
FedCD: Federated Semi-Supervised Learning
with Class Awareness Balance via Dual Teachers

Yuzhi Liu1, Huisi Wu1*, Jing Qin2

1 College of Computer Science and Software Engineering, Shenzhen University
2 Centre for Smart Health, The Hong Kong Polytechnic University

hswu@szu.edu.cn

Abstract

Recent advancements in deep learning have greatly improved
the efficiency of auxiliary medical diagnostics. However, con-
cerns over patient privacy and data annotation costs restrict
the viability of centralized training models. In response, fed-
erated semi-supervised learning has garnered substantial at-
tention from medical institutions. However, it faces chal-
lenges arising from knowledge discrepancies among local
clients and class imbalance in non-independent and identi-
cally distributed data. Existing methods like class balance
adaptation for addressing class imbalance often overlook
low-confidence yet valuable rare samples in unlabeled data
and may compromise client privacy. To address these issues,
we propose a novel framework with class awareness balance
and dual teacher distillation called FedCD. FedCD introduces
a global-local framework to balance and purify global and
local knowledge. Additionally, we introduce a novel class
awareness balance module to effectively explore potential
rare classes and encourage balanced learning in unlabeled
clients. Importantly, our approach prioritizes privacy protec-
tion by only exchanging network parameters during commu-
nication. Experimental results on two medical datasets under
various settings demonstrate the effectiveness of FedCD. The
code is available at https://github.com/YunzZ-Liu/FedCD.

Introduction
Federated Learning (FL) is a decentralized machine learning
framework, allowing multiple entities to collectively refine a
model while upholding data confidentiality by not divulging
raw data (Li et al. 2020a; Mammen 2021; Huang et al.
2023). Particularly within medical image diagnostics, FL
emerges as a transformative force in healthcare (Chen et al.
2022b; Zhu and Luo 2022). By harnessing the combined
expertise of disparate healthcare providers while meticu-
lously safeguarding data privacy, FL provides a pathway for
more precise diagnoses. It concurrently fulfills the neces-
sity for collaborative learning in healthcare, while ensuring
stringent patient confidentiality and data security (Dong and
Voiculescu 2021; Antunes et al. 2022). Nonetheless, anno-
tating medical image data presents formidable challenges,
primarily driven by its considerable expenses, time-intensive
demands, and the potential risk to privacy and security when
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Figure 1: Comparisons of the test accuracy curves showed
that our proposed FedCD method with dual teacher distilla-
tion outperformed the variant with only mean teacher distil-
lation. The performance of the model relying solely on the
mean teacher declined due to the inherent limitations of local
knowledge. However, after incorporating the dual teacher
distillation and class awareness balance modules, the issue
of localized knowledge limitation was substantially miti-
gated, resulting in remarkable performance improvements.

centralized (Liu et al. 2020; Huynh, Nibali, and He 2022).
In light of these difficulties, the advent of federated semi-
supervised learning (FSSL) has offered a promising solu-
tion. The fundamental objective of FSSL is to facilitate col-
laborative model training within a distributed setting. This
is achieved by harnessing a finite pool of labeled data in
conjunction with a more copious supply of unlabeled data
(Kassem et al. 2022; Lin et al. 2021; Long et al. 2020).
This innovative paradigm synergistically combines the prin-
ciples of semi-supervised learning and federated learning.
It thereby enables numerous clients, each in possession of
a restricted private cache of labeled data, to contribute to
the incremental refinement of a shared model while uphold-
ing stringent data privacy safeguards. Existing approaches to
FSSL can be categorized into three primary types based on
the distribution of labeled data: centralized on servers (Jiang
et al. 2022; Wang et al. 2023), scattered across all clients
(Yang et al. 2022) or siloed on individual clients (Liang et al.
2022). In this paper, we focus on the third type, utilizing a
small number of labeled clients and a large number of unla-
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(a) HAM10000 Dataset (b) RSNA ICH Dataset

Figure 2: The heatmap of sample distribution across clients.
Each rectangle represents the number of data samples for a
specific class in each client. The non-independent and iden-
tically distributed setting exacerbates the skewed class dis-
tribution within the imbalanced dataset

.

beled clients to train a high-performing server model.
Although extensive research has been conducted on

FSSL, its performance is still limited by two major chal-
lenges: local knowledge shift and class imbalance within and
among clients, as depicted in Figure 1 and Figure 2. RSCFed
(Liang et al. 2022) proposed the use of sub-consensus mod-
els to eliminate noise generated during client aggregation.
However, the mean teacher model in unlabeled clients may
still lead to a knowledge shift. CBAFed (Li, Li, and Wang
2023) introduced the utilization of global prior knowledge to
fix pseudo-labels and identify tail categories but might over-
look many low-confidence yet informative rare class sam-
ples.

