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Abstract

Multiple views play a vital role in 3D pose estimation tasks.
Ideally, multi-view 3D pose estimation tasks should directly
utilize naturally collected videos for pose estimation. How-
ever, due to the constraints of video synchronization, existing
methods often use expensive hardware devices to synchro-
nize the initiation of cameras, which restricts most 3D pose
collection scenarios to indoor settings. Some recent works
learn deep neural networks to align desynchronized datasets
derived from synchronized cameras and can only produce
frame-level accuracy. For fractional frame video synchro-
nization, this work proposes an Inter-Frame and Intra-Frame
Desynchronized Dataset (IFID), which labels fractional time
intervals between two video clips. IFID is the first dataset
that annotates inter-frame and intra-frame intervals, with a
total of 382, 500 video clips annotated, making it the largest
dataset to date. We also develop a novel model based on
the Transformer architecture, named InSynFormer, for syn-
chronizing inter-frame and intra-frame. Extensive experimen-
tal evaluations demonstrate its promising performance. The
dataset and source code of the model are available at https:
//github.com/yuxuan-cser/InSynFormer.

Introduction
In the monocular 3D pose estimation, the occlusion issue has
always been challenging to overcome (Cheng et al. 2021;
Fang et al. 2018; Cheng et al. 2020). Estimating 3D pose
from multiple views (Rhodin, Salzmann, and Fua 2018;
Rhodin et al. 2018; Mitra et al. 2020) can solve this problem
effectively since the occluded part in one view may become
visible in other views (Zheng et al. 2023). Multi-view videos
require recording by multiple cameras, but the start-up of
multiple cameras may be desynchronized, as shown in Fig-
ure 1. However, multi-view 3D pose estimation must simul-
taneously utilize the pose information. The desynchronized
start will cause such tasks to be greatly troubled by tempo-
ral desynchronization. The majority of existing solutions use
hardware synchronization devices to synchronize cameras.
However, as is well-known, hardware synchronization de-
vices are costly. They can not be easily deployed in outdoor
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Figure 1: Video clips of an actor performing Tai Chi with
a masked face. The clips are captured from three different
camera views. Without connected hardware synchronization
devices, there is temporal desynchronization in the record-
ings from different views.

scenes or large-scale sports venues, which have limited ex-
isting datasets that require synchronized collection for multi-
view tasks in small and medium-sized indoor venues with
highly constrained scenes. Current synchronization also in-
cludes methods based on WiFi signals or Bluetooth signals.
These methods are greatly affected by network fluctuations
(Wu et al. 2019). Besides, synchronization based on audio is
limited by the desynchronization of audio and video. There-
fore, video synchronization based on videos is essential.

However, labeling the time intervals between different
views is challenging. One intuitive method uses synchro-
nization devices to record synchronized videos and shifts
an integral number of frames as the time interval (Wu
et al. 2019; Yin et al. 2022; Boizard et al. 2023). However,
this method results in discrete labeled time intervals, with
lengths that can only be multiples of a single frame. Un-
der natural conditions, the time intervals should be random
and continuous, as shown in Figure 2. Especially when esti-
mating the 3D pose in a state of intense movement, the error
caused by intra-frame can not be ignored (Shuai et al. 2022).
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The networks trained on datasets obtained by merely shift-
ing an integral number of frames from synchronized videos
are inadequate to satisfy video synchronization task’ needs.

In this paper, we utilize multi-view cameras with a stable
frame rate, without the connection of hardware synchroniza-
tion devices, to record many video clips. We also perform
precise time interval annotations. Since there is no connec-
tion through hardware devices, the time intervals are ran-
dom and are no longer limited to integer multiples of a sin-
gle frame duration. Accordingly, we treat inter-frame and
intra-frame intervals as a hierarchical classification problem.
Through continuous observation, we have set the classifi-
cation accuracy as 0.1 frame, and the error range caused
by classification is within an acceptable range. We design
the InSynFormer network utilizing information from 2D
poses to synchronize the videos, which adopts an Encoder-
Decoder structure. In the Encoder stage, each video frame
perceives the change information within its view video clip
through intra-view information interaction. In the Decoder
stage, each video frame interacts through cross-view in-
formation interaction to perceive the time difference be-
tween views. Due to the hierarchical relationship between
inter-frame and intra-frame intervals, we use the hierarchi-
cal cross-entropy loss (Bertinetto et al. 2020) for supervi-
sion. Our model achieves the best performance on the IFID
dataset, representing a significant improvement compared
to existing networks. We have demonstrated the effective-
ness of each method separately. We also applied the model
to multi-view desynchronized 3D human pose estimation,
which significantly helped improve the task performance.

