perspective of reduc-
ing data distribution variance by performing image-to-image
translation between cross-domain image data to achieve
sharing of style information. The image-to-image trans-
lation is a technology to translate an input image from
one domain to another domain. Many researchers use ad-
versarial learning to perform image-to-image translation
due to the automatic adaption ability in different domains
(Mirza and Osindero 2014; Sasaki, Willcocks, and Breckon
2021). Pix2pix(Isola et al. 2017) uses image-conditional
GANs(Mirza and Osindero 2014) for image-to-image trans-
lation. Diffusion Models (Ho, Jain, and Abbeel 2020) has
recently emerged with a lot of impressive research on image
generation (Austin et al. 2021; Kadkhodaie and Simoncelli
2020), which have recently been shown to outperform GAN
in image synthesis (Dhariwal and Nichol 2021). Thus the
great ability of image synthesis gives the opportunity to re-
duce the Non-IID problem caused by cross-domain data in
FL architecture.

Method
We propose FedST from the perspective of information-
sharing. Since the Non-IID phenomenon limits the perfor-
mance of federated learning, FedST aims to decrease the
data distribution difference around clients by sharing style
features and keeping user-concerned structure information
private. The style information is shared across clients by the
image-to-image translation model which learns the ability to
translate the client’s ground truth segmentation label (struc-
ture information) to different image domain data, the gen-
erated data then act as the data augmentation to train the
image segmentation model. Our method comes in two vari-
ants, FedST-separate and FedST-join, based on whether the
image-to-image translation model participates in federation

aggregation. In the following, we present the network archi-
tecture, the difference between the two variants, the local
learning objective, and the communication cost analysis.

Network Architecture
As shown in Figure 3, the proposed network has two compo-
nents: a style transfer generator (G), and an image segmen-
tation model (S).

The style transfer generator is used to extract the style
information from data by training an image-to-image dif-
fusion model (Saharia et al. 2022a). Diffusion models (Ho,
Jain, and Abbeel 2020) denoise samples of the Gaussian dis-
tribution over a series of time steps to fit samples of the
real data distribution. Conditional diffusion models (Saharia
et al. 2022b) permit the conditional signal as an input to the
denoising process. The style transfer generator is a kind of
conditional diffusion model that uses the label as a condi-
tional input. The network architecture of the style transfer
generator is 256×256 class-conditional U-Net model (Sa-
haria et al. 2022a).

In addition, We use U-Net as image segmentation archi-
tecture.

FedST-separate The difference between FedST-separate
and FedST-join is whether the style transfer model par-
ticipates in the federation aggregation process. In FedST-
separate, each client separately trains their own style trans-
fer model using their local label and local domain image,
uploads it to the server, and saves it to the style store. Then,
the style store is shared with all clients. Thus each client can
generate synthetic cross-domain data using their local label.
During each round of federated training of the segmentation
model, each client randomly selects a style transfer model
from another domain and generates synthetic cross-domain
images to participate in FL as data augmentation. It achieves
the sharing of style information around clients and alleviates
the influence of the Non-IID phenomenon.

FedST-join FedST-separate needs to train a unique style
transfer model for each client, which increase the overall
parameters of the whole structure. Thus we further propose
FedST-join method. It uses federated aggregation strategy to
jointly train a unified style transfer model and segmentation
model. And in order to perform cross-domain style informa-
tion sharing by one global style transfer model, we add a
controllable generate module after each convolution of the
generator, which uses a one-hot encoding domain vector to
identify clients, as shown in Figure 3. During forward prop-
agation, a data pair that consist of a domain vector and a seg-
mentation label is fed into the style transfer model. The do-
main vector controls the domain of generated image through
the controllable generate module, which is mapped to a
weight vector and a bias vector and performs channel-wise
multiply and channel-wise addition respectively with input
feature to get the stylistic feature. Thus, the input segmen-
tation label produces the local structure information while
the domain vector controls the cross-domain style genera-
tion. During each round of federated training, each client
randomly generates synthetic cross-domain data as data aug-
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Figure 3: Overview of the proposed federated style transfer. The FedST-separate and FedST-join are two variants. The former
lets each client trains a unique style transfer generator and constructs a unified style store to save them. And it exchanges
generators to let each client generate cross-domain data using their own local label. While the latter is equipped with a global
controllable module to train a unified style transfer generator around all clients using the Fedavg method. And each client can
modify the domain vector to generate cross-domain data. Finally, both of them use Fedavg to train the target image segmentation
model using local and synthetic data.

mentation to decrease the Non-IID influence for the segmen-
tation model.

