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Abstract

Audio-visual navigation of an agent towards locating an au-
dio goal is a challenging task especially when the audio is
sporadic or the environment is noisy. In this paper, we present
CAVEN, a Conversation-based Audio-Visual Embodied Nav-
igation framework in which the agent may interact with a
human/oracle for solving the task of navigating to an audio
goal. Specifically, CAVEN is modeled as a budget-aware par-
tially observable semi-Markov decision process that implic-
itly learns the uncertainty in the audio-based navigation pol-
icy to decide when and how the agent may interact with the
oracle. Our CAVEN agent can engage in fully-bidirectional
natural language conversations by producing relevant ques-
tions and interpret free-form, potentially noisy responses
from the oracle based on the audio-visual context. To enable
such a capability, CAVEN is equipped with: i) a trajectory
forecasting network that is grounded in audio-visual cues to
produce a potential trajectory to the estimated goal, and (ii)
a natural language based question generation and reasoning
network to pose an interactive question to the oracle or in-
terpret the oracle’s response to produce navigation instruc-
tions. To train the interactive modules, we present a large
scale dataset: AVN-Instruct, based on the Landmark-RxR
dataset. To substantiate the usefulness of conversations, we
present experiments on the benchmark audio-goal task using
the SoundSpaces simulator under various noisy settings. Our
results reveal that our fully-conversational approach leads to
nearly an order-of-magnitude improvement in success rate,
especially in localizing new sound sources and against meth-
ods that use only uni-directional interaction.

Introduction
The advent of powerful deep neural networks and sophisti-
cated language models have led to significant advancements
in building conversational agents that can collaborate with
humans in solving challenging reasoning tasks (Peng et al.
2023; Ram et al. 2018; Chowdhery et al. 2022; Gupta and
Kembhavi 2023; You et al. 2022). While, much effort has
been expended on tasks that are predominantly in the lan-
guage domain, such progress is yet to percolate into real
world problems that need complex reasoning over multiple
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Figure 1: An illustrative CAVEN interaction: The agent
starts at 1 guided by the audio event at 5 . At 2 , the agent
decides to seek help from the human/oracle H (e.g., because
the audio stopped). The oracle then provides a short natu-
ral language instruction for the agent to follow. At locations
3 and 4 , the agent decides to ask questions to the oracle

using the forecasted trajectories (orange) and gets feedback,
finally reaching the audio goal at 5 .

modalities of perception (Li et al. 2022; Liu et al. 2023). One
such task that we exclusively explore in this paper is that of
audio-visual navigation of an embodied robotic agent where
the goal is to localize a sound producing source in a realis-
tic, complex, and never-seen before environment when the
sound is noisy, intermittent, sporadic, and mixed with other
sounds — a situation even humans may find hard to tackle.
As can be easily imagined, the applications needing such an
audio goal capability are enormous; for example, at one end,
we may think of a robotic disaster and emergency response
agent that may need to move through huge rubble to local-
ize victims who may cry for help and on the other, one may
consider a home robotic vacuum repurposed to be vigilant
to strange sounds.

While the task of navigating to the audio goal, has wit-
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nessed some attention in the recent years (Chen et al., 2021),
we consider a variant of this task, dubbed audio-visual-
language embodied navigation (AVLEN) (Paul et al., 2022),
where the agent has the ability to interact with a human/ora-
cle when it is unable to solve the task by itself and potentially
query an oracle for task-specific guidance. However, the in-
teractive abilities of the agent in AVLEN is limited in sev-
eral aspects. In particular, the AVLEN agent could ask only a
fixed question (e.g., “Help me!”), while the (human) oracle
could provide a natural language response for guiding the
agent to the goal. This technique of querying, while useful
to some extent, does not cover the full scope of bi-directional
interactions. As we know, back and forth interaction in natu-
ral language simulates a human-like conversation, allowing
for better expressivity towards sharing ideas effectively. For
instance, let’s assume for a moment that the agent is a 5 year
old child who needs help in finding a sounding toy at a secret
location. While the parents (oracle) could suggest: “look in-
side the wooden trunk” (as in Paul et al., 2022), the child
might not know what a ‘trunk’ is. Instead, isn’t it better if
the child had asked: ”Should I look next to the large brown
box?” and the parents say: ”yes”? or suggest ”No, look in-
side it”? It is not only easy to respond with a ‘yes’/‘no’
answer (if possible), but this also avoids the need to know
what a ‘trunk’ is (and ask more questions or make wrong
inferences). Engaging in conversations to resolve such am-
biguities is of importance in several time-critical real-world
circumstances, e.g., the sound of wheezing in an elderly care
or a thud in a medical facility.