In summary, our contributions are as follows:

• Research on inter-frame and intra-frame time intervals
in multi-view videos: We first focus on the inter-frame
and intra-frame time intervals of multi-view videos. This
perspective provides a new understanding and approach
to handling the video synchronization problem.

• Collection of an innovative dataset: We have constructed
and released a new dataset with vast potential for various
applications. This dataset is the largest one to date and
will facilitate further studies in this research direction.

• Proposal of the InSynFormer model with hierarchical
cross-entropy loss: We introduced the innovative InSyn-
Former model that utilizes hierarchical cross-entropy
loss for supervision. This model shows exceptional per-
formance in video synchronization tasks.

Related Work
3D Human Pose Estimation
3D human pose estimation aims to predict body joint po-
sitions in 3D space, thereby obtaining more comprehensive
human body structure information. Monocular pose estima-
tion is relatively simple, inferring the 3D pose of the human
body by inputting RGB images from a single view. Some
work (Chen and Ramanan 2017; Li and Lee 2019; Martinez
et al. 2017; Moreno-Noguer 2017; Tekin et al. 2017) per-
form 3D pose estimation in two stages: the first stage ob-
tains 2D pose feature, and then 2D to 3D lifting is used
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2 frames interval. (Integer)

1.4 frames interval. (Decimal)

0 21 3 4 5
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Figure 2: Two different types of frame intervals. Assuming
the camera frame rate is 25 fps, the frame interval will be 40
milliseconds. When the time interval is 80 milliseconds, it is
the situation in the green area, exactly 2 frames. When the
time interval is close to 56 milliseconds, it is the situation in
the blue area, approximately 1.4 frames.

to obtain 3D pose in the second stage. On the other hand,
other works (Li, Zhang, and Chan 2015; Pavlakos, Zhou,
and Daniilidis 2018; Pavlakos et al. 2017) directly predict
the 3D human pose from the image. However, neither of
these two methods can effectively solve the occlusion prob-
lem. Even though graph convolutional networks are intro-
duced to the 3D human pose estimation (Ci et al. 2019; Zhao
et al. 2019), the occlusion problem still can not be effectively
solved. The natural solution to overcome the occlusion prob-
lem is estimating a 3D human pose from multiple views,
as the occluded part in one view may be visible in others.
Thus, multi-view 3D pose estimation is receiving increasing
attention. In the task of multi-view 3D human pose estima-
tion, methods based on convolutional neural network (Dong
et al. 2019) and based on attention mechanism (Zhang et al.
2021) have been developed. 3D human pose estimation has
made further progress. However, multi-view desynchronized
cameras have synchronization errors, and multi-view desyn-
chronized images or videos will severely affect the accuracy
of multi-view 3D pose estimation (Shuai et al. 2022). When
the human body is in a state of high-speed motion, the errors
caused by desynchronization are severe, and even within one
frame interval, it can cause a significant impact.

Video Temporal Synchronization
Since many years ago, the issue of video synchronization
has already attracted researchers’ attention. Early methods
(Elhayek et al. 2012; Pundik and Moses 2010) mainly re-
lied on traditional digital image features for synchronization,
which often required fixed cameras and the input of camera
parameters, significantly limiting their practicality. The first
work (Wu et al. 2019) that employed deep learning meth-
ods used synchronized videos to slide integer frames to ob-
tain desynchronized videos. For the first time, a desynchro-
nized dataset was created. However, the dataset is of a small
scale, and its time intervals are all multiples of frame inter-
vals. Even so, this study was the first to view integer frames
corresponding to time intervals as a classification problem
and achieved satisfactory results. Using convolutional neu-
ral networks, features were extracted from two views to get
pose features. Then, a bidirectional LSTM layer (Song et al.
2018; Shi et al. 2015) was used to fuse temporal features
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Figure 3: The actor in the top left image turns the timer
so that cameras from all views can capture the time on the
timer. The top right image shows the ID and position of the
cameras in the experiment site. From the four images at the
bottom, it is evident that the cameras can capture both the
timer reading and the human pose.