Local Objective The loss function of the proposed
method consists of two parts: the cross-domain style infor-
mation modeling loss LSimple and the segmentation loss
LSeg , as shown in Equation 1.

L = LSimple + LSeg (1)

The first part is used to train the style transfer model, which
is defined as:

E(x,y)Eϵ∼N(0,I)Eγ∥fθ(x,
√
γy +

√
1− γϵ, γ)− ϵ∥2 (2)

The above diffusion model loss LSimple is proposed in
(Saharia et al. 2022a). y is the given training image. x is the
input condition. γ is the noise level indicator and fθ is the
neural network. The second part is used to train the segmen-
tation model, it consists of two components: the local do-
main segmentation loss and the cross-domain segmentation
loss, defined as:

LSeg = LLDS + λLCDS (3)

where the local domain segmentation loss LLDS is the com-
bination of focal loss and dice loss between the segmenta-
tion result of real local training data and the corresponding
ground truth segmentation label. λ is a super parameter to
control the weight of loss items. The cross-domain segmen-
tation loss LCDS is the combination of focal loss and dice

loss between the segmentation result of the cross-domain
synthetic image and the corresponding ground truth segmen-
tation label which let the local segmentation model to learn
the cross-domain data distribution.

Communication Cost Analysis
The communication cost of FedST-join will be lower than
that of FedST-separate when the following condition is met:

m <
(c− 1)

2
(4)

Where m refers to the number of federated training commu-
nication rounds, and c refers to the number of clients. Thus,
the communication cost of FedST-join is lower than that of
FedST-separate when the number of communication rounds
is smaller than half of the number of clients participating in
federated learning.

Experiments
Experimental Setup
To verify the performance of the proposed method, we com-
pare FedST with SOTA approaches dedicated to solving the
Non-IID problem in FL, such as FedAvg (McMahan et al.
2017), FedProx (Li et al. 2020), FedDyn (Acar et al. 2021),
and FedDc (Gao et al. 2022). We conduct extensive experi-
ments on four cross-domain Non-IID tasks to evaluate the
generality of our method, including material microscopic
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Segmentation Datasets Material microscopic image Medical image Face image Face image
Client Numbers 2 clients 2 clients 3 clients 79 clients
Non-IID setting across clients Austenite / pure iron image CT / MRI Different races Different ages
Metrics VI↓ Dice ↑ MPA ↑ Dice ↑ MPA ↑ Dice ↑ MPA ↑ Dice ↑ MPA ↑
FedAvg (PMLR 2017) 0.9785 0.6754 0.9122 0.3622 0.8662 0.5225 0.1145 0.7832 0.8102
FedProx (MLSys 2020) 0.7992 0.7004 0.9205 0.4344 0.8864 0.5363 0.1194 0.7859 0.8130
FedDyn (ICLR 2021) 0.4915 0.7278 0.9315 0.5230 0.9079 0.5844 0.1242 0.8041 0.8370
FedDc (CVPR 2022) 0.4022 0.7400 0.9367 0.5758 0.9117 0.5936 0.1392 0.7979 0.8362
FedST-separate 0.2978 0.7982 0.9246 0.9233 0.9693 0.9046 0.5962 0.8560 0.8763
FedST-join 0.2984 0.8145 0.9354 0.9221 0.9700 0.8998 0.6035 0.8470 0.8685

Table 1: The objective evaluation of FedST and other SOTA methods on the test datasets of four image segmentation tasks. The
bold value and underline value denote the best and the second-best performance in each metric, respectively.

Figure 4: Example of cross-domain style transformation of
each image segmentation task.

image segmentation, medical image segmentation, face seg-
mentation with different races, and face segmentation with
different ages.

As shown in Figure 4, the left part shows the example
of medical image data set and material microscopic data set
respectively. And it is shown the origin image and its cor-
responding segmentation label as well as cross-domain syn-
thetic image from left to right. The middle and right part
show the example of the face segmentation data with dif-
ferent races or ages. They are shown the original image,
its corresponding segmentation, and cross-domain synthetic
images from top to down.