Our goal in this paper is to build a fully-conversational
robotic agent, which we call CAVEN – Conversational
Audio-Visual Embodied Navigation, with the capabilities
as described above, that can engage in bidirectional inter-
actions with an oracle in natural language towards solving
the audio goal task in a complex realistic visual environ-
ment. Specifically, CAVEN can either use the audio-visual
cues for its navigation (as in prior works (Chen et al. 2020,
2021a; Gan et al. 2020)) or in case the agent is uncertain of
which navigation step to take, it can interact with the ora-
cle in two distinct modes: (i) a question mode, in which the
agent forecasts a plausible trajectory based on audio-goal
belief, using which it frames a natural language question to
be posed to the oracle, and subsequently interpreting the or-
acle’s response to the question, and (ii) a query mode, where
the agent is unsure of what question to even phrase (e.g.,
when there are no useful cues in the scene) or completely
uncertain about its current situation, and therefore directly
seeks the oracle’s guidance. Figure 1 illustrates a typical
conversation between a human and our agent.

There are several challenges to tackle when designing the
learning and inference model for CAVEN. Specifically, (i)
when should the agent use language? (ii) what type of lan-
guage interaction should the agent use (question or query)?
(iii) how should the agent phrase the question? (iv) how to
make the oracle understand the agent’s question?, (v) how
should the oracle respond to the agent’s question? and (vi)
how frequently should the agent be allowed to ask questions
(budget)? Note that, some of these challenges are partially
addressed in prior works (Kesiraju et al. 2020; Siddhant and

Lipton 2018; Xiao and Wang 2019) such as (v) and (vi).
However in CAVEN, we tackle all these challenges within
a single framework, by proposing a novel budget-aware par-
tially observable semi-Markov decision process (POSMDP),
using a reinforcement learning framework by introducing
novel learning rewards.

To empirically assess the performance of CAVEN, we
conduct extensive experiments on the semantic audio-goal
navigation task (Chen et al. 2021b) in the SoundSpaces sim-
ulator, under various challenging scenarios, each having in-
termittent sounds emanating from a source. One key diffi-
culty to train the CAVEN model is the absence of any large
scale dataset that includes language instructions in an audio-
visual navigation setting. To this end, we introduce AVN-
Instruct – a novel audio-visual-language navigation sub-
instruction dataset with 41.5k pairs of audio-goal, trajectory,
and language instructions. Our experimental results using
the above setup clearly bring out the benefits of enabling
the agent to converse with the oracle, demonstrating a solid
gain of nearly 12% over competing approaches on the suc-
cess rate.

We summarize below the core contributions of our work:
• We present CAVEN, a multimodal navigation agent that

is, for the first time, capable of fully-bidirectional interac-
tion with an oracle in free-form natural language, thereby
facilitating easy communication.

• We introduce a novel question module for bi-directional
interaction with the oracle consisting of: (i) a trajectory
forecasting module grounded on both visual scenes and
audio cues, (ii) a question generation module, and (iii) a
question decoder (FollowerNet, on the oracle).

• We design a novel budget-aware RL policy, which inte-
grates the question module as an additional navigation
policy to existing ones.

• We propose a novel audio-visual-language navigation sub-
instruction dataset, AVN-Instruct to pre-train embodied
navigation models along with new metrics to evaluate
language-guided navigation tasks, dubbed SNO and SNI.

• Our experiments demonstrate state-of-the-art perfor-
mances against related prior approaches by an order-of-
magnitude increase in success rate.