before performing the classification. The experiment part of
the work also demonstrated that compared to methods based
on appearance features and optical flow features, synchro-
nization based on pose features performs better. Therefore,
subsequent research mainly adopted the strategy of synchro-
nization based on pose features. As the dataset (Wu et al.
2019) is not released to the public, the NTU RGB+D dataset
(Shahroudy et al. 2016) and CMU Panoptic Studio dataset
(Joo et al. 2015) was processed to obtain NTU-SYN Dataset
and CMU-SYN Dataset (Yin et al. 2022). Unfortunately, the
time intervals in the dataset are still integer multiples of the
frame interval. Additionally, with the 2D human pose as in-
put for feature embedding, SeSyn-Net is developed, and a
series of self-supervised losses are designed to extract the
view-invariant effectively but time-discriminative represen-
tation for video synchronization. The above two works are
the two key works of the existing video time synchronization
methods based on human pose features, and the two works
have the best performance.

Hierarchical Cross-Entropy Loss
As surveyed in (Silla and Freitas 2011), it is necessary to
consider the hierarchy of classes when designing classifiers.
Take a simple classification problem as an example: mis-
classifying a cat as a dog or a flower should incur differ-
ent penalties because cats and dogs belong to the animal
category. Different hierarchical structures can act as prior
knowledge to better assist model training. Recently, hierar-
chical cross-entropy loss based on cross-entropy loss was
developed (Bertinetto et al. 2020), which expands each class

probability into the chain of conditional probabilities de-
fined by its lineage in a given hierarchy tree, thus effectively
improving the cross-entropy loss. In this paper, we consider
inter-frame intervals and intra-frame intervals as hierarchi-
cal classifications, achieving excellent results.

Method
We first provided a comprehensive definition of the frac-
tional frame video synchronization issue and elucidated our
problem. Given our focus on intra-frame intervals in multi-
view videos, we have built a relevant experiment site, as
shown in Figure 3, and recorded videos using cameras that
were not connected through hardware synchronization de-
vices. Relying on a high-precision digital display, we de-
signed a simple and feasible experiment plan and completed
the annotation work. Based on the Transformer’s attention
mechanism (Vaswani et al. 2017), we designed temporal
self-attention (TSA) and cross-view attention (CVA) mod-
ules and adopted hierarchical cross-entropy loss for supervi-
sion. Our model achieved excellent results.

Formulation
The issue of video synchronization is receiving increasing
attention. However, up to now, there has not been a complete
definition of the problem. Previous work focused on syn-
chronization at inter-frame intervals, while we are the first
to address fractional frame interval synchronization. Here,
we provide a unified definition for the fractional frame video
synchronization problem.

Parameter Definition Given a set of videos Q =
{Q1,Q2, · · · ,QN} collected from N cameras located in
the same experimental site. For ∀i, j ∈ [1, N ] ∧ i ̸= j, we
can derive Qi,Qj ∈ Q, where Qi = {Q1

i , Q
2
i , · · · , Q

M1
i },

Qj = {Q1
j , Q

2
j , · · · , Q

M2
j }. M1 and M2 are the respective

frame counts of the two videos. We use the function T to
represent the world time corresponding to any given frame.
When {(T (QM1

i ) > T (Q1
j )) ∧ {(T (Q1

j ) > T (Q1
i ))}}, we

say that the two video clips overlap. Using two overlapping
videos, we can predict the time interval.

T (Qk1
i )− T (Qk2

j ) = f(Qk1
i , Qk2

j , ϕ), (1)

where k1 ∈ [1,M1], k2 ∈ [1,M2]. ϕ is the video synchro-
nization model, and f maps the model’s prediction results to
time intervals.

Technical Details We denote the duration of one frame in
a video with a stable frame rate as τ . In previous studies,
time intervals have always been an integral multiple of the
frame interval, which can be formulated as

|T (Qk1
i )− T (Qk2

j )| = k · τ, k ∈ N. (2)
In our work, we estimate the time intervals more precisely.

