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Abstract

The open sourcing of large amounts of image data promotes
the development of deep learning techniques. Along with this
comes the privacy risk of these image datasets being exploited
by unauthorized third parties to train deep learning models for
commercial or illegal purposes. To avoid the abuse of data, a
poisoning-based technique, “unlearnable example”, has been
proposed to significantly degrade the generalization perfor-
mance of models by adding imperceptible noise to the data.
To further enhance its robustness against adversarial training,
existing works leverage iterative adversarial training on both
the defensive noise and the surrogate model. However, it still
remains unknown whether the robustness of unlearnable ex-
amples primarily comes from the effect of enhancement in the
surrogate model or the defensive noise. Observing that simply
removing the adversarial perturbation on the training process
of the defensive noise can improve the performance of robust
unlearnable examples, we identify that solely the surrogate
model’s robustness contributes to the performance. Further-
more, we found a negative correlation exists between the ro-
bustness of defensive noise and the protection performance,
indicating defensive noise’s instability issue. Motivated by
this, to further boost the robust unlearnable example, we in-
troduce Stable Error-Minimizing noise (SEM), which trains
the defensive noise against random perturbation instead of the
time-consuming adversarial perturbation to improve the stabil-
ity of defensive noise. Through comprehensive experiments,
we demonstrate that SEM achieves a new state-of-the-art per-
formance on CIFAR-10, CIFAR-100, and ImageNet Subset
regarding both effectiveness and efficiency.

Introduction
The proliferation of open-source and large-scale datasets on
the Internet has significantly advanced deep learning tech-
niques across various fields, including computer vision (He
et al. 2016; Dosovitskiy et al. 2020; Cao et al. 2023; Zhang
et al. 2023b), natural language processing (Devlin et al. 2019;
Vaswani et al. 2017; Zhou et al. 2023; Sun et al. 2024), and
graph data analysis (Wang et al. 2018; Kipf and Welling
2016; Sun et al. 2022a). However, this emergence also poses
significant privacy threats, as these datasets can be exploited
by unauthorized third parties to train deep neural networks
(DNNs) for commercial or even illegal purposes. For instance,
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Figure 1: The performance comparison on CIFAR-10 be-
tween the current SoTA method, the robust error-minimizing
noise (REM) (Fu et al. 2022), and our proposed stable error-
minimizing noise (SEM). Our SEM outperforms the REM in
terms of both effectiveness and generation efficiency.

Hill and Krolik (2019) reported that a tech company amassed
extensive facial data without consent to develop commercial
face recognition models. Besides, Edwards (2022) reported
the discovery of an artist’s private medical record photos,
initially intended for private use, in a popular AI training set.

To tackle this problem, recent works have introduced Un-
learnable Examples (Fowl et al. 2021b; Huang et al. 2020;
Fowl et al. 2021a), which aims to make the training data
“unlearnable” for deep learning models by adding a type
of invisible noise. This added noise misleads the learning
model into adopting meaningless shortcut patterns from the
data rather than extracting informative knowledge (Yu et al.
2022). However, such conferred unlearnability is vulnera-
ble to adversarial training (Huang et al. 2020). In response,
the concept of robust error-minimizing noise (REM) was
proposed in (Fu et al. 2022) to enhance the efficacy of error-
minimizing noise under adversarial training, thereby shield-
ing data from adversarial learners by minimizing adversarial
training loss. Specifically, a min-min-max optimization strat-
egy is employed to train the robust error-minimizing noise
generator, which in turn produces robust error-minimizing
noise. To enhance stability against data transformation, REM
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leverages the Expectation of Transformation (EOT) (Athalye
et al. 2018) during the generator training. The resulting noise
demonstrates superior performance in advanced training that
involves both adversarial training and data transformation.

However, a primary drawback of REM, is its high compu-
tational cost. Specifically, on the CIFAR-10 dataset, it would
take nearly a full day to generate the unlearnable examples,
which is very inefficient. Consequently, enhancing the effi-
ciency of REM is vital, especially when scaling up to larger
real-world datasets (Russakovsky et al. 2015; Schuhmann
et al. 2021). To improve the efficiency of robust unlearnable
example generation algorithms, in this paper, we take a closer
look at the time-consuming adversarial training process in
both the surrogate model and the defensive noise. As empiri-
cally demonstrated in Tab. 1, we can see that the performance
of the robust unlearnable example mainly comes from the
effect of adversarial training on the surrogate model rather
than the defensive noise part. Surprisingly, the presence of
adversarial perturbation in the defensive noise crafting will
even lead to performance degradation, indicating that we
need a better optimization method in this part.

To elucidate this intriguing phenomenon and enhance the
robustness of unlearnable examples, we begin by defining the
robustness of both the surrogate model and defensive noise.
Subsequently, our correlation analysis reveals that the robust-
ness of the surrogate model is the primary contributing factor.
Conversely, we observe a negative correlation between the ro-
bustness of defensive noise and data protection performance.
We hypothesize that the defensive noise overfits monotonous
adversarial perturbations, leading to its instability. To address
this issue, we introduce a novel noise type, stable error-
minimizing noise (SEM). Our SEM is trained against random
perturbations, rather than the more time-consuming adver-
sarial perturbations, to enhance stability. We summarize our
contributions as follows:

• We establish that the robustness of unlearnable examples
is largely attributable to the surrogate model’s robustness,
rather than that of the defensive noise. Furthermore, we
find that adversarially enhancing defensive noise can ac-
tually degrade its protective performance.

• To mitigate such an instability issue, we introduce stable
error-minimizing noise (SEM), which trains the defensive
noise against random perturbations instead of the more
time-consuming adversarial ones, to improve the stability
of the defensive noise.