Related Works
Audio-Visual Embodied Navigation Tasks: Recent years
have seen several works in Embodied AI that consider the
audio-goal navigation task (Chen et al. 2020, 2021a; Gan
et al. 2020; Yu et al. 2022). Generally, this task assumes a
continuous sound. However, there are derivatives that look at
situations when the audio is sporadic and depends on the cat-
egory of the sounding object, dubbed semantic audio-goal
navigation (Chen et al. 2021b). Both of these tasks are fa-
cilitated by the SoundSpaces simulator (Chen et al. 2020)
that can render realistic audio in 3D visual environments.
While the aforementioned methods only consider audio and
visual modalities, (Paul et al., 2022) proposes AVLEN that
utilizes language feedback from the oracle. However, there
is no provision of posing questions, which burdens the ora-
cle with the task of chalking out a path to the goal whenever
help is sought. Contrary to these approaches, our proposed
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CAVEN utilizes bi-directional interaction with the oracle be-
sides audio-visual cues, a setting that is more practical.
Vision-and-Language Navigation (VLN): The task in
VLN is to use (or execute) natural language instructions
to reach a target location. Akin to (Gu et al. 2022), we
group VLN approaches in three categories: (i) instruction-at-
start, (ii) oracle guidance, and (iii) bi-directional interaction.
Instruction-at-start is a well-explored research area (2018;
2021; 2019; 2021; 2020; 2019a; 2019b; 2020; 2021c; 2021;
2021) in which the agent is given a language instruction at its
start describing the intended path. To tackle the task, Wang
et al. (Wang et al. 2019) uses cross-modal attention to focus
on the relevant parts of both vision and language modalities,
while others (Fried et al. 2018; Tan et al. 2019), used aug-
mented instruction-trajectory pairs to improve the VLN per-
formance. Recent approaches have begun using transformer-
based architectures, such as BERT (Devlin et al. 2018) for
VLN (2021; 2020). In the oracle guidance setting, an agent
may receive feedback (ground truth actions (Chi et al. 2020),
encoded ground truth action (Nguyen et al. 2019a), or a fixed
set of natural language instructions (Nguyen et al. 2019b))
from an oracle during navigation. A major challenge in these
works, however, is to identify when to query an oracle for
feedback. In the bi-directional interaction setting, an agent
can use natural language to seek navigation help (2021;
2020; 2022; 2022). (Thomason et al. 2020) introduced the
CVDN dataset with human-human dialogue for navigation.
However, these works allow the agent and oracle to com-
municate only at certain locations of the environment, mak-
ing it less practical to real world scenarios. Self-Motivated
Communication Agent (SCoA) (Zhu et al. 2021) permits the
agent to only ask templated questions filled in with labels of
detected scene objects, grossly limiting the nature of inter-
action between the agent and the oracle. Contrary to these
methods, we empower our CAVEN agent with: (i) the abil-
ity to seek occasional human/oracle help at any location and
(ii) competence for natural language-based scene grounded
conversations with an oracle for effective navigation. Fur-
ther, our agent is also robust to noisy feedback from oracle.
LLM-based Embodied Navigation. The spark of recent
advancements in large language models (LLMs) (2023;
2023; 2023) has brought along new opportunities in improv-
ing multi-modal robot navigation. In the context of Vision
and Language Navigation, early works like LM-Nav (Shah
et al. 2022) analyzed landmarks in the instruction to be used
for visual navigation. In NavGPT, (Zhou et al. 2023) ex-
plored the possibility of integrating ChatGPT (Ouyang et al.
2022) with a vision foundation model: BLIP-2 (Li et al.
2023) into its prompting setup to perform multi-modal rea-
soning to navigate in a zero-shot manner. While, these works
achieve decent performances on vision-language navigation
task, they do not incorporate audio as part of the inputs and
are thus complementary to our efforts.

Proposed Method
Task Setup: We assume the standard embodied audio goal
problem setup (Chen et al. 2020), where the agent is
equipped with an RGBD camera and a binaural microphone
and at any time step can take one of four navigation actions:

Figure 2: Architecture of our CAVEN model. We show the
reinforcement learning policies, namely a selector policy πs

and three option policies πg, πl, and πques.

{stop,move forward, turn right, turn left} in a densely-
sampled 3D grid with the goal of locating the audio source.
As in (Chen et al. 2020), we assume the sound is seman-
tically unique and is produced by a static object, however
the audio could be noisy, sporadic, or mixed up with other
environmental sounds. An audio goal navigation episode is
deemed successful if the agent calls the stop action within a
given proximity to the goal.