The accuracy of our time intervals is τ
10 . We obtain the final

time interval using the predicted inter-frame interval Pex and
the intra-frame interval Pin.

|T (Qk1
i )− T (Qk2

j )| = Pex · τ + Pin · τ

10
. (3)

Additionally, we set M1 = M2 = 5 for rapid video synchro-
nization with only a limited number of frames.
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Figure 4: Videos from two different views first pass through the pose estimation network to get pose features. Next, we exchange
information within and between views using the Encoder-Decoder architecture. Finally, the linear layer is used to classify the
results. The specific structures of the Encoder and Decoder are illustrated on the right side.

IFID Dataset
In a square area with a side length of 8 meters, we deployed
10 Hikvision cameras with a stable frame rate, as shown in
Figure 3, enabling us to obtain 45 groups of inter-frame and
intra-frame intervals for each experiment. To increase the fo-
cus on intra-frame intervals, we set the frame rate to 10 fps
to increase the degree of change in human pose between two
adjacent frames. To obtain intra-frame intervals, we placed a
timer with a precision of 10 ms and brought the current time
by reading the timer’s display. We reduced the camera’s ex-
posure time to 1 ms to record the timer readings. To balance
brightness, we used a large aperture on the camera. Sample
images taken by the camera can be seen in Figure 3. Each
time we start recording, we slowly rotate the timer in a wide
range so that cameras from all views can capture the timer’s
readings, as shown in Figure 3. This operation will help with
annotating the intra-frame intervals later. Next, after moving
the timer out of the field of view, the actors begin to perform
actions. During the annotation, we use the moment when the
actor starts to act as the start of the video. Based on the num-
ber of frames between the frame when the camera captures
the timer reading and the starting frame, we can annotate the
time of each frame. In this way, we can obtain the annota-
tions of inter-frame and intra-frame intervals.

InSynFormer
Figure 4 shows the pipeline of the proposed InSynFormer
for synchronizing two camera videos. First, we input two
video clips from two different views and perform pose esti-
mation separately to obtain the heatmap for each view. Next,
we construct temporal self-attention modules in the encoder
and cross-view attention modules in the decoder. Through
the temporal self-attention module, the model perceives the
changes of each joint within the view and further interacts
with the pose information of the same joint between differ-
ent views through the cross-view attention module. We pre-
dict the time interval based on each joint and finally fuse the
prediction results of each joint.

Temporal Self-Attention Temporal information is essen-
tial for perceiving changes in video sequences. Therefore, in

the encoder, we adopt temporal self-attention to extract the
temporal information of the video sequences fully. The joint
heatmap inferred by the pose estimation network undergoes
linear embedding to obtain the query, with the key and value
computed through the same joint from this view.

T SA(Qi,Ki, Vi) = softmax

(
QiK

T
i√

dk

)
Vi. (4)

Here, Qi, Ki, and Vi come from the same view. Qi is
obtained by the continuous 5-frame heatmaps, correspond-
ing to the i-th joint within the view, separately processed
through a linear embedding layer. Ki and Vi are also calcu-
lated from the i-th joint within the video clip of that view.

Cross-View Attention After processing by TSA, each
frame within the same view has already obtained informa-
tion through intra-view information interaction. However,
video synchronization across different views requires in-
formation interaction between views to get the final result.
Therefore, we propose the cross-view attention method in
the decoder to implement information interaction between
views. We obtain the key and value from the feature map that
has just completed the intra-view feature interaction and cal-
culate them with the query received from the corresponding
feature map of another view.

CVA(Q′
i,Ki, Vi) = softmax

(
Q′

iK
T
i√

dk

)
Vi. (5)

In this case, Ki and Vi are calculated from the feature map of
the i-th joint from one view, while Q′

i is calculated from the
feature map of the i-th joint from a different view. Through
TSA and CVA, joints across different views have sufficiently
interacted with the information. Based on the interaction re-
sults of all joints, we use a linear layer to merge the feature
information of each joint, thereby obtaining the predicted
results.