Hence, we propose a FSSL framework with class aware-
ness balance and dual teacher distillation named FedCD. In
order to balance global and local knowledge, we introduce
a dual-teacher framework to guide client learning. However,
both global and local teachers may impart erroneous knowl-
edge. Therefore, we further purify the teacher knowledge by
regulating the quality of the output knowledge, which can
reduce overconfidence in potentially incorrect labels. Addi-
tionally, we propose a novel class awareness balance module
aimed at uncovering rare samples belonging to underrepre-
sented classes hidden within the unlabeled clients. Specifi-
cally, we first identify proficiently learned classes for which
the model is highly confident. Subsequently, we discern un-
reliable instances as potential rare-class samples, charac-
terized by cases where the confident classes appear with a
lower rank in the probability distribution for unlabeled sam-
ples. Ultimately, we recalibrate the loss function to allocate
greater significance to these rare class samples during train-
ing. By correcting the imbalance, we enable more balanced
federated learning. Overall, our main contributions can be
summarized as follows:

• We propose a novel federated learning approach called
FedCD, designed to tackle the issues of knowledge drift
and class imbalance in local clients. Unlike existing

methods, our approach fully utilizes the data from un-
labeled clients while ensuring privacy preservation be-
tween clients.

• In FedCD, dual teacher distillation provides more reli-
able pseudo labeling foundations, while class awareness
balance excavates rare class samples to increase model
attention on class imbalance. This allows local clients to
attain more diverse and balanced knowledge during fed-
erated learning.

• Experiment on two medical datasets: HAM10000 and
RSNA ICH. Our proposed method achieved significant
improvements over the state-of-the-art FSSL methods in
various experimental settings.

Related work
Federated Learning
Federated learning (FL) stands out as a robust approach to
preserving data privacy through its decentralized framework
(Dou et al. 2021; Kaissis et al. 2020; Rieke et al. 2020).
However, this decentralization leads to data heterogeneity
among clients. FedAvg (McMahan et al. 2017) firstly in-
troduces the concept of averaging local models to derive a
global model, serving as a baseline and the seminal contri-
bution in this field. Subsequently, an increasing number of
scholars have proposed solutions to address the data hetero-
geneity in FL. These solutions can be categorized into two
main approaches: improve client model aggregation (Tan
et al. 2022; Chen and Chao 2020) and local training (Li et al.
2020b; Liu et al. 2021a; Andreux et al. 2020; Li, He, and
Song 2021).

Semi-supervised Leaning
Semi-supervised learning aims to train an optimal model
by leveraging a small quantity of labeled data in conjunc-
tion with a substantial amount of unlabeled data. Com-
mon paradigms include consistency regularization (Bach-
man, Alsharif, and Precup 2014; Xu et al. 2022), entropy
minimization (Grandvalet and Bengio 2004; Chen et al.
2021); and self-training (Du et al. 2022; Chen et al. 2022a).
Additionally, data augmentation (Kim et al. 2022; Ols-
son et al. 2021) can enhance the generalization capacity
of semi-supervised learning. In recent years, various high-
performing approaches for semi-supervised learning have
emerged (Dou et al. 2021; Kaissis et al. 2020; Rieke et al.
2020). However, these approaches are not directly applica-
ble to FSSL, as each client may exclusively possess either
labeled or unlabeled data, which precludes them from ad-
equately capturing the intrinsic structure and properties of
holistic data distribution.