Beyond the standard problem setup above, CAVEN can
also seek language-based guidance from an oracle. Practi-
cally, the oracle could be a human who has higher level in-
formation about the scene, e.g., a remote operator control-
ling several such agents and intervening whenever needed,
or a home owner who is notified about the situation and
is sought to provide guidance. To incorporate the language
modality into the audio goal setup, we follow AVLEN (Paul
et al. 2022) in which the agent can query the oracle for
help and the oracle responds via a short message describing
a pathlet towards the audio goal. However, the interaction
in AVLEN is only uni-directional and the agent cannot ask
questions. Our CAVEN goes beyond this shortcoming and
can phrase a question in free-form natural language using
cues from the audio-visual context. Further, we assume the
oracle after receiving this question, will either give a “yes”
response if the oracle’s interpretation of the question in its
own state space results in actions that match its estimate of
the actions along the ground truth geodesic to the goal. Oth-
erwise, the oracle responds with a “no” followed by a short
sentence guiding the agent to the goal. Note that the oracle in
AVLEN has access to the 3D space of the full environment
and thus can provide plausible instructions for navigation,
however CAVEN has only a very restricted view of the scene
in its vicinity, thus making this task of creating a question at
the agent’s side entirely different from that of the oracle’s.
In our new problem setup, we also assume that the number
of times an agent can receive direct navigation instructions
from the oracle (as a result of a wrong question or when it
directly queries) is limited by a budget so that the agent only
seeks help when necessary.

CAVEN Learning and Inference Framework
As we envisage CAVEN to incorporate various modules
with diverse temporal spans, it is natural to consider a par-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

3767



tially observable semi-Markov decision process (POSMDP)
as our control module (Le et al. 2018). A POSMDP is
essentially a partially observable Markov decision process
(POMDP) with macro actions and is characterized by the
tuple (S,A, T, R,Ω,Z, γ) where S , A, T , R, and γ are the
state space, action space, transition function, reward func-
tion, and discount factor, respectively, while Ω and Z are
the observation space and observation model. In a partially
observable setup, the agent maintains a belief distribution
b over S , which is used to compute the expected reward.
While in a POMDP setup, the agent maintains a policy
π : R|S| × A → [0, 1] that maximizes the expected re-
ward, in POSMDP the agent maintains multiple low level
‘options’ as temporal abstractions, denoted Ξ, and a high
level selector policy πs to select the options from Ξ. An op-
tion ξ ∈ Ξ is defined by the triplet (Sξ, πξ, βξ), where Sξ is
the set of valid states, πξ is the policy, βξ is the termination
condition. In our setup, we disentangle agents’ interactive
audio goal navigation process into three low level temporal
abstractions (i.e., options): i) audio-visual navigation ξg , ii)
instruction-guided navigation ξl, iii) bi-directional question-
answer navigation ξques. We use πg , πℓ, and πques to denote
the respective policies of ξg , ξl, and ξques and R′

g , R′
l, and

R′
ques as corresponding immediate rewards. In our case, in-

stead of using the termination condition for each option, we
allow the audio-visual navigation option ξg to take a single
step, while the interaction-based options (ξl and ξques) are
allowed a fixed span of ν steps (unless stop action is exe-
cuted by these options). These options are assumed valid in
any state of the environment, i.e., Sξg ,Sξl ,Sξques ∈ S .

Although the agent always has access to three option poli-
cies, it should maintain its autonomy and should only en-
gage in a limited number of language interactions to mit-
igate its uncertainty. Further, in our setup, we have differ-
ent levels of engagement of the oracle with the agent for
varied language interactions (e.g., bi-directional conversa-
tions with question and answer, querying for language in-
structions) and a system should favor asking correct ques-
tions based on its audio-visual cues over relying on ora-
cle instructions to reduce the oracle’s effort. To consider
all of these scenarios, we formulate option policies with
dynamically adjusted constraints. These constraints are re-
alized by penalties associated with the reward functions
of each option policy. The audio-visual navigation policy
πg : R|S|×|M | × G × |A| → [0, 1] chooses the naviga-
tion actions a ∈ A based on the audio-visual features. Here,
M is a memory module storing a fixed number of past ob-
servations, and G is a set of audio goal estimates. Since,
πg is fully autonomous and does not require oracle interac-
tion, we encourage selecting this option by defining an un-
constrained reward, R′

g(bt, at) = E
[∑∞

i=t γ
i−tR′

g(bi, ai)
]
.

The instruction guided navigation policy πℓ : R|S|×ν ×
I × G × |A| → [0, 1] navigates based on the received
natural language instruction. Here, I is the set of all natu-
ral language instructions. Since, πℓ is entirely dependent on
the oracle instruction, we penalize such interactions using
ζℓ, i.e., R′

ℓ(bt, at) = E
[∑t+ν−1

i=t γi−tR′
ℓ(bi, ai)

]
− ζℓ(t).