• Extensive experiments empirically demonstrate that SEM
achieves a SoTA performance on CIFAR-10, CIFAR-100,
and ImageNet Subset regarding both effectiveness and
efficiency. Notably, SEM achieves a 3.91× speedup and
an approximately 17% increase in testing accuracy for
protection performance on CIFAR-10 under adversarial
training with ϵ = 4/255.

Preliminaries
Setup. We consider a classification task with input-label pairs
from a K-class dataset T = (xi, yi)

n
i=1 ⊆ X × Y , where T

is constructed by drawing from an underlying distribution

Method Adv. Train
δr Time Test Acc. (%) ↓

θ δu

REM ✓ ✓ 22h 46.72
REM-δu ✓ 15h 88.28
REM-θ ✓ 6h 37.90

SEM ✓ ✓ 6h 30.26

Table 1: Comparison between variants of REM and SEM
on CIFAR-10 dataset. The ✓ indicates the corresponding
method is used in the training process. δr indicates the defen-
sive noise that is trained against random perturbation.

D(x, y) in an i.i.d. manner, and x ∈ Rd represents the fea-
tures of a sample. Let fθ : Rd → ∆ be a neural network
model that outputs a probability simplex, e.g., via a softmax
layer. In most learning algorithms, we employ empirical risk
minimization (ERM), which aims to train the model fθ by
minimizing a loss function L(f(x), y) on the clean training
set. This is achieved by solving the following optimization:

min
θ

1

n

n∑
i=1

L (fθ (xi) , yi) . (1)

Adversarial Training. Adversarial training aims to enhance
the robustness of models against adversarially perturbed ex-
amples (Madry et al. 2018). Specifically, adversarial robust-
ness necessitates that fθ performs well not only onD but also
on the worst-case perturbed distribution close to D, within a
given adversarial perturbation budget. In this paper, we focus
on the adversarial robustness of ℓ∞-norm: i.e., for a small
ϵ > 0, we aim to train a classifier fθ that correctly classifies
(x+ δ, y) for any ∥δ∥∞ ≤ ρa

1, where (x, y) ∼ D. Typically,
adversarial training methods formalize the training of fθ as a
min-max optimization with respect to θ and δ, i.e.,

min
θ

1

n

n∑
i=1

max
∥δi∥≤ρa

L (fθ (xi + δi) , yi) . (2)

Unlearnable Example. Unlearnable examples (Huang et al.
2020) leverage clean-label data poisoning techniques to trick
deep learning models into learning minimal useful knowl-
edge from the data, thus achieving the data protection goal.
By adding imperceptible defensive noise to the data, this tech-
nique introduces misleading shortcut patterns to the training
process, thereby preventing the models from acquiring any
informative knowledge. Models trained on these perturbed
datasets exhibit poor generalization ability. Formally, this task
can be formalized into the following bi-level optimization:

max
∥δui ∥≤ρa

E
(x,y)∼D

[L (fθ∗(x), y)] ,

s.t. θ∗ = argmin
θ

∑
(xi,yi)∈T

[L (fθ (xi + δui ) , yi)].
(3)

Here, we aim to maximize the empirical risk of trained
models by applying the generated defensive perturbation

1∥·∥ in subsequent sections omits the subscript "∞" for brevity.
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Figure 2: The overall framework of our approach. Our approach consists of two phases: noise training and generator training.
During the noise training phase, we train the defensive noise, denoted as δu, to counter random perturbations. In the subsequent
generator training phase, the original images, represented as x, are transformed to xinput = t(x+ δu) + δa before being input
into the network. Here, t represents a transformation derived from distribution T , and δa represents the adversarial perturbation
produced using PGD. The noise generator, f ′

θ, updates the network parameters, θ, by minimizing adversarial loss. By applying
our defensive noise, models trained on the protected data learn minimal information and exhibit poor performance on clean data.

Pu = {δui }
n
i=1 into the original training set T . Owing to

the complexity of directly solving the bi-level optimization
problem outlined in Eq. 3, several approximate methods have
been proposed. These approaches include rule-based (Yu et al.
2022), heuristic-based (Huang et al. 2020), and optimization-
based methods (Feng, Cai, and Zhou 2019), all of which
achieve satisfactory performance in solving Eq. 3.
Robust Unlearnable Example. However, recent studies (Fu
et al. 2022; Huang et al. 2020; Tao et al. 2021) have demon-
strated that the effectiveness of unlearnable examples can be
compromised by employing adversarial training. To further
address this issue, the following robust unlearnable example
generation problem is proposed, which can be illustrated as a
two-player game consisting of a defender U and an unautho-
rized user A. The defender U aims to protect data privacy by
adding perturbation Pu to the data, thereby decreasing the
test accuracy of the trained model, while the unauthorized
user A attempts to use adversarial training and data trans-
formation to purify the added perturbation and “recover” the
original test accuracy. Based on Fu et al. (2022), we assume
that the defender U has complete access to the data they in-
tend to protect and cannot interfere with the user’s training
process after the protected images are released. Additionally,
we assume, as per Fu et al. (2022), that the radius of defen-
sive noise ρu exceeds that of the adversarial training radius
ρa, ensuring the problem’s feasibility. Given a distribution T
over transformations t : X → X , we have

Pu = argmax
∀i,|δui ||≤ρu

E
(x,y)∼D

[L (fθ∗(x), y)] ,

s.t.θ∗ = argmin
θ

∑
(xi,yi)∈T E

t∼T
max

||δai ||≤ρa
L (fθ (x

′
i) , yi),

(4)
where x′

i = t(xi + δui ) + δai represents the transformed

data, with δai being the adversarial perturbation crafted us-
ing Projected Gradient Descent (PGD) and δui denoting the
defensive noise. After applying Pu, the protected dataset
T u = (xi + δui , yi)

n
i=1 is obtained.