Federated Semi-supervised Leaning
The objective of FSSL is to optimize a model under the non-
independent and identically distributed (Non-IID) data sets.
Unlike traditional semi-supervised learning, FSSL faces the
challenges of distributed data and privacy protection (Zhang
et al. 2021a). Existing FSSL methods can be categorized into
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Figure 3: An overview of our proposed FedCD framework. The left side shows our overall architecture, where we introduce a
proxy model and global-local teacher framework to assist unlabeled clients. The right side depicts the training process within
unlabeled clients. We propose the dual teacher distillation and class awareness balance module for effective balanced learning.

three types: (a) where a small amount of labeled data is avail-
able on the server (Jeong et al. 2020; Long et al. 2021; Zhang
et al. 2021b), (b) where each client has a small amount of
labeled data (Che et al. 2021; Shi, Chen, and Zhang 2022;
Itahara et al. 2021), and (c) where only a few clients possess
labeled data (Guo et al. 2022). RSCFed (Liang et al. 2022)
proposed random client sampling for consensus modeling
over direct aggregation, aiming for greater model robust-
ness. However, reliance on mean-teacher models in unla-
beled clients persists as a limitation, owing to constrained lo-
cal knowledge which hampers global performance. CBAFed
(Li, Li, and Wang 2023) proposes utilizing fixed pseudo la-
bels and exploring tail classes. However, this approach risks
overlooking many low-confidence but information-rich rare
class samples. Moreover, exchanging the empirical distribu-
tion of local data may raise privacy concerns.

Methodology

In this section, we introduce our innovative federated learn-
ing framework, depicted in Figure 3. For labeled clients,
we utilize an entropy loss function for supervised learning.
For unlabeled clients, we propose a dual teacher mecha-
nism with global and local teachers to mitigate challenges
from local knowledge bias and forgetting global knowledge.
Moreover, we employ local proxy models to identify con-
fident classes and extract potential rare class samples from
among unreliable instances. The details of each component
are elaborated in the following sections.

Problem Settings

In federated semi-supervised learning, we have m labeled
clients Cl and n unlabeled clients Cu. Besides, there are Nl

samples Sl =
{(

xl
i, y

l
i

)}Nl

i=1
at labeled clients and Nu sam-

ples Su = {(xu
i )}

Nu

i=1 at unlabeled clients. The aim of FSSL
is to leverage both labeled and unlabeled client data to learn
a server federated model θs, which could be represented as

follows:

argmin
θs

L (θs) =
∑m

i=1
|Sl

i|
|S| Lce (θc)+∑n

i=1
|Su

i |
|S| Lu (θc)

(1)

where Lce is the cross entropy loss for supervised learn-
ing, Lu is the loss for unsupervised learning. θc denotes the
network parameters for the local client. We utilize FedAvg
(McMahan et al. 2017) to update the server model, where
|S| represents the total sum of the data across all clients,
i.e., |S| =

∑m
i=1

∣∣Sli∣∣+∑n
i=1 |Sui |.

Dual Teacher Distillation
In unlabeled clients, relying on mean teacher-based consis-
tency regularization frameworks may lead to a client bias to-
wards local knowledge while neglecting global knowledge,
which is undesirable in the context of FSSL. To address
this issue, we propose a dual teacher distillation module that
aims to refine knowledge and mitigate client bias by utiliz-
ing both global and local teachers.

Specifically, each client maintains a global teacher model
θg in addition to its local teacher θl. The global teacher pro-
vides a unified representation across all clients, while the
local teacher adapts to the unique data distribution of each
client. Their role is to transfer distilled knowledge to guide
the learning of the client model θc, which acts as a student.

In this context, we establish pairs of data augmentation
samples to improve representation learning by enforcing
consistency between differently perturbed versions of the
same input. Upon traversing the network, we obtain the fea-
ture projections Fc, Fg , and Fl along with the softmax pre-
dictions Pc, Pg , and Pl from the student and teacher models
respectively. Subsequently, we adopt a sharpening (Berth-
elot et al. 2019) operation on the prediction of teachers to
distill global and local knowledge, i.e., P̂ = P

1
τ
i /

∑
j P

1
τ
j ,

where τ is the temperature parameter. Finally, we use the
mean-square-error loss to ensure alignment in the represen-
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Algorithm 1: The pipeline of unlabeled client
Input: θts: the server model of t− 1th round
Output: θt+1

c : the unlabeled client model of tth round
Unlabeled Client(θts):

1: for each unlabeled client do
2: for each local epoch do
3: w ← ProxyModel (θts)
4: Llocal ← ComputeLoss by Eq.7.
5: Lglobal ← ComputeLoss by Eq.8.
6: Lu ← ReWeightLoss(w,Llocal,Lglobal) Eq.12.
7: Update θtc using Lu