The bi-directional conversational navigation policy πques :

R|S|×ν ×Q×I ×G×|A| → [0, 1] navigates based on ask-
ing a question and receiving an answer. Here, Q is the set
of all natural language questions. Specifically, πques con-
sists of multiple novel components and the policy module
can be divided in three submodules based on the function-
ality: i) question generator Gq , ii) question evaluator E , and
iii) instruction generator Gi. The output of πques depends
on the interplay between these submodules. Question gen-
erator Gq is used to generate questions. Then, the question
evaluator E evaluates on the oracle side if the question is
correct. If the question is incorrect then the instruction gen-
erator Gi (which mimics the oracle) generates instructions
for navigation. Since, asking correct question results in min-
imal oracle effort in producing a response, we define a dy-
namic penalty based on the question by, R′

ques(bt, at) =

E
[∑t+ν−1

i=t γi−tR′
ques(bi, ai)

]
− ζques(t, E(q)), where q ∈

Q and E(q) is an indicator function that checks whether the
question q asked by the agent falls within the range of the
estimated navigation direction by the oracle, and no penalty
will incur when E(q) = 1.

Putting it all together, our objective to learn these policies
π = {πs, πg, πℓ, πques} is via maximizing the value func-
tion V π(b0), i.e., argmaxπ V

π(b0), where
V π(b) = πs(ξg|b)

[
R′

g +
∑

o′∈Ω Z ′(o′|b, ξg)V π(b′)
]
+

πs(ξℓ|b)
[
R′

ℓ+
∑

o′∈Ω Z(o′|b, ξℓ)V π(b′)
]

+

πs(ξques|b)
[
R′

ques +
∑

o′∈Ω Z ′(o′|b, ξques)V π(b′)
]
.

Here, b′ is the updated belief and Z ′ is the multi-time tran-
sition function (Sutton et al. 1999) given by: Z ′(o′|b, ξ) =∑∞

j=1

∑
s′
∑

s γ
jZ(s′, o′, j|s, ξ)b(s). Below, we detail the

architecture of each of these policies.
Bi-directional Question-Answer Policy Module: Bi-
directional question-answer policy consists of three compo-
nents: (i) TrajectoryNet (forecasting short navigation steps),
(ii) QuestionNet (generates natural language questions using
trajectories), and (iii) FollowerNet (interprets the question
on oracle side). These components detailed below are illus-
trated in Figure 3. They are used to enable the functionalities
within the πques policy as: i) question generator (Trajecto-
ryNet + QuestionNet), ii) question evaluator (FollowerNet),
and iii) instruction generator (QuestionNet).
(i) TrajectoryNet: In order to forecast the steps of a trajec-
tory, the agent needs to have a clear observation of its sur-
roundings. Towards this end, we allow the agent to have a
panoramic view at its current location. With the full view of
its surroundings and an estimate of the audio-goal, the agent
forecasts a sequence of l-step actions, denoted by Fa. This is
achieved by TrajectoryNet – a transformer encoder-decoder
network which takes as input a sequence of ego occupancy
maps Et of four disjoint views (separated by 90-degrees)
and the goal vector gt predicted by a binaural audio encoder,
to predict a sequence of actions Fa = ⟨fa1

, fa2
. . . , fal

⟩
(auto-regressively). The ego occupancy map is calculated by
transforming depth images into point clouds and projecting
them onto the ground plane.
(ii) QuestionNet: The action sequences defined in
SoundSpaces (Chen et al. 2020) are discrete, e.g,
move forward implies moving forward by 1m. However,
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Figure 3: Architecture of our question policy module and the control flow within it. Here, θa is oracle-interpreted agent’s
direction to take, while θ1 and θ2 represent the lower and upper bounds of oracle’s estimated direction range to the goal.

the language produced from these actions by itself may
be ambiguous (since it is a higher level construct) and
thus does not explicitly reflect the granularity of these dis-
crete actions. Further, as will be explained in the Experi-
ments section, while the trajectories are forecasted using the
SoundSpaces grid (which uses 90 degree angles for turn-
ing), the language instructions are produced using a model
trained on the LandmarkRxR dataset (He et al. 2021), that
uses panoramic images as input. To compensate for these
mismatches, we propose to first gather the view of the
agent at the end of the forecasted trajectory, which we call
gview, and the corresponding displacement vector gsub :=
[df , cos(θf ), sin(θf )], where df is the distance between the
agent’s location and the trajectory end point and θf is the
angle difference between the direction of df and the agent’s
facing direction.