Hierarchical Cross-Entropy Loss
In estimating time intervals, as the intra-frame interval is
subordinate to the inter-frame interval, we can represent this
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Figure 5: The distribution of the intra-frame interval.

problem using a tree structure. We define the root node of the
tree as C(0) = R, and P (R) = 1. On this basis, the height
of the tree is 2. The first layer C(1) = {C1, C2, ..., Cm}
represents the m categories of whole frames correspond-
ing to the range of time intervals. The second layer C(2) =
{C11, C12, . . . , Cmn} represents the n categories within a
frame corresponding to the range of time intervals. The
probability of class Cij can be factorised as

P (Cij) = P (Ci | C0) · P (Cij | Ci) . (6)

The conditionals can conversely be written in terms of the
class probabilities as

P (Cij | Ci) =
P (Cij)

P (Ci)
. (7)

Consequently, we obtain the hierarchical cross-entropy.

LHXE(P,C) = −
h−1∑
l=0

λ
(
C(l)

)
logP

(
C(l) | C(l+1)

)
,

(8)
where λ(C(l)) is the weight associated with the edge node
C(l+1) → C(l). We take the weights as

λ(C) = exp(−αh(C)), (9)

where h(C) is the height of node C and α > 0 is a hyper-
parameter that controls the extent to which information is
discounted down the hierarchy. As the value of α increases,
the loss from classification errors away from the root node
decreases, and the model’s classification tends to be generic
instead of fine-grained. The model achieves excellent results
when α is set to 0.1.

Experiments
Dataset
Aside from our dataset, six other datasets are related to our
task. Among them, the SYN dataset is derived (Wu et al.
2019) from synchronized videos (Zheng et al. 2017), and
the SPVideo dataset and MPVideo dataset are collected (Wu
et al. 2019) from synchronized devices. A synchronized
video dataset was also collected for video synchronization in
the work (Boizard et al. 2023). However, these four datasets
are not released to the public. The NTU-SYN and CMU-
SYN datasets were processed (Yin et al. 2022) and are now
released to the public. We will subsequently introduce these
two datasets along with our own and present the results of
different methods applied to these three datasets.

NTU-SYN Dataset The NTU-SYN dataset is built based
on the NTU RGB+D dataset (Shahroudy et al. 2016).
They selected 5, 560 pairs of synchronized videos, includ-
ing 3, 762 pairs of videos as the training set and 1, 798 as
the testing set. For initially synchronized videos, they ran-
domly set a time offset in the [−30, 30] frames for construct-
ing each video pair in both the training and testing sets. We
narrow the time offset to [−5, 5] frames for fairness.

CMU-SYN Dataset The CMU-SYN dataset is built based
on the CMU Panoptic Studio dataset (Joo et al. 2015). They
randomly select 74 pairs of videos to construct the training
set and the remaining 32 to construct the testing set. By set-
ting 6 different time offsets for each pair of videos, they fi-
nally get 74×6 pairs of videos as the training set, and 32×6
pairs of videos as the testing set, and the range of time offset
for each video pair is also [−30, 30] frames. We also narrow
the time offset to [−5, 5] frames for fairness.

IFID Dataset The IFID dataset is a naturally collected
multi-view desynchronized dataset. We recorded 8, 500
grouped videos, of which 6, 092 were used for training,
1, 216 for validation, and 1, 192 for testing. Since we have
10 views, there are C2

9 = 45 different combinations in a
grouped video, so we have a total of 352, 500 video groups.
For each pair of videos, we first synchronize them to the
same frame, and the intra-frame interval is still retained.
Next, we randomly set a time offset in the [−5, 5] frames
range. By placing 2 different time offsets for each pair of
videos, we finally get 274, 140 × 2 pairs of videos as the
training set, 54, 720 × 2 pairs of videos as the validation
set, and 53, 640 × 2 pairs of videos as the testing set. Af-
ter statistics, our different intra-frame interval categories are
approximately uniformly distributed, as shown in Figure 5.

Implementation Details
For all datasets, we resize the length and width of each image
to half of the original and feed the image into the model af-
ter data augmentation. We use the pre-trained model (Zhou,
Wang, and Krähenbühl 2019) for pose estimation and fix
the weights during training. After multiple experiments, we
found that setting the TSA and CVA module number to 4 can
achieve efficient performance. We also supervise the classi-
fication of the order of the two views through cross-entropy
loss, that is, L = LHXE + β · LCE , where β is set to 0.1.
Since the accuracy is high, we do not elaborate on this. Fur-
thermore, since there is no intra-frame interval in NTU-SYN
and CMU-SYN, we only train on the inter-frame intervals
with cross-entropy loss.