8: end for
9: end for

10: return θt+1
c

Proxy Model(θts):
1: Find confident classes k by Eq. 10
2: Find unreliable samples Du by Eq.11
3: Compute imbalance weight factor w by Eq.13
4: return w

tations between the teacher and student models:

Lmse−local =
∥∥∥P̂l − Pc

∥∥∥ (2)

Lmse−global =
∥∥∥P̂g − Pc

∥∥∥ (3)

where P̂g and P̂l come from sharpening of their predicted.
Therefore, the loss function for the unlabeled clients can be
expressed as follows:

Lu = λ1Lmse−global + λ2Lmse−local (4)

λ1 and λ2 are the hyperparameters that balance the global
and local losses. In each local iteration, the local teacher re-
tains local knowledge by receiving θc through the exponen-
tial moving average. Meanwhile, the global teacher receives
θs to propagate global knowledge.

While the direction from both global and local teachers
assists in alleviating knowledge shifts among local clients,
incorrect teacher knowledge can worsen this condition. To
address this challenge, our emphasis is on enhancing the ac-
curacy of knowledge generated by teachers. This is evalu-
ated through the calculation of variance between predictions
of the student and teacher models, which can be obtained
from the KL divergence:

Vlocal = KL (Fc ||Fl) (5)

Vglobal = KL (Fc ||Fg) (6)
A high computed variance suggests that the knowledge dis-
tilled from the global or local teacher may be inaccurate.
Consequently, we adjust equations 2 and 3 to refine the
knowledge transferred by the teachers:

Llocal = e−V local ∗ Lmse−local (7)

Lglobal = e−V global ∗ Lmse−global (8)
By explicitly modeling the alignment between student and
teacher outputs, we refine the knowledge distillation process

Proxy Model

P
ro

ba
bi

li
ty

Confident ClassesUnlabeled Samples

Figure 4: The pipeline of exploiting confident classes. We
leverage global information to mine the confidence classes
of each unlabeled client.

to filter out and minimize the impact of unreliable pseudo-
labels. In summary, the loss function for unlabeled clients
can be reformulated as:

Lu = λ1Lglobal + λ2Llocal (9)

Class Awareness Balance
The concurrent existence of intra-client and inter-client class
imbalance significantly undermines the efficacy of federated
learning. Furthermore, accurately identifying rare classes is
a daunting task for unlabeled clients. In response, we in-
troduce an innovative class awareness balance module that
extracts implicit insights from both labeled and unlabeled
clients. Specifically, we achieve this by exploiting confi-
dent classes, identifying unreliable samples, and recalibrat-
ing loss function.

Exploit Confident Classes. Typically, the cumulative
predicted probabilities of confident classes surpass those of
non-confident classes due to the model’s better understand-
ing of the former (Lin et al. 2022). Nonetheless, predicted
pseudo-labels often lack reliability, and confident classes in
unlabeled clients might not necessarily be trustworthy. To
mitigate this issue, we can utilize labeled client data for pre-
training, enabling the central server model to acquire the ca-
pacity to effectively differentiate between all classes. During
the subsequent collaborative training phase, labeled clients
employ their labeled data to sustain the global model’s com-
petence in identifying confident classes. Meanwhile, unla-
beled clients employ local proxy servers θp to investigate lo-
cal confident classes through the reception of model param-
eters θs, as illustrated in Figure 4. The cumulative predicted
probabilities are calculated as outlined below:

sk =

nu∑
i

Gk (θp (xi)) (10)

where Gk (·) represents the softmax output for the kth class
corresponding to sample x. In order to make cumulative
probabilities more interpretable, we normalize sk to [0, 1],
i.e., sk = sk−min(s)

max(s)−min(s) , where s = [s0, s1, . . . , sk−1] rep-
resents the cumulative probability vector for k classes. We
identify class k as a confident class if the value of sk ex-
ceeds the threshold β, denoted as sk > β.

Identify Unreliable Samples. In unlabeled clients, ac-
curately assigning an exact class label to a sample through
pseudo-labeling presents a formidable challenge. However,
distinguishing samples by identifying the class they do not
pertain to is comparatively less complex. When confident
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classes manifest themselves toward the lower spectrum of
the softmax probability distribution, it implies that the as-
sociated samples are likely to be unreliable. In other words,
these samples possess a substantial probability of not be-
longing to the confident classes but rather align with the rare
categories. Consequently, the set of unreliable samples Du

can be expressed as follows:

Du = {x | tl < T (k) < th} (11)

where T (·) is the order operation argsort (Pl) for softmax
output of sample.tl and th are the low and high rank thresh-
old, respectively. k is the confident class where sk > β.