Next, we capture the panorama around the agent using
12 equiangular views, as RGB images as well as the corre-
sponding occupancy maps to abstract the 3D scene geome-
try. ResNet-152 features are then extracted from these RGB
images using an ImageNet pre-trained model, while the ego-
occupancy maps are encoded using a 2D-CNN; both the fea-
tures are fused with position embeddings and passed through
a transformer encoder. In order to fuse these panoramic
views with the forecasted agent views (in the SoundSpaces
grid), we propose to use a transformer decoder, which takes
the output of the encoder and a fusion of ResNet-152 fea-
tures from gview, coupled with the position encoding of gsub,
and the embeddings of hitherto produced words in the ques-
tion (e.g., GloVe (Pennington et al. 2014)), and proceeds to
generate the next word in the question autoregressively.
(iii) FollowerNet: After the question is asked, the oracle
needs to verify if it can be correctly translated into a di-
rection that falls within the oracle’s own estimation of the
direction range to the goal. To this end, we incorporate Fol-
lowerNet at the oracle, which is assumed to have knowledge
of the agent’s location and its audio-visual context, and can
convert the question back to the oracle’s space of the view

angles. See Appendix for details on its training.
Language-based Policy Module: There can be situations
when an agent cannot produce a question to ask the oracle;
e.g., when there are no useful landmarks to base the ques-
tion. To cater to such cases, we equip the agent to directly
query the oracle for language-based instructions. When in-
voked, the agent receives instructions, similar to when a
wrong question is posed to the oracle.
Audio-Visual Navigation Policy Module: This policy is
modeled as a transformer (Vaswani et al. 2017) based
encoder-decoder as in (Chen et al. 2021b). The encoder
takes as input the current and previous observations in the
memory M , the output of which is combined with the goal
descriptor g and decoded by the decoder to produce a fea-
ture vector defining the belief state of the agent b. Next, a
single-layer actor-critic neural network learns a policy, πg ,
that transforms this belief b to predict the distribution on the
navigation actions, which the agent samples to take a step in
the environment.
Selector Policy: This module, denoted πs, decides when to
navigate using audio-visual cues (i.e., use πg), when to query
the oracle for instructions directly (i.e., use πℓ); or when
to pose a question to the oracle, (i.e., use πques). Instead
of directly using model uncertainty (as is common in prior
works (Chi et al. 2020)), we use our proposed RL framework
to train this policy in an end-to-end manner, guided by the
reward design ζ described below.

Reward Design
In this section, we detail the rewards structure to train the
various policy modules in an end-to-end manner. For the
πg policy, we use the reward scheme in (Chen et al. 2020),
i.e., the agent gets +1 for moving towards the goal and re-
ceives +10 if it calls the stop near the goal. Further, to make
the navigation efficient, we penalize by −0.01 for every step
taken. The penalty structure for the language-based policies
is designed so as to discourage the agent to seek help from
the oracle, while also limiting the number of instructions
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Heard Sound Unheard Sound
Help SR ↑ SPL ↑ SNA ↑ DTG ↓ SWS ↑ SNI ↑ SNO ↑ SR ↑ SPL ↑ SNA ↑ DTG ↓ SWS ↑ SNI ↑ SNO ↑

Rand Nav. ✗ 1.4 3.5 1.2 17.0 1.4 - - 1.4 3.5 1.2 17.0 1.4 - -
ObjGoal-RL ✗ 1.5 0.8 0.6 16.7 1.1 - - 1.5 0.8 0.6 16.7 1.1 - -
Gan et al. ✗ 29.3 23.7 23.0 11.3 14.4 - - 15.9 12.3 11.6 12.7 8.0 - -
Chen et al. ✗ 21.6 15.1 12.1 11.2 10.7 - - 18.0 13.4 12.9 12.9 6.9 - -
AV-WaN ✗ 20.9 16.8 16.2 10.3 8.3 - - 17.2 13.2 12.7 11.0 6.9 - -
SMT+Audio ✗ 22.0 16.8 16.0 12.4 8.7 - - 16.7 11.9 10.0 12.1 8.5 - -
SAVi ✗ 33.9 24.0 18.3 8.8 21.5 - - 24.8 17.2 13.2 9.9 14.7 - -
AVLEN Language 36.1 24.6 19.7 8.5 23.1 - 21.8 26.2 17.6 14.2 9.2 15.8 - 15.9
AVLEN GT-Actions 48.2 34.3 26.7 7.5 36.0 - 29.1 36.7 24.1 18.7 8.3 26.6 - 22.3
CAVEN Noisy Language 45.2 32.9 28.8 7.5 32.3 17.9 31.4 38.2 27.6 24.1 8.2 25.9 15.0 23.1
CAVEN Language 48.4 35.8 31.0 6.9 34.2 21.5 33.4 42.0 30.0 26.5 7.6 30.9 16.7 27.9
CAVEN GT-Actions 54.8 41.4 35.9 6.5 39.9 24.3 37.8 49.7 37.3 32.7 6.7 37.2 19.8 33.0

Table 1: Comparison of CAVEN performances against the state of the art under heard and unheard sound settings.