Methodology
Iterative Training of Generator and Defensive Noise
To address the problem presented in Eq. 4, REM introduces a
robust noise-surrogate iterative optimization method, where
a surrogate noise generator model, denoted as θ, and the
defensive noise, δu, are optimized alternately. From the
model’s perspective, the surrogate model θ is trained on iter-
atively perturbed poisoned data, created by adding defensive
and adversarial noise to the original training data, namely,
xu

perturb = t(x+ δu) + δa. The surrogate model is trained to
minimize the loss below to enhance its adversarial robustness:

θ′ ← θ − ηθ∇θL (fθ (t (x+ δu) + δa) , y) . (5)

where η(·) represents the learning rate, t is a transformation
sampled from T , and δa is the adversarial perturbation crafted
using PGD, designed to maximize the loss. Conversely, the
defensive noise δu is trained to counteract the worst-case
adversarial perturbation using PGD based on θ. The main
idea is that robust defensive noise should maintain effective-
ness even under adversarial perturbations. Specifically, the
defensive noise is updated by minimizing the loss,

δu ← δu − ηu∇δuL (fθ (t (x+ δu) + δa) , y) . (6)

During the optimization of the surrogate model θ, the de-
fensive noise δu is fixed. Conversely, when optimizing the
defensive noise δu, the surrogate model θ remains fixed. We

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

3785



1.80 1.75 1.70 1.65
R u

0.1

0.2

0.3

0.4

0.5
Pr

ot
ec

tio
n 

Pe
rf

or
m

an
ce

 F
()

r= 0.58

0.3 0.2 0.1 0.0
R

0.2

0.3

0.4

0.5
r= 0.95

Figure 3: Exploration of the contribution of the robustness
of defensive noise, denoted asRθ, and the surrogate model,
represented by Rδu , to the protection performance F . The
Pearson correlation coefficients (r) quantify the strength of
these relationships. Tests were conducted on the CIFAR-10
dataset with settings ρa = 4/255 and ρu = 8/255.

repeat these steps iteratively until the maximum training step
is reached. The final defensive noise is generated by,

δu = argmin
∥δu∥≤ρu

Et∼T max
∥δa∥≤ρa

L (fθ (t (x+ δu) + δa) , y) .

(7)

Improving the Stability of Defensive Noise
The adversarial perturbation, denoted as δa, is incorporated in
the optimization processes of both the surrogate model θ and
the defensive noise δu (refer to Eq. 5 and Eq. 6). However,
as indicated by the results in Tab. 1, it appears that solely the
adversarial perturbation δa in the surrogate model θ’s opti-
mization contributes to the performance enhancement. Sur-
prisingly, the adversarial perturbation in the optimization of
defensive noise δu (see Eq. 6) results in performance degra-
dation. To elucidate these intriguing findings, we proceed
with a correlation analysis as described below. We initially de-
fine the protection performance by F = 1− Acc, where Acc
represents the testing accuracy of the trained model. Then, we
propose the following definition to quantify the robustness of
both the surrogate model and the defensive noise.
Definition 1 (Robustness of surrogate model). Given a fixed
surrogate model, denoted as θ, we define its robustness as
the model’s resistance to adversarial perturbations, where the
perturbation δu is updateable,

Rθ = − max
∥δa∥≤ρa

min
∥δu∥≤ρu

L (fθ (t (x+ δu) + δa) , y) . (8)

Definition 2 (Robustness of defensive noise). For a given
fixed defensive noise, δu, we define its robustness as the
noise’s resistance to adversarial perturbations, where the
model parameter θ is updateable,

Rδu = − max
∥δa∥≤ρa

min
θ
L (fθ (t (x+ δu) + δa) , y) . (9)

To explore the correlation between the two formulated
robustness terms, R(·), and the protection performance, F ,
we followed the standard defensive noise training procedure
as outlined in REM (Fu et al. 2022) and stored the surro-
gate model, θt, and defensive noise, δut , at various training

Algorithm 1: Noise Generator Training for SEM approach

Require: training data set T , training steps M , defense PGD
parameters ρu, αu and Ku, attack PGD parameters ρa,
αa and Ka, transformation distribution T , the sampling
number J for gradient approximation

Ensure: Robust noise generator f ′
θ.

1: for i in 1, · · · ,M do
2: Sample minibatch (x, y) ∼ T , randomly initialize δu.
3: for k in 1, · · · ,Ku do
4: for j in 1, · · · , J do
5: Sample noise and transformation δrj ∼ P , tj ∼

T .
6: end for
7: gk ← 1

J

∑J
j=1

∂
∂δu ℓ(f

′
θ(tj(x+ δu) + δrj ), y)

8: δu ←
∏

∥δ∥≤ρu
(δu − αu · sign(gk))

9: end for
10: Sample a transformation function t ∼ T .
11: δa ← PGD(t(x+ δu), y, f ′

θ, ρa, αa,Ka)
12: Update source model f ′

θ based on minibatch (t(x +
δu) + δa, y)

13: end for

steps denoted by t. Subsequently, for the obtained model or
noise, we fixed one while randomly initializing the other,
then solved Eq. 8 and Eq. 9 through an iterative training
process. From Fig. 3, we found that the Rθ demonstrates a
strong positive correlation with the protection performance
whileRδu displays a moderate negative correlation with the
protection performance.

This suggests that the protection performance of defensive
noise is primarily and positively influenced by the robust-
ness of the surrogate model,Rθ. Conversely, enhancing the
robustness of defensive noise may paradoxically impair its
protection performance. We hypothesize that the instability
of defensive noise δu, trained following Eq. 6, stems from
the monotonic nature of the worst-case perturbation δa. To
enhance its stability, we propose an alternative training ob-
jective for defensive noise,

δu ← δu − ηu∇δuL (fθ (t (x+ δu) + δr) , y) , (10)

where δr represents a random perturbation sampled from the
uniform distribution U(−ρr, ρr). The radius of the random
perturbation, ρr, is set to match that of the adversarial per-
turbation, ρa. Substituting δa in Eq. 6 with δr enables the
crafted defensive noise to experience more diverse perturba-
tions during training. We term the obtained defensive noise as
stable error-minimizing noise (SEM). The overall framework
and procedure are depicted in Fig. 2 and Alg. 1.