Evaluation Metrics
Metric: Frame error. The frame error is calculated as
Frm.err. = |(Pex + Pin)− (GT ex + GT in)|, Pex and
GT ex respectively represent the inter-frame intervals for
prediction and ground-truth, while Pin and GT in respec-
tively represent the intra-frame intervals for prediction and
ground-truth. And frame accuracy is the proportion of test
cases in which inter-frame and intra-frame errors are less
than a specified range concerning all cases. Accex@i is the
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Method Accex@1 ↑ Accex@3 ↑ Accin@1 ↑ Accin@3 ↑ Accin@5 ↑ Frm.err. ↓ Para.(MB) FLOPs(Giga)

SynNet 60.41% 91.37% 31.78% 70.12% 85.62% 1.26 240 238
SeSyn-Net 79.93% 92.44% − − − 0.87 122 196

CNNSiamese 36.42% 76.34% − − − 2.04 40 170
Ours 80.86% 94.35% 61.30% 90.69% 95.49% 0.83 138.49 212

Table 1: Comparative results of different methods on the IFID.

40%

70%

100%

Acc@1 Acc@2 Acc@3

CMU-SYN

SynNet SeSyn-Net CNNSiamese Ours

Figure 6: Comparative results of different methods on the
CMU-SYN.

number of video pairs satisfying |Pex − GT ex| < i, and
Accin@j is the number of cases satisfying |Pin−GT in| < j.

Competing methods
We compare our method with all existing deep learning-
based video synchronization methods, including SynNet
(Wu et al. 2019), SeSyn-Net (Yin et al. 2022), and CNNSi-
amese (Boizard et al. 2023). As the comparison can not be
carried out directly, we will detail the comparison process.

SynNet This method uses the heatmap obtained from the
pose estimation network as input. The model predicts the
time interval between two videos after interacting with the
temporal information through a bidirectional LSTM (Song
et al. 2018; Shi et al. 2015). The model infers the time
interval by classifying the number of frame intervals and
uses cross-entropy loss for supervision. When comparing
the IFID dataset, we added classifiers to predict the intra-
frame interval and used hierarchical cross-entropy loss for
supervision to standardize the comparison. In comparing the
NTU-SYN and CMU-SYN datasets, since there is no intra-
frame interval, we only compared the evaluation metrics of
inter-frame intervals.

SeSyn-Net This method also uses the results of pose es-
timation as input. It learns the spatiotemporal information
of the pose through ST-GCN (Yan, Xiong, and Lin 2018)
and then conducts self-supervised training by matching the
features of video frames from different views. Since this
method must conduct training and inference on a whole-
frame basis, we only compare the evaluation metrics of the
inter-frame interval for the IFID dataset. For Frm.err., we
only calculate the inter-frame part. Moreover, the length of
video clips in NTU-SYN and CMU-SYN are not fixed, and
this method does not have requirements for the length of the
video clips. To be fair, we set the length of input video clips
to 5 for all datasets.

40%

70%

100%

Acc@1 Acc@2 Acc@3

NTU-SYN

SynNet SeSyn-Net CNNSiamese Ours

Figure 7: Comparative results of different methods on the
NTU-SYN.

CNNSiamese Unlike the previous ones, this method di-
rectly applies a CNN network for feature extraction. Af-
ter comparing features between video clips from different
views, it selects the match with the highest probability. On
the IFID dataset, we also only conduct a similar compar-
ison. When testing on the NTU-SYN and CMU-SYN, we
uniformly set the length of input videos to 5 frames.

Table 1 shows the comparison results on the IFID dataset.
Our methods achieved the best performance. Our model can
also predict the intra-frame interval well. Figure 7 and Fig-
ure 6 show that our model can also achieve excellent perfor-
mance when only classifying inter-frame intervals.

Qualitative Results and Visualizations

We recorded the actor performing archery actions in the
experiment site using 4 calibrated cameras from differ-
ent views. Our model sequentially synchronizes the videos
based on the ascending order of camera ID from the
recorded videos. We separately input the synchronized and
original videos and camera parameters into a pre-trained
VoxelPose (Tu, Wang, and Zeng 2020) for 3D pose estima-
tion and project the results onto Camera-01. The visualiza-
tion results are shown in Figure 8. Video synchronization
has a significant positive impact on 3D pose estimation from
multi-view desynchronized videos. When using desynchro-
nized videos, various issues arise, such as keypoints appear-
ing ahead of time, lagging, or errors in the pose.