Recalibrate Loss Function. To achieve a more balanced
learning capability for the model, we introduced a weight-
ing factor w in front of the loss function. Unreliable in-
stances get a higher weight while reliable samples get a
lower weight. The loss function of the unlabeled client in
equation 9 can be updated as:

Lu = αw ∗ (λ1Lglobal + λ2Llocal) (12)

where

w =

{ 1
Nw

, Unreliable
1

Nu−Nw
, others

(13)

where Nw and Nu represent the number of unreliable sam-
ples and the number of samples from the unlabeled client.
α is the warming-up factor. As the communication rounds
progress, the reliability of unreliable samples gradually in-
creases. We utilize a linear function to achieve it:

αt = α0 + (αn − α0)
t

Rounds
(14)

where at,a0 and an are the warming-up weights for the first
round, the t round, and the final round, respectively.Rounds
is the total number of synchronization round. By reweight-
ing the loss function for potential rare classes, we enable
more even class distribution learning on each client before
federated aggregation. The whole algorithm in the unlabeled
client is presented in Algorithm 1.

Experiments
Experimental Setup
Datasets. We evaluate our method on two medical im-
age classification tasks, i.e., skin lesion diagnosis for der-
moscopy images and intracranial hemorrhage (ICH) diagno-
sis for brain CT slices. We perform the HAM10000 dataset
(Tschandl, Rosendahl, and Kittler 2018) for skin lesion clas-
sification, which contains 10015 images and 7 classes. For
ICH diagnosis, we follow the setup in FedIRM (Liu et al.
2021b) that randomly selects 25,000 images from the RSNA
ICH dataset (Flanders et al. 2020), which consists of 5 sub-
types. For both benchmark datasets, we employ 70% for
training, 10% for validation, and 20% for testing. We ap-
ply the same preprocessing to both datasets that we resize
the images into 240×240, randomly crop a 224×224 region,
and normalize before input to the network.

Federated Learning Setting. We follow the exits method
(Li, Li, and Wang 2023) using Dirichlet distribution to gen-
erate a Non-IID data partition among 1 labeled client and 9
unlabeled clients, where Dir (γ) = 0.8.

Implementation Details. We implement our method in
PyTorch with the SGD optimizer. We utilize ResNet18 pre-
trained on ImageNet (Krizhevsky, Sutskever, and Hinton
2012) as the backbone network followed by two MLP layers
and a fully connected layer for classification. The same clas-
sification network is employed across all compared meth-
ods for fair comparison. The learning rates for labeled and
unlabeled clients are 0.02 and 0.01 respectively. The batch
size is 12 for the HAM10000 dataset and 24 for the RSNA
ICH dataset. We set 1 local epoch for all clients and train for
1000 rounds (200 warm-ups). The loss function parameters
λ1 and λ2 are both set to 0.02. We enpirically set tempera-
ture parameter τ = 0.5 , confident class threshold β = 0.4,
warming-up weights α0 = 0.01 and αn = 0.1, low-rank
threshold tl = 5 and high-rank threshold th = 6.

Comparisons with State-of-the-arts
Compare Method. We compare our approach with the
state-of-the-art methods including FedIRM (Liu et al.
2021b), Fed-Consist (Yang et al. 2021), RSCFed (Liang
et al. 2022) and CBAFed (Li, Li, and Wang 2023). Further-
more, we conduct a comparative analysis of our approach
against FedAvg (McMahan et al. 2017), which serves as the
upper bound training by 10 labeled clients and lower bound
training by 1 labeled client.

Implementation Details. Following the settings in state-
of-the-art FSSL methods (Li, Li, and Wang 2023), we assign
a weight of 50% to the labeled client, while the nine unla-
beled clients share the remaining 50% weight in each FSSL
synchronization round.

Quantitative Comparisons.Table 1 presents outstand-
ing experimental results comparing our approach with other
methods on two medical datasets. Our approach achieves the
best performance, significantly surpassing the lower bound.
This demonstrates the capability of our approach to balance
knowledge and master rare classes. Furthermore, FedIRM
and Fed-Conist exhibit lower performance than the lower
bound, indicating their methods are ineffective in the Non-
IID setting.