Experiments
Experimental Setup
Dataset. We conducted extensive experiments on three
widely recognized vision benchmark datasets, including
CIFAR-10, CIFAR-100 (Krizhevsky et al. 2009), and a subset
of the ImageNet dataset (Russakovsky et al. 2015), which
comprises the first 100 classes from the original ImageNet.
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Datasets→ CIFAR-10 CIFAR-100 ImageNet Subset

Methods↓ ρa=0 1/255 2/255 3/255 4/255 0 1/255 2/255 3/255 4/255 0 1/255 2/255 3/255 4/255

Clean Data 94.66 93.74 92.37 90.90 89.51 76.27 71.90 68.91 66.45 64.50 80.66 76.20 72.52 69.68 66.62
EM 13.20 22.08 71.43 87.71 88.62 1.60 71.47 68.49 65.66 63.43 1.26 74.88 71.74 66.90 63.40
TAP 22.51 92.16 90.53 89.55 88.02 13.75 70.03 66.91 64.30 62.39 9.10 75.14 70.56 67.64 63.56

NTGA 16.27 41.53 85.13 89.41 88.96 3.22 65.74 66.53 64.80 62.44 8.42 63.28 66.96 65.98 63.06
SC 11.63 91.71 90.42 86.84 87.26 1.51 70.62 67.95 65.81 63.30 11.0 75.06 71.26 67.14 62.58

REM 15.18 14.28 25.41 30.85 48.16 1.89 4.47 7.03 17.55 27.10 13.74 21.58 29.40 35.76 41.66

SEM 13.0 12.16 11.49 20.91 31.92 1.95 3.26 4.35 9.07 20.25 4.1 10.34 13.76 23.58 37.82

Table 2: Test accuracy (%) of models trained on data protected by different defensive noises under adversarial training with
various perturbation radii. The defensive perturbation radius ρu is globally set at 8/255, while the adversarial perturbation radius
ρa of REM varies. The lower the test accuracy, the better the effectiveness of the protection.

Clean EM TAP SC REM SEM

(a) CIFAR-10

Clean EM TAP SC REM SEM

(b) ImageNet Subset

Figure 4: Visualization of various noise and crafted examples for CIFAR-10 and ImageNet Subset datasets. The noise includes
EM (Error-Minimizing noise), TAP (Targeted Adversarial Poisoning noise), NTGA (Neural Tangent Generalization Attack
noise), SC (Shortcut noise), REM (Robust Error-Minimizing noise), and SEM (our proposed Stable Error-Minimizing noise).

In line with Fu et al. (2022), we utilized random cropping
and horizontal flipping for data augmentations.
Model Architecture and Adversarial Training. We eval-
uate the proposed method and the baselines across various
vision tasks using five popular network architectures: VGG-
16 (Simonyan and Zisserman 2015), ResNet18/50 (He et al.
2016), DenseNet121 (Huang et al. 2017), and Wide ResNet-
34-10 (Zagoruyko and Komodakis 2016). ResNet-18 is se-
lected as the default target model in our experiments. By
default, the defensive noise radius ρu is set at 8/255, and the
adversarial training radius ρa is set at 4/255 for each dataset.
Besides, the setting for the adversarial training radius follows
the guidelines of REM (Fu et al. 2022), ensuring ρa ≤ ρu.
Baselines. We compare our stable error-minimizing noise
(SEM) with existing SoTA methods, including targeted ad-
versarial poisoning noise (TAP) (Fowl et al. 2021a), error-
minimizing noise (EM) (Huang et al. 2021), robust error-
minimizing noise (REM) (Fu et al. 2022), synthesized short-
cut noise (SC) (Yu et al. 2022), and neural tangent general-
ization attack noise (NTGA) (Yuan and Wu 2021).

Performance Analysis
Different Radii of Adversarial Training. Our initial eval-
uation focuses on the protection performance of various un-
learnable examples under different adversarial training radii.
The defensive perturbation radius is set to ρu = 8/255, with
ResNet-18 serving as both the source and target models. As
shown in Tab. 1, SC performs best under standard training

Dataset Model Clean EM TAP NTGA REM SEM

CIFAR-
10

VGG-16 87.51 86.48 86.27 86.65 65.23 44.37
RN-18 89.51 88.62 88.02 88.96 48.16 31.92
RN-50 89.79 89.28 88.45 88.79 40.65 28.89

DN-121 83.27 82.44 81.72 80.73 81.48 77.85
WRN-34-10 91.21 90.05 90.23 89.95 48.39 31.42

CIFAR-
100

VGG-16 57.14 56.94 55.24 55.81 48.85 57.11
RN-18 63.43 64.17 62.39 62.44 27.10 20.25
RN-50 66.93 66.43 64.44 64.91 26.03 20.99

DN-121 53.73 53.52 52.93 52.40 54.48 55.36
WRN-34-10 68.64 68.27 65.80 67.41 25.04 18.90

Table 3: Test accuracy (%) of different types of models on
CIFAR-10/100 datasets under ρa = 4/255 and ρu = 8/255.

settings (ρa = 0). However, with an increase in the adversar-
ial training perturbation radius, the test accuracy of SC also
rises significantly. Likewise, the other two baselines, EM and
TAP, experience a significant increase in test accuracy with
intensified adversarial training. In contrast, REM and SEM,
designed for better robustness against adversarial perturba-
tions, do not significantly increase test accuracy even with
larger radii. When compared to REM, the results indicate
that our SEM consistently outperforms this baseline in all
adversarial training settings (ρa ∈ [ 1