Since the input of existing multi-view 3D pose estimation
models is synchronized video, we are unable to synchronize
the intra-frame part of ours. We mitigate the impact of intra-
frame intervals by increasing fps and slowing down the ac-
tor’s performance speed. In future research, we will focus on
leveraging intra-frame intervals to perform 3D pose estima-
tion on desynchronized multi-view videos.
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Figure 8: Three consecutive frames of an actor performing an archery action. The three images on the left are the results
projected onto Camera-01 after performing 3D pose estimation on the multi-view videos that have been synchronized; in the
middle are the original images; on the right are the results obtained directly from the original video synchronization.

Method Accex@1 ↑ Accex@3 ↑ Accin@1 ↑ Accin@3 ↑ Accin@5 ↑ Frm.err. ↓
SynNet + LCE 59.78% 90.91% 20.56% 57.84% 79.40% 1.27

SynNet + LHXE 60.41% 91.37% 31.78% 70.12% 85.62% 1.26
InSynFormer + LCE + MHSA 75.83% 91.10% 19.78% 57.89% 83.58% 1.15

InSynFormer + LHXE + MHSA 75.88% 91.22% 35.65% 74.23% 87.40% 1.13
InSynFormer + LCE + TSA + CVA 80.27% 94.35% 49.84% 77.62% 92.63% 0.83

InSynFormer + LHXE + TSA + CVA 80.86% 94.35% 61.30% 90.69% 95.49% 0.83

Table 2: The impact of Temporal Self-Attention, Cross-View Attention, and Hierarchical Cross-Entropy Loss on the results.

Ablation Study

Effectiveness of Temporal Self-Attention and Cross-
View Attention. Table 2 shows the improvement of us-
ing the TSA and CVA module over the traditional MHSA
method. For a fair comparison, we ensure that the num-
ber of MHSA modules equals the sum of the TSA and
CVA modules when conducting the experiments. For the
MHSA method, we concatenate clips from different views
and directly feed them into the MHSA layer. It is not suffi-
cient for cross-view information interaction. Moreover, the
model learns less information about intra-frame intervals.
The performance has improved significantly by changing the
MHSA module to TSA and CVA modules.

Effectiveness of Hierarchical Cross-Entropy loss. Table
2 also shows the different results of using hierarchical cross-
entropy loss and cross-entropy loss. The hierarchical rela-
tionship between inter-frame and intra-frame intervals is ig-
nored when training with a regular CE loss. However, if they
are added together by weight, the training effect of inter-
frame interval is good, while the training effect of intra-
frame interval declines. HXE loss effectively uses the hier-
archical relationship to ensure good training of both.

Generalization Evaluation. We collected nearly 100 sets
of videos in outdoor scenes using the same approach. We
tested the model’s performance, and the specific details will
be elaborated upon in the supplementary materials.

Conclusion

This paper focuses on the intra-frame synchronization prob-
lem of multi-view cameras under natural shooting condi-
tions. We first provided a unified definition for Fractional
Frame Video Synchronization. To address this problem, we
constructed the IFID dataset, which annotates inter-frame
and intra-frame time intervals. We also proposed the InSyn-
Former model, which demonstrates excellent performance.
Through ablation studies, we verified the effectiveness of the
designed modules and loss function. In the future, we plan
to combine our synchronization model to develop a multi-
view 3D pose estimation algorithm, thereby allowing for 3D
pose estimation from videos that have been recorded without
being connected through hardware synchronization devices.

Limitations Our work has three main limitations. Firstly,
although we classify frame intervals with finer granularity, a
slight error still exists that cannot be eliminated. Ideally, the
video synchronization model should be able to predict the
time intervals directly. Secondly, like most previous works,
we rely on human pose information in the videos for syn-
chronization. If no people are in the video, video synchro-
nization can not occur. Lastly, current multi-view 3D pose
estimation models cannot process desynchronized videos,
which also results in the intra-frame interval not effectively
utilized. Our future work will primarily address these issues.
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