Evaluation on Two Datasets. For skin lesion diagno-
sis, our approach achieves the best accuracy of 70.99%
(1.2% improvement), AUC of 83.64% (0.58% improve-
ment), precision of 42.22% (4.23% improvement), and re-
call of 35.63% (2.91% improvement). For intracranial hem-
orrhage diagnosis, we also attain the highest accuracy of
63.10% (3.76% improvement), AUC of 79.55% (1.38% im-
provement), precision of 47.77% (0.21% improvement), and
recall of 46.93% (3.92% improvement). Our approach out-
performs the state-of-the-art methods in terms of all four
metrics on both datasets. The superior performance primar-
ily arises from our framework’s ability to mitigate global-
local discrepancies and account for potential rare samples
among unlabeled clients.

Two Labeled Clients. In order to demonstrate the supe-
rior performance of FedCD, we conducted a comparison that
set the number of labeled clients to 2 and unlabeled clients to
8 with other FSSL methods on the HAM10000 dataset. As
Table 2 shows, our method achieved the best performance.
The increased labeled data enabled more informed global

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

3841



Labeling Strategy Method Client Num. Metrics
labeled unlabeled Acc. (%) AUC (%) Precision (%) Recall (%)

Task 1: Skin Lesion Diagnosis

Fully supervised FedAvg (upper-bound) 10 0 80.42 93.47 71.57 54.39
FedAvg(lower-bound) 1 0 68.07 79.02 34.86 31.37

Semi supervised

Fed-Consist 1 9 67.84 81.25 37.49 29.08
FedIRM 1 9 68.39 81.6 37.49 31.81
RSCFed 1 9 69.09 82.59 37.94 32.59
CBAFed 1 9 69.79 83.06 37.99 32.75

Ours 1 9 70.99 83.64 42.22 35.63

Task 2: Intracranial Hemorrhage Diagnosis

Fully supervised FedAvg(upper-bound) 10 0 72.03 88.19 62.85 59.86
FedAvg(lower-bound) 1 0 59.27 77.45 46.49 42.27

Semi supervised

Fed-Consist 1 9 58.96 75.86 46.07 42.04
FedIRM 1 9 58.98 74.79 45.37 42.88
RSCFed 1 9 59.32 77.51 47.53 43.04
CBAFed 1 9 59.34 78.17 47.56 43.01

Ours 1 9 63.10 79.55 47.77 46.93

Table 1: Resluts on the HAM10000 and RSNA ICH datasets under heterogeneous data partition. We employ four commonly
used metrics for method comparison, including Accuracy(Acc.), Area under the ROC Curve (AUC), Precision, and Recall. The
best results are in bold. It reports that our method achieves the best performance among all methods.

Method Client Num. Metrics
labeled unlabeled Acc.(%) AUC(%)

FedAvg+ 10 0 80.42 93.47
FedAvg− 2 0 68.97 85.96

Fed-Consist 2 8 67.54 85.55
FedIRM 2 8 68.24 85.06
RSCFed 2 8 69.19 86.73
CBAFed 2 8 69.34 88.07

Ours 2 8 71.09 89.15

Table 2: Comparison of our method against Fed-Consist,
FedIRM, RSCFed and CBAFed with the number of labeled
and unlabeled clients set to 2 and 8. Superscript + and − de-
note the upper and lower bound, respectively.

Method Client Num. Metrics
labeled unlabeled Acc.(%) AUC(%)

FedAvg+ 10 0 85.07 95.67
FedAvg− 1 0 70.33 82.92
CBAFed 1 9 70.59 86.23

Ours 1 9 71.69 87.37

Table 3: Comparison of our method against state-of-the-art
methods CBAFed with ViT-Tiny backbone.

teacher knowledge, aiding unlabeled clients in identifying
confident classes and unreliable samples more effectively.

Figure 5: The accuracy score and AUC vary with the change
in the number of unlabeled clients. Noted that the number of
labeled clients remains at 1.

Unlabeled Client Ratio. We also evaluated our method
with 1 labeled client and varying unlabeled clients on the
HAM10000 dataset. As Figure 5 shows, our method con-
sistently outperforms CBAFed as unlabeled clients increase
from 5 to 25. As the number of clients increases, individual
data diminishes, which potentially compromises balance.
However, our proposed method exhibits improved perfor-
mance, showcasing its ability for balanced learning even in
the presence of reduced local data.