As for the material microscopic image segmentation task,
the dataset consists of two image domains: austenite micro-
scopic image data and pure iron microscopic image data,
which are independently stored in two clients to simulate
the Non-IID phenomenon, respectively. The difference in
style features between microscopic images of two metals
is caused by different element compositions. The austen-
ite dataset contains a total of 223 optical images of austen-
ite with a resolution of 1024 × 1024 pixels. The pure iron
dataset contains a total of 136 serial section optical images
of pure iron with a resolution of 2800×1600 pixels. We pre-
processed the original images into amounts of small patches
with a size of 384×384 pixels and selected 892 patches from
each domain for the experiment. Both two images have 2 se-
mantic classes (grain and grain boundary).

As for the medical image segmentation, the data were
sampled from CHAOS challenge (Kavur et al. 2019). We
chose two cross-modalities images, CT and MRI (T2-SPIR),
independently stored in two clients, to perform the Non-IID
liver segmentation task. For each modality, 347 slices were
chosen and resized to 384× 384 pixels for the experiment.

As for the face segmentation task with different races, the
data were sampled from CelebAMask-HQ(Lee et al. 2020).
We divided the data into three different clients according to
the ethnic tag: yellow race from Asian, white race from Eu-
ropean and black race from African. For each client, 750
slices were chosen and resized to 384 × 384 pixels for the
experiment.

As for the face segmentation task with different ages,
the data were sampled from All-Age-Faces (AAF) Dataset
(Cheng et al. 2019), which consists of face images of differ-
ent ages from 2 to 80. In the experiment, 20 images were ran-
domly selected from each age as private data owned by each
client. These images were scaled to the size of 384 × 384
pixels and labeled by manual annotation. In other words, 79
participants are constructed for Non-IID federated learning.

We use PyTorch(Paszke et al. 2019) to implement feder-
ate style transfer and the other baselines. The federated opti-
mizer of the proposed FedST is Adam. The batch size is set
to 6 in material microscopic image segmentation task and
medical image segmentation task while 3 in face segmen-
tation task. The number of local epochs is set to 1 for all
approaches. The number of communication rounds is set to
50 for all four tasks where all federated learning approaches
have little or no accuracy gain with more communications.

The VI (Meilă 2007), Dice Coefficient(Sorensen 1948),
and MPA(Long, Shelhamer, and Darrell 2015) are used to
evaluate the objective performance of different algorithms.
For the VI metric, a lower value indicates a better perfor-
mance. While for the other metrics, a larger value indicates
a better performance.

Result Comparison
We first compare the objective segmentation performance of
our method and SOTA approaches in Table 1 on four tasks
respectively.

For the material microscopic image segmentation task, VI
is an important metric to evaluate the over-segmentation and
under-segmentation of each result, which is also widely used
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Figure 5: Qualitative comparison on the segmentation re-
sults of different methods on material microscopic image
segmentation task. The first two row shows the result of
austinate data while the last two rows show the result of pure
iron data.

Figure 6: Qualitative comparison on the segmentation re-
sults of different methods on medical image segmentation
task. The first two rows show the result of MRI data while
the last two rows show the result of CT data.

Figure 7: Qualitative comparison on the segmentation re-
sults of different methods on face segmentation with differ-
ent races. The first row shows the result of black race from
Africa, the second row shows the white race from Europe,
the last row shows the yellow race from Asia.

Figure 8: Qualitative comparison on the segmentation re-
sults of different methods on face segmentation with differ-
ent ages. We select 3 ages to evaluate different methods. The
first row shows the result of the children, the second row
shows the youth, the last row shows the elderly.

in the field of neural cell image segmentation (Funke et al.
2018). Compared with other different methods, we find that
FedST-separate achieves superior performance on VI met-
ric and competitive performance on other metrics. FedST-
separate and FedST-join achieve comparable results. Figure
4 shows the cross-domain synthetic image. It can be found
that the style transfer generator learns the ability to translate
the image segmentation label to different material micro-
scopic data. Figure 5 shows the segmentation result of dif-
ferent methods on microscopic image segmentation task. We
find that FedST achieves less over-segmentation and under-
segmentation of grain boundary in the segmentation result
compared to other methods.

For the medical image segmentation task, compared with
different federated learning approaches, we observe that
FedST shows a promising performance under non-IID set-
tings. Figure 4 shows the cross-domain synthetic image. It
can be found that the style transfer generator roughly learns
the ability to translate the image segmentation label to dif-
ferent medical modalities. Figure 6 shows the segmentation
result of different methods on the medical image segmenta-
tion task. We find that FedAvg and FedProx failed to learn
the segmentation ability due to the Non-IID data.