255 ,
4

255 ]), demonstrat-
ing the superior effectiveness of SEM in generating robust
unlearnable examples.
Different Architectures. To investigate the transferability of
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Dataset Filter Clean EM TAP NTGA REM SEM

CIFAR-
10

Mean 84.25 34.87 82.53 40.26 28.60 23.93
Median 87.04 31.86 85.10 30.87 27.36 22.00

Gaussian 86.78 29.71 85.44 41.85 28.70 21.77

CIFAR-
100

Mean 52.42 53.07 51.30 26.49 13.89 8.81
Median 57.69 56.35 55.22 18.14 14.08 9.02

Gaussian 56.64 56.49 55.19 29.05 13.74 8.10

Table 4: Test accuracy (%) of different types of models
trained on CIFAR-10 and CIFAR-100 that are processed by
different low-pass filters. The defensive perturbation radius
ρu of every defensive noise is set as 16/255.

different noises across neural network architectures, we chose
ResNet-18 as the source model. We then examined the impact
of its generated noise on various target models, including
VGG-16, ResNet-50, DenseNet-121, and Wide ResNet-34-
10. All transferability experiments were conducted using
CIFAR-10 and CIFAR-100 datasets, as shown in Tab. 3. The
results show that unlearnable examples generated by the
SEM method are generally more effective across architecture
settings than REM, indicating higher transferability.

Sensitivity Analysis
Resistance to Low-Pass Filtering. We next analyze how
various defensive noises withstand low-pass filtering. This
approach is motivated by the possibility that filtering the im-
age could eliminate the added defensive noise. As per Fu et al.
(2022), we employed three low-pass filters: Mean, Median,
and Gaussian (Young and Van Vliet 1995), each with a 3× 3
window size. We set the adversarial training perturbation
radius to 2/255. The results in Tab. 4 show that the test ac-
curacy of the models trained on the protected data increases
after applying low-pass filters, implying that such filtering
partially degrades the added defensive noise. Nevertheless,
SEM outperforms under both scenarios, with and without
applying low-pass filtering in adversarial training.
Resistance to Early Stopping and Partial Poisoning. One
might wonder how the early stopping technique influences
the protection performance of our unlearnable examples. To
address this, we conducted experiments on CIFAR-10 and
CIFAR-100, varying the early-stopping patience steps. We
designated 10% of the unlearnable examples for the valida-
tion set, with early-stopping patience Ses set to range from
3k to 20k steps. For examining partial poisoning, we varied
the proportion of clean images in the validation set from 10%
to 70%. Results are detailed in Tab. 5. Observations from
full poisoning (clean ratio equal to 0%) show that setting Ses

to 3000 increases test accuracy by 4%, implying minimal
impact of early stopping on unlearnable examples. However,
this effect is not substantial and necessitates searching the
early-stopping patience hyper-parameter for mitigation. In-
creasing the clean ratio in the validation set further restores
test accuracy to 57.48%, yet it remains significantly below
the original level of 89.51%. These results underscore the
resistance of our unlearnable examples to early stopping.

Before Clean Ratio (%) Ses = 3000 25000 10000 20000

31.92

0 35.80 29.34 31.30 30.87
10 31.89 47.22 32.02 32.02
30 31.89 32.02 31.67 32.02
50 57.48 47.22 57.48 57.48
70 57.48 47.22 57.48 31.89

Table 5: Effect of early stop with different patience steps Ses.
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Figure 5: Effect of noise training steps and sampling step size
on the testing accuracy of the trained model.

Effect of Training Step M and Sampling Size J . We eval-
uated the impact of the training step M and sampling size
J during noise generation, considering M values from 500
to 5000 and J ranging from 1 to 6. Results, as illustrated in
Fig. 5, indicate that an increase in training steps enhances
performance. This improvement could be attributed to the
noise generator learning more robust noise patterns over ex-
tended training steps. Regarding sampling size J , an increase
in J was found to reduce the testing accuracy by nearly 8%,
underscoring its significance in data protection.
Effect of Random Perturbation Radius. The radius of
random perturbation represents a crucial hyper-parameter
in our approach. To explore its correlation with protection
performance, we conducted experiments on CIFAR-10 and
CIFAR-100 using various radii of random perturbation and
adversarial training. Results are detailed in Tab. 6. The results
indicate that the best data protection performance is gener-
ally achieved when the random perturbation radius ρr is set
equal to the adversarial training radius ρa, across varying
adversarial training radii. Nevertheless, when these two radii
are mismatched, the protection performance drops slightly,
indicating the importance of knowledge about adversarial
training radius for protection effectiveness.

Ablation Study We conducted an ablation study to un-
derstand the impact of various components in our method,
specifically focusing on the adversarial noise used to update

Adv. Train. ρa ρr = 0 1/255 2/255 3/255 4/255

0 15.87 11.41 10.42 16.83 10.52
1/255 16.59 12.11 15.80 17.92 12.16
2/255 64.24 13.44 11.49 19.13 21.68
3/255 89.18 28.6 21.88 20.91 23.43
4/255 89.30 67.52 35.63 62.09 31.92

Table 6: Effect of different radii of random perturbation.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

3788



δu∗ θ∗ Test Acc. (%) Acc. Increase (%)
δr δa δr δa

√ √
30.03 -

√
37.91 +7.88√ √
46.72 +16.69√
89.22 +59.19
89.15 +59.13

Table 7: Ablation study of the proposed method.