ViT Backbone. Recently, vision transformers (ViT) have
been widely utilized in federated learning due to their re-
markable robustness in handling heterogeneous data (Li, Li,
and Wang 2023; Qu et al. 2022). Hence, we employ ViT-
Tiny (Dosovitskiy et al. 2020) as the backbone for experi-
ments on the HAM10000 dataset. As shown in Table 3, our
method exhibits superior performance surpassing the state-
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CAB DTD Acc.(%) AUC(%)

Basic × × 68.07 79.02
Basic+CAB ✓ × 70.29 82.41
Basic+DTD × ✓ 70.44 83.53

Ours ✓ ✓ 70.99 83.64

Table 4: Ablation studies on the effectiveness of dual teacher
distillation and class awareness balance.

Local
Teacher

Global
Teacher

Knowledge
Purification

Metrics
Acc.(%) AUC(%)

✓ × × 68.07 79.02
✓ × ✓ 70.24 82.63
✓ ✓ × 69.94 82.79
✓ ✓ ✓ 70.44 83.53

Table 5: Ablation studies on the effectiveness of dual teach-
ers and knowledge purification.

of-the-art approach. These consistent improvements demon-
strate the efficacy of the proposed dual teacher distillation
and class awareness balance techniques, which translate to
gains regardless of the underlying feature extractor used.

Efficiency Analysis. CBAFed requires 11 local epochs
due to residual connections, whereas our method achieves
higher performance with fewer local epochs (set to 1). This
substantial difference highlights the improved efficiency and
faster convergence of our approach.

Ablation Studies
In this section, we aim to validate our core insights by adding
or removing the proposed components, i.e., dual teacher dis-
tillation (DTD) and class awareness balance module (CAB).
We further discuss the reasons behind the outstanding per-
formance of each component. All the experiments in this
section are based on the HAM10000 dataset.

Effectiveness of DTD and CAB. Table 4 show the re-
sult ablated each component. It can be observed that after
incorporating CAB, the accuracy score increased by 2.22%,
and the AUC increased by 3.39%. The addition of DTD re-
sulted in an improvement of 2.37% in accuracy score and
an increase of 4.51% in AUC. With both components, the
model achieved significant improvements compared to the
baseline, where the accuracy score increased by 2.92% and
the AUC improved by 4.62%, which validates the effective-
ness of the proposed method.

Effectiveness of Subcomponents in DTD. In our DTD
method, we propose two subcomponents: dual teachers (DT)
and knowledge purification (KP). As Table 5 shows, DT and
KP can effectively balance and optimize global and local
knowledge, resulting in the improvement of Acc. (1.82%)
and AUC(4.51%). These improvements underscore the sig-
nificance of the purified distillation knowledge from global
and local teachers.

Effectiveness of Identifying Unreliable Samples. The
intention behind the class awareness balance (CAB) mod-

Figure 6: The proportion of correctly identified rare samples
from all mined samples in the unlabeled clients during the
training process. Noted our method achieves higher average
accuracy in mining rare class samples.

Figure 7: The accuracy score varies with the change in tl and
th.The gray curve represents illegal values.

ule is to employ confident classes to detect potential sam-
ples belonging to rare classes. As depicted in Figure 6, our
approach exhibits significant accuracy in accurately recog-
nizing rare class samples in a majority of clients. Despite
some clients potentially misclassifying rare samples, these
samples can be regarded as intricate instances that challenge
the model and ultimately contribute to the improvement of
the overall model performance.

Hyper-parameters. Note that our method involves two
crucial hyperparameters, they are the low-rank threshold tl
and the high-rank threshold th in the CAB module. As Ta-
ble 7 shows, the occurrence of confidence classes in lower
intervals indicates that the samples are more likely to belong
to rare classes.

Limitations
Both DTD and CAB are limited by the performance of the
warm-up model obtained from labeled data. In the presence
of limited labeled data availability, the performance of the
server model may be impeded.

Conclusion
In this paper, we endeavored to mitigate two salient chal-
lenges in FSSL, the limited knowledge acquired by unla-
beled clients and how to improve the performance of FSSL
on imbalanced datasets. To overcome these challenges, we
proposed the dual teacher distillation to sublimate both
global and local knowledge, as well as the class awareness
balance module to mine local rare classes for more balanced
learning. Our method achieved the best performance across
different medical tasks and different experiment settings,
demonstrating its effectiveness and superiority.
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