K ≥ 0 received. To this end, we propose a dynamic penalty
that increases in magnitude as more instructions are sought
from the oracle. Specifically, if ζl(k,K) denotes the penalty
received by the agent for the k-th query, then

ζl(k,K) =

{
k×(rneg+exp(−ν))

ν k < K

rneg + exp(−k) k ≥ K,
(1)

where ν characterizes the number of steps agent takes based
on the language instruction received, which is fixed in our
case, and rneg = −0.6 is a constant. Until k < K, the
penalty is linear, however for k ≥ K, the penalty approaches
rneg exponentially thereby discouraging the agent to seek
language guidance directly. Further to this penalty, we also
include an additional cost for seeking oracle guidance fre-
quently. Specifically, we include a linear penalty ζf if the
agent queries the oracle within τ steps, where ζf (j) =

rf
j

for the j-th step, if j ∈ [0, τ ] and zero otherwise (with
rf = −0.5). Thus, the total penalty for the agent querying
the oracle is given by ζl + ζf .

As the question policy πques blends between πg and πℓ,
we propose a penalty structure that integrates both these
policies. Specifically, if ζques(m) is the penalty incurred by
the agent for asking the m-th question, then

ζques(m) = ζl(m,K ′) δques(m) + ζfques
(m), (2)

where ζfques
is the penalty for asking questions too many

times (similar to ζf (k)), K ′ is the budget on the number of
wrong questions, and δques(m) = 1 if the response to the
m-th question by the oracle is ‘no’, else δques(m) ∈ [0, 1)
is a constant. In our experiments, we find that not penal-
izing the agent for correct questions leads to better results,
i.e., δques(m) = 0. Such a differential reward implicitly re-
inforces the agent to learn correct trajectories to the audio
goal, improving performance. We also couple πques with πℓ

via enforcing K + K ′ = η for an η = 3. Using this re-
ward setup, the policies are trained with the DD-PPO algo-
rithm (Wijmans et al. 2019). See the Appendix for details on
policy training.

Experiments
Datasets: The CAVEN agent is trained and evaluated on the
SoundSpaces platform (Chen et al. 2020). It uses Matter-

Port3D environment scans (Chang et al. 2017). We use the
the semantic audio-visual navigation dataset from (Chen
et al. 2020) to benchmark our experiments. The details of
the dataset are provided in the Appendix.
AVN-Instruct Dataset: For pre-training and evaluation of
the language interaction modules (i.e., QuestionNet, Fol-
lowerNet), we use the Landmark RxR dataset (He et al.
2021), which contains 150k well-annotated sub-trajectories
and their corresponding language sub-instructions grounded
on scenes captured using the MatterPort3D simulator. Then
we adopt the pre-trained QuestionNet to synthesize a dataset
called AVN-Instruct, which contains a total of 41.5k dense
pairs of sub-instructions, audio-goal, and visual scene under
the state space of Soundspace simulator. Before integrating
the modules into the RL framework, we fine-tune the whole
question module end-to-end on AVN-Instruct with a set of
500 and 1000 samples for validation and testing.
Evaluation Metrics: We follow the standard metrics de-
fined in SAVi (Chen et al. 2021b) to evaluate the naviga-
tion performance, namely SR, SPL, SNA, DTG and SWS.
In addition, we introduce two new metrics for assessing
navigation performance that also considers the number of
language-based oracle interactions, namely: (a) success rate
weighted by the inverse number of language interactions
(SNI) – which is the ratio of the success rate to the average
number of times either direct instructions are sought from
the oracle or a question is posed to it per episodes, and (b)
success rate weighted by inverse number of oracle instruc-
tions (SNO) – which is the ratio of the success rate to the
average number of times either direct instructions are sought
from the oracle or a wrong question is posed to it. These
additional metrics help explain the performance gain under
conversational settings.
Experimental Results and Analysis: Here, we compare
our proposed formulation against state-of-the-art seman-
tic audio-visual navigation approaches, namely (Gan et al.
2020), (Chen et al. 2020), AV-WaN (Chen et al., 2021),
SMT ( Fang et al.) + Audio, SAVi (Chen et al., 2021) and
AVLEN (Paul et al., 2022). Using the same protocol as in
AVLEN, we evaluate our performances on two different set-
tings: (i) heard and (ii) unheard sound, both in unseen envi-
ronments with sporadic sources. To ensure fair comparisons,
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Help SR ↑ SPL ↑ SNA ↑ DTG ↓ SWS ↑ SNI ↑ SNO ↑
Chen ✗ 4.0 2.4 2.0 14.7 2.3 - -
WaN ✗ 3.0 2.0 1.8 14.0 1.6 - -
SMTA ✗ 4.2 2.9 2.1 14.9 2.8 - -
SAVi ✗ 11.8 7.4 5.0 13.1 8.4 - -
AVLEN Lang 14.0 8.4 5.9 12.8 11.1 - 8.5
Rand Bi 16.9 10.6 7.9 11.9 11.1 7.2 9.4
Ufm Bi 16.9 10.5 7.6 11.9 11.6 7.1 9.5
MU Bi 19.6 12.4 8.9 11.4 14.0 7.8 10.2
CAVEN Bi 21.3 13.9 11.7 11.6 14.5 8.4 11.6