Methods ρa = 0 1/255 2/255 3/255 4/255

Clean Data 68.89 63.33 61.11 53.33 50.56
EM 8.89 18.06 18.61 16.39 19.72
TAP 9.72 20.74 26.48 32.22 36.39
SC 66.11 66.67 64.72 57.5 59.44

REM 10.89 7.89 11.67 12.22 11.48
SEM 10.56 7.04 9.44 10.28 11.11

Table 8: Evaluation on a real-world face recognition dataset.

the noise generator and the random noise used to update the
defensive noise. Results, as shown in Tab. 7, reveal that the ad-
versarial noise δa, used in updating the noise generator θ, is a
critical factor for protection performance. Its removal results
in an approximate 60% decrease in accuracy. Additionally,
the elimination of random perturbation in updating the defen-
sive noise leads to a reduction in protection performance by
approximately 8%. Lastly, using purely adversarial noise to
update the defensive noise results in deteriorated protection,
indicating the adverse effects of these perturbations.

Case study: Face Recognition
To evaluate our proposed method’s effectiveness on real-
world face recognition, we conducted experiments using the
Facescrub dataset (Ng and Winkler 2014). Specifically, we
randomly selected ten classes, with each class comprising
120 images. We allocated 15% of the data as the testing
set, resulting in 1020 images for training and 180 for test-
ing. Results presented in Tab. 8 indicate that robust methods,
namely REM and SEM, outperform other non-robust meth-
ods in terms of data protection under adversarial training.
In particular, the test accuracy of models trained on SEM-
protected data fell to around 9%, across various adversarial
training radii, marking a significant drop in accuracy by ap-
proximately 40% to 50%. Additionally, we observed from
Fig. 6 that robust methods result in more vividly protected
images. For instance, SC creates mosaic-like images, while
EM and TAP substantially reduce luminance, impairing fa-
cial recognition. Conversely, REM and SEM perturbations
concentrate on edges, maintaining visual similarity.

Related Works
Data Poisoning. Data poisoning attacks aim to manipulate
the performance of a machine learning model on clean ex-
amples by modifying the training examples. Recent research
has shown the vulnerability of both DNNs (Muñoz-González

Clean EM TAP SC REM SEM

Figure 6: Visualization of different types of defensive noise
and crafted unlearnable examples on the Facescrub subset.

et al. 2017) and classical machine learning methods, such
as SVM (Biggio, Nelson, and Laskov 2012), to poisoning
attacks (Shafahi et al. 2018). Recent advancements use gra-
dient matching and meta-learning techniques to address the
noise crafting problem (Geiping et al. 2020). Backdoor at-
tacks are kinds of data poisoning that try to inject falsely
labeled training samples with a concealed trigger (Gu, Dolan-
Gavitt, and Garg 2017). Unlearnable examples, regarded as
a clean-label and triggerless backdoor approach (Gan et al.
2022; Souri et al. 2022; Zeng et al. 2023; Xian et al. 2023;
Li et al. 2022; Liu, Yang, and Mirzasoleiman 2022), perturb
features to impair the model’s generalization ability.
Unlearnable Example. Huang et al. (2020) developed the
concept of “unlearnable examples” by introducing error-
minimizing noise, which led deep learning models to learn
irrelevant features and impaired their generalization ability.
Unlearnable examples have been adapted for data protection
in various domains and applications (Liu et al. 2023c,d,b,a;
Sun et al. 2022b; Zhang et al. 2023a; Li et al. 2023; He, Zha,
and Katabi 2022; Zhao and Lao 2022; Salman et al. 2023;
Guo et al. 2023; Ren et al. 2022; He et al. 2023; Chen et al.
2023; Wang, Le, and Lee 2023; Qin et al. 2023). Despite
its effectiveness, such conferred unlearnability is found frag-
ile to adversarial training and data transformations (Athalye
et al. 2018). Tao et al. (2021) show that applying adversarial
training with a suitable radius can counteract the added noise,
thereby restoring model performance and making the data
“learnable” again. Addressing this, Fu et al. (2022) proposed
a min-min-max optimization approach to create more robust
unlearnable examples by learning a noise generator with ad-
versarial perturbations. However, REM faces challenges with
inefficiency and suboptimal performance, mainly due to the
instability of defensive noise.

Conclusion
In this work, we introduced Stable Error-Minimizing (SEM),
a novel method for generating unlearnable examples that
achieve better protection performance and generation effi-
ciency under adversarial training. Our research uncovers an
intriguing phenomenon: the effectiveness of unlearnable ex-
amples in protecting data is predominantly derived from the
robustness of the surrogate model. Motivated by this, SEM
employs a surrogate model to create robust error-minimizing
noise against random perturbations. Extensive experimental
evaluations confirm that SEM achieves SoTA performance.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

3789



Acknowledgements
This work was partially supported by the National Science
Foundation under Grant CRII-2246067 and CCF-2319242,
conducted at Samsung Research America and Lehigh Univer-
sity. We thank Jeff Heflin and Maryann DiEdwardo for their
valuable early-stage feedback on the manuscript, Shaopeng
Fu for his insights regarding the REM codebase, and Weiran
Huang for engaging discussions and unique perspectives. We
also thank AAAI reviewers for their constructive suggestions.