For the face segmentation task with different races, we
observe that FedST shows superior performance compared
with the other method. It can be found that the style trans-
fer generator roughly learns the ability to translate the im-
age segmentation label to different racial face data. Figure 7
shows the segmentation result of different methods. We can
find that FedST achieves promising segmentation results on
small organs, such as eyes, and eyebrows.

For the face segmentation task with different ages, in or-
der to accelerate the training process, we pre-train the image
segmentation module and style transformation module on
CelebAMask-HQ for all methods and only randomly select
the other 3 different style transformation modules for each
client in the process of exchanging style features of FedST.
As shown in Table 1 and Figure 8, The FedST also outper-
forms other methods in objective and subjective assessment.

In addition, we conduct an experiment to evaluate the
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training procedure of different methods. Figure 9(a-b) show
the performance curve of different methods during training.
It can be found that FedST-separate will achieve better per-
formance compared to other methods on the same commu-
nication round.

To sum up, FedST achieves promising performance com-
pared to other methods among four different tasks. FedST-
separate and FedST-join achieve comparable results.

Figure 9: Effectiveness of cross-domain style transforma-
tion. (a-b) The performance cure of different methods during
training. (c) Comparison of communication costs of FedST-
separate and FedST-join with different numbers of clients.
The communication rounds are set to 50. (d) The ablation
experiment of FedST-separate and FedST-join on medical
image segmentation task regarding the communication in-
terval.

Ablation Studies of FedST
The proposed FedST consists of FedST-separate and FedST-
join, depending on how to train a style transformation net-
work. Both of them achieve an obvious improvement over
the Fedavg baseline by sharing style information. As shown
in Eq 4, the communication cost of FedST-join is lower than
that of FedST-separate when the number of communication
rounds (50 in this work) is smaller than half of the number
of clients. Thus, as shown in Figure 9(c), the FedST-join has
a lower communication cost when the number of clients ex-
ceeds 100.

The communication frequency of the style transfer model
during the FedST training is an important parameter to deter-
mine generate quality. We conduct an experiment of FedST-
separate and FedST-join regarding the communication in-
terval, as shown in Figure 9(d). It is shown that when the
total number of epochs for each client is determined, the
performance will degrade when the communication interval
increases.

Analysis of Information Sharing
FedST can extract and exchange style information among
clients, thus effectively alleviating the influence of the Non-
IID phenomenon. We further provide the data distribution

Figure 10: T-SNE embedding visualization of data distribu-
tion across clients for raw data and transformed data. Each
client has a different domain of raw data to simulate the non-
iid setting. In order to analyze AAF data more effectively, we
have aggregated it into three age groups for visualization.

of raw data and transformed data after FedST in Figure 10,
which indicates that the data distribution of original clients is
non-iid, while the data generated in our method can alleviate
this phenomenon.

FedST exchange style information among clients. This
might introduce the risk of information leakage. However,
in the image segmentation task, the structural information
is the crucial information, which is generally required by
the downstream application. Even though FedST shares the
style information among clients, it keeps structural informa-
tion private for each client. Thus it has little impact on users.
In addition, the style information is maintained in the net-
work parameters, which is inexplicable to users. And even if
being attacked, the attacker can’t restore the structural infor-
mation of other clients.

Conclusion
We have proposed a novel FL model to solve the Non-IID
problem in the image segmentation tasks. Our method real-
izes information sharing based on transfer learning theory.
It can be considered to exchange style information across
clients while keeping the structure information private. Ex-
tensive experiments among four different domain tasks show
that our method achieves promising performance compared
to SOTA methods in objective and subjective assessment.
We will further improve the quality of synthetic images and
alleviate the influence of the Non-IID in future work.

Acknowledgements
This work was supported by the National Key R & D
Program of China under Grant 2022ZD0118001, the Na-
tional Natural Science Foundation of China under Grant
U22A2022 and 62106019, Scientific and Technological In-
novation Foundation of Shunde Graduate School, USTB un-
der Grant BK22BF010, and Fundamental Research Funds
for the Central Universities of China under Grant 00007467,
and China Postdoctoral Science Foundation under Grant
2021M700383. The computing work is supported by USTB
MatCom of Beijing Advanced Innovation Center for Mate-
rials Genome Engineering.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