References
Athalye, A.; Engstrom, L.; Ilyas, A.; and Kwok, K. 2018.
Synthesizing robust adversarial examples. In International
conference on machine learning, 284–293. PMLR.
Biggio, B.; Nelson, B.; and Laskov, P. 2012. Poisoning
attacks against support vector machines. In ICML.
Cao, Y.; Li, S.; Liu, Y.; Yan, Z.; Dai, Y.; Yu, P. S.; and Sun,
L. 2023. A comprehensive survey of ai-generated content
(aigc): A history of generative ai from gan to chatgpt. arXiv
preprint arXiv:2303.04226.
Chen, R.; Jin, H.; Chen, J.; and Sun, L. 2023. EditShield:
Protecting Unauthorized Image Editing by Instruction-guided
Diffusion Models. arXiv preprint arXiv:2311.12066.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding.
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; et al. 2020. An Image is Worth 16x16
Words: Transformers for Image Recognition at Scale. In
International Conference on Learning Representations.
Edwards, B. 2022. Artist finds private medical record photos
in popular AI training data set.
Feng, J.; Cai, Q.-Z.; and Zhou, Z.-H. 2019. Learning to
confuse: generating training time adversarial data with auto-
encoder. In NeurIPS.
Fowl, L.; Chiang, P.-y.; Goldblum, M.; Geiping, J.; Bansal,
A.; Czaja, W.; and Goldstein, T. 2021a. Preventing unautho-
rized use of proprietary data: Poisoning for secure dataset
release. arXiv preprint arXiv:2103.02683.
Fowl, L.; Goldblum, M.; Chiang, P.-y.; Geiping, J.; Czaja,
W.; and Goldstein, T. 2021b. Adversarial Examples Make
Strong Poisons. In NeurIPS.
Fu, S.; He, F.; Liu, Y.; Shen, L.; and Tao, D. 2022. Robust
Unlearnable Examples: Protecting Data Privacy Against Ad-
versarial Learning. In International Conference on Learning
Representations.
Gan, L.; Li, J.; Zhang, T.; Li, X.; Meng, Y.; Wu, F.; Yang,
Y.; Guo, S.; and Fan, C. 2022. Triggerless Backdoor Attack
for NLP Tasks with Clean Labels. In Proceedings of the
2022 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language
Technologies, 2942–2952.
Geiping, J.; Fowl, L. H.; Huang, W. R.; Czaja, W.; Taylor,
G.; Moeller, M.; and Goldstein, T. 2020. Witches’ Brew:

Industrial Scale Data Poisoning via Gradient Matching. In
International Conference on Learning Representations.
Gu, T.; Dolan-Gavitt, B.; and Garg, S. 2017. Badnets: Identi-
fying vulnerabilities in the machine learning model supply
chain. arXiv preprint arXiv:1708.06733.
Guo, J.; Li, Y.; Wang, L.; Xia, S.-T.; Huang, H.; Liu, C.;
and Li, B. 2023. Domain Watermark: Effective and Harm-
less Dataset Copyright Protection is Closed at Hand. In
Thirty-seventh Conference on Neural Information Processing
Systems.
He, H.; Zha, K.; and Katabi, D. 2022. Indiscriminate Poison-
ing Attacks on Unsupervised Contrastive Learning. In The
Eleventh International Conference on Learning Representa-
tions.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In CVPR.
He, P.; Xu, H.; Ren, J.; Cui, Y.; Liu, H.; Aggarwal, C. C.;
and Tang, J. 2023. Sharpness-Aware Data Poisoning Attack.
arXiv preprint arXiv:2305.14851.
Hill, K.; and Krolik, A. 2019. How photos of your kids are
powering surveillance technology. The New York Times.
Huang, G.; Liu, Z.; Van Der Maaten, L.; and Weinberger,
K. Q. 2017. Densely connected convolutional networks. In
CVPR.
Huang, H.; Ma, X.; Erfani, S. M.; Bailey, J.; and Wang, Y.
2020. Unlearnable Examples: Making Personal Data Unex-
ploitable. In International Conference on Learning Repre-
sentations.
Huang, H.; Wang, Y.; Erfani, S. M.; Gu, Q.; Bailey, J.; and
Ma, X. 2021. Exploring Architectural Ingredients of Adver-
sarially Robust Deep Neural Networks. In NeurIPS.
Kipf, T. N.; and Welling, M. 2016. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907.
Krizhevsky, A.; et al. 2009. Learning multiple layers of
features from tiny images.
Li, Y.; Bai, Y.; Jiang, Y.; Yang, Y.; Xia, S.-T.; and Li, B.
2022. Untargeted backdoor watermark: Towards harmless
and stealthy dataset copyright protection. Advances in Neural
Information Processing Systems, 35: 13238–13250.
Li, Z.; Yu, N.; Salem, A.; Backes, M.; Fritz, M.; and Zhang,
Y. 2023. {UnGANable}: Defending Against {GAN-based}
Face Manipulation. In 32nd USENIX Security Symposium
(USENIX Security 23), 7213–7230.
Liu, T. Y.; Yang, Y.; and Mirzasoleiman, B. 2022. Friendly
noise against adversarial noise: a powerful defense against
data poisoning attack. Advances in Neural Information Pro-
cessing Systems, 35: 11947–11959.
Liu, Y.; Fan, C.; Chen, X.; Zhou, P.; and Sun, L. 2023a.
GraphCloak: Safeguarding Task-specific Knowledge within
Graph-structured Data from Unauthorized Exploitation.
arXiv preprint arXiv:2310.07100.
Liu, Y.; Fan, C.; Dai, Y.; Chen, X.; Zhou, P.; and Sun,
L. 2023b. Toward Robust Imperceptible Perturbation
against Unauthorized Text-to-image Diffusion-based Syn-
thesis. arXiv preprint arXiv:2311.13127.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

3790



Liu, Y.; Fan, C.; Zhou, P.; and Sun, L. 2023c. Unlearnable
Graph: Protecting Graphs from Unauthorized Exploitation.
arXiv preprint arXiv:2303.02568.
Liu, Y.; Ye, H.; Zhang, K.; and Sun, L. 2023d. Securing
Biomedical Images from Unauthorized Training with Anti-
Learning Perturbation. arXiv preprint arXiv:2303.02559.
Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and Vladu,
A. 2018. Towards Deep Learning Models Resistant to Adver-
sarial Attacks. In ICLR.
Muñoz-González, L.; Biggio, B.; Demontis, A.; Paudice, A.;
Wongrassamee, V.; Lupu, E. C.; and Roli, F. 2017. Towards
poisoning of deep learning algorithms with back-gradient
optimization. In ACM Workshop on Artificial Intelligence
and Security.
Ng, H.-W.; and Winkler, S. 2014. A data-driven approach
to cleaning large face datasets. In 2014 IEEE International
Conference on Image Processing (ICIP), 343–347.
Qin, T.; Gao, X.; Zhao, J.; Ye, K.; and Xu, C.-Z. 2023. AP-
Bench: A unified benchmark for availability poisoning at-
tacks and defenses. arXiv preprint arXiv:2308.03258.
Ren, J.; Xu, H.; Wan, Y.; Ma, X.; Sun, L.; and Tang, J.
2022. Transferable unlearnable examples. arXiv preprint
arXiv:2210.10114.
Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.;
Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.;
et al. 2015. Imagenet large scale visual recognition challenge.
International journal of computer vision, 115(3): 211–252.
Salman, H.; Khaddaj, A.; Leclerc, G.; Ilyas, A.; and Madry,
A. 2023. Raising the cost of malicious ai-powered image
editing. arXiv preprint arXiv:2302.06588.
Schuhmann, C.; Vencu, R.; Beaumont, R.; Kaczmarczyk,
R.; Mullis, C.; Katta, A.; Coombes, T.; Jitsev, J.; and
Komatsuzaki, A. 2021. Laion-400m: Open dataset of
clip-filtered 400 million image-text pairs. arXiv preprint
arXiv:2111.02114.
Shafahi, A.; Huang, W. R.; Najibi, M.; Suciu, O.; Studer,
C.; Dumitras, T.; and Goldstein, T. 2018. Poison frogs!
targeted clean-label poisoning attacks on neural networks. In
NeurIPS.
Simonyan, K.; and Zisserman, A. 2015. Very deep convolu-
tional networks for large-scale image recognition. In ICLR.
Souri, H.; Fowl, L.; Chellappa, R.; Goldblum, M.; and Gold-
stein, T. 2022. Sleeper agent: Scalable hidden trigger back-
doors for neural networks trained from scratch. Advances in
Neural Information Processing Systems, 35: 19165–19178.
Sun, L.; Dou, Y.; Yang, C.; Zhang, K.; Wang, J.; Philip, S. Y.;
He, L.; and Li, B. 2022a. Adversarial attack and defense on
graph data: A survey. IEEE Transactions on Knowledge and
Data Engineering.
Sun, L.; Huang, Y.; Wang, H.; Wu, S.; Zhang, Q.; Gao, C.;
Huang, Y.; Lyu, W.; Zhang, Y.; Li, X.; et al. 2024. TrustLLM:
Trustworthiness in Large Language Models. arXiv preprint
arXiv:2401.05561.
Sun, Z.; Du, X.; Song, F.; Ni, M.; and Li, L. 2022b. Coprotec-
tor: Protect open-source code against unauthorized training

usage with data poisoning. In Proceedings of the ACM Web
Conference 2022, 652–660.
Tao, L.; Feng, L.; Yi, J.; Huang, S.-J.; and Chen, S. 2021.
Better safe than sorry: Preventing delusive adversaries with
adversarial training. Advances in Neural Information Pro-
cessing Systems, 34: 16209–16225.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. Attention
is all you need. Advances in neural information processing
systems, 30.
Wang, X.; Girshick, R.; Gupta, A.; and He, K. 2018. Non-
local neural networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 7794–7803.
Wang, Z.; Le, T.; and Lee, D. 2023. UPTON: Preventing
Authorship Leakage from Public Text Release via Data Poi-
soning. In Findings of the Association for Computational
Linguistics: EMNLP 2023, 11952–11965.
Xian, X.; Wang, G.; Srinivasa, J.; Kundu, A.; Bi, X.; Hong,
M.; and Ding, J. 2023. Understanding Backdoor Attacks
through the Adaptability Hypothesis. In Proc. International
Conference on Machine Learning.
Young, I. T.; and Van Vliet, L. J. 1995. Recursive imple-
mentation of the Gaussian filter. Signal processing, 44(2):
139–151.
Yu, D.; Zhang, H.; Chen, W.; Yin, J.; and Liu, T.-Y. 2022.
Availability Attacks Create Shortcuts. arXiv:2111.00898.
Yuan, C.-H.; and Wu, S.-H. 2021. Neural Tangent General-
ization Attacks. In ICML.
Zagoruyko, S.; and Komodakis, N. 2016. Wide Residual
Networks. In Procedings of the British Machine Vision Con-
ference 2016. British Machine Vision Association.
Zeng, Y.; Pan, M.; Just, H. A.; Lyu, L.; Qiu, M.; and Jia,
R. 2023. Narcissus: A practical clean-label backdoor attack
with limited information. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Se-
curity, 771–785.
Zhang, J.; Ma, X.; Yi, Q.; Sang, J.; Jiang, Y.-G.; Wang, Y.; and
Xu, C. 2023a. Unlearnable clusters: Towards label-agnostic
unlearnable examples. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
3984–3993.
Zhang, K.; Yu, J.; Yan, Z.; Liu, Y.; Adhikarla, E.; Fu, S.; Chen,
X.; Chen, C.; Zhou, Y.; Li, X.; et al. 2023b. BiomedGPT:
A Unified and Generalist Biomedical Generative Pre-trained
Transformer for Vision, Language, and Multimodal Tasks.
arXiv preprint arXiv:2305.17100.
Zhao, B.; and Lao, Y. 2022. CLPA: Clean-label poisoning
availability attacks using generative adversarial nets. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 36, 9162–9170.
Zhou, C.; Li, Q.; Li, C.; Yu, J.; Liu, Y.; Wang, G.; Zhang,
K.; Ji, C.; Yan, Q.; He, L.; et al. 2023. A comprehensive
survey on pretrained foundation models: A history from bert
to chatgpt. arXiv preprint arXiv:2302.09419.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

3791