4059



References
Acar, D. A. E.; Zhao, Y.; Matas, R.; Mattina, M.; What-
mough, P.; and Saligrama, V. 2021. Federated Learning
Based on Dynamic Regularization. In International Con-
ference on Learning Representations.
Austin, J.; Johnson, D. D.; Ho, J.; Tarlow, D.; and van den
Berg, R. 2021. Structured Denoising Diffusion Models in
Discrete State-Spaces. In Ranzato, M.; Beygelzimer, A.;
Dauphin, Y.; Liang, P.; and Vaughan, J. W., eds., Advances in
Neural Information Processing Systems, volume 34, 17981–
17993. Curran Associates, Inc.
Brisimi, T. S.; Chen, R.; Mela, T.; Olshevsky, A.; Pascha-
lidis, I. C.; and Shi, W. 2018. Federated learning of predic-
tive models from federated electronic health records. Inter-
national journal of medical informatics, 112: 59–67.
Cheng, J.; Li, Y.; Wang, J.; Yu, L.; and Wang, S. 2019. Ex-
ploiting effective facial patches for robust gender recogni-
tion. Tsinghua Science and Technology, 24(3): 333–345.
Dhariwal, P.; and Nichol, A. 2021. Diffusion models beat
gans on image synthesis. Advances in Neural Information
Processing Systems, 34: 8780–8794.
Dong, N.; and Voiculescu, I. 2021. Federated con-
trastive learning for decentralized unlabeled medical im-
ages. In Medical Image Computing and Computer Assisted
Intervention–MICCAI 2021: 24th International Conference,
Strasbourg, France, September 27–October 1, 2021, Pro-
ceedings, Part III 24, 378–387. Springer.
Funke, J.; Tschopp, F.; Grisaitis, W.; Sheridan, A.; Singh,
C.; Saalfeld, S.; and Turaga, S. C. 2018. Large scale image
segmentation with structured loss based deep learning for
connectome reconstruction. IEEE transactions on pattern
analysis and machine intelligence, 41(7): 1669–1680.
Gao, L.; Fu, H.; Li, L.; Chen, Y.; Xu, M.; and Xu, C.-
Z. 2022. Feddc: Federated learning with non-iid data via
local drift decoupling and correction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 10112–10121.
Ho, J.; Jain, A.; and Abbeel, P. 2020. Denoising diffusion
probabilistic models. Advances in Neural Information Pro-
cessing Systems, 33: 6840–6851.
Hsu, T.-M. H.; Qi, H.; and Brown, M. 2019. Measuring the
effects of non-identical data distribution for federated visual
classification. arXiv:1909.06335.
Hu, J.; Shi, Y. N.; Sauvage, X.; Sha, G.; and Lu, K. 2017.
Grain boundary stability governs hardening and softening
in extremely fine nanograined metals. Science, 355(6331):
1292–1296.
Huang, Y.; Chu, L.; Zhou, Z.; Wang, L.; Liu, J.; Pei, J.; and
Zhang, Y. 2021. Personalized Cross-Silo Federated Learn-
ing on Non-IID Data. In AAAI, 7865–7873.
Huang, Y.; Song, Z.; Li, K.; and Arora, S. 2020. Instahide:
Instance-hiding schemes for private distributed learning. In
International conference on machine learning, 4507–4518.
PMLR.
Isola, P.; Zhu, J.-Y.; Zhou, T.; and Efros, A. A. 2017. Image-
to-image translation with conditional adversarial networks.

In Proceedings of the IEEE conference on computer vision
and pattern recognition, 1125–1134.
Jiang, J. C.; Kantarci, B.; Oktug, S.; and Soyata, T. 2020.
Federated learning in smart city sensing: Challenges and op-
portunities. Sensors, 20(21): 6230.
Kadkhodaie, Z.; and Simoncelli, E. P. 2020. Solving lin-
ear inverse problems using the prior implicit in a denoiser.
arXiv:2007.13640.
Kairouz, P.; McMahan, H. B.; Avent, B.; Bellet, A.; Bennis,
M.; Bhagoji, A. N.; Bonawitz, K.; Charles, Z.; Cormode, G.;
Cummings, R.; et al. 2021. Advances and open problems in
federated learning. Foundations and Trends® in Machine
Learning, 14(1–2): 1–210.
Karimireddy, S. P.; Kale, S.; Mohri, M.; Reddi, S. J.; Stich,
S. U.; and Suresh, A. T. 2019. SCAFFOLD: Stochastic
Controlled Averaging for On-Device Federated Learning.
arXiv:1910.06378.
Kavur, A. E.; Selver, M. A.; Dicle, O.; Barış, M.; and Gezer,
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