Table 2: Comparison of CAVEN performances with differ-
ent approaches in the presence of distractor sound. WaN:
AV-WaN, STMA: STM+Audio, Rand: Random, Ufm: Uni-
form, MU: Model Uncertainty, Lang: Language, Bi: Bi-
directional Interaction.

Param δques SR ↑ SPL ↑ SNA ↑ DTG ↓ SWS ↑
1.0 32.1 23.1 19.4 8.0 20.8
0.5 36.5 26.9 24.6 8.2 21.1
0.0 (ours) 42.0 30.0 26.5 7.6 30.9

Table 3: Ablation of the reward parameter δques of CAVEN’s
question module under unheard sound settings.

we control CAVEN to have a similar number of oracle feed-
backs as in Paul et al.. Table 1 provides the results of our ex-
periments using heard and unheard sounds. The table shows
that our full model –CAVEN (language), achieves signif-
icant improvements across all metrics. CAVEN exhibits a
12% gain on the newly introduced SNO metric over Paul et
al., our closest competitor, in both heard and unheard cases.
This clearly shows that the agent benefits much more from
both our novel language components. Given the budget on
directly receiving instructions from the oracle, we find that
CAVEN poses a correct question about 40% of the time,
thereby incurring less penalty. Even with a noisy oracle,
i.e., Noisy Language in Table 1, we achieve better perfor-
mances compared to Paul et al., showing the robustness of
our framework. To induce noise, we either ground the gen-
erated oracle’s instructions on random trajectories or switch
’yes’/’no’ responses, both with a chance of 25%.
Navigation Under Distractor Sounds: We also evaluate
the performance of CAVEN in the presence of distrac-
tor sounds, in the unheard setting. Since this environment
presents a mixture of sounds, therefore to disambiguate, a
one hot encoding of the target sounding object is also pro-
vided as an input to the agent . The presence of distractor
sounds adversely affects the estimation of the audio-goal,
which results in more uncertainty in the agent’s decision-
making. Under this setting, the conversations between the
agent and oracle becomes even more critical. Even under
such challenging circumstances, as shown in Table 2, we no-
tice a 5.5% and a 3.1% gain on SPL and SNO, respectively
against our closest competitor.
Ablation on Selector Policy: In Tables 1, 2, we compare
various strategies instead of learning the selector policy, πs.

In Random, the agent randomly selects a navigation policy,
while in Uniform, the agent chooses a policy every 3 steps,
alternating between the three policies. In Model Uncertainty,
the audio-goal uncertainty estimated by the selector policy
is used to decide which policy to invoke; i.e., if the audio-
goal uncertainty is above 66.7%, the language-based policy
is invoked; if the uncertainty is between 33.3% and 66.7%,
question policy is invoked; otherwise, the audio-goal policy
is invoked. Our results show learning of πs is better.

Figure 4: Distribution of estimated audio goal confidence
when each policy is invoked.

Analysis of Policy Dynamics: To study the situations when
the agent invokes the various navigation policies, we record
the confidence of audio-goal estimated by selector policy πs,
when each of the option policies is invoked and compute its
distribution using all test set episodes. As shown in Figure 4,
the audio-goal is invoked when the agent is highly confident
and the language-based policy is invoked when agent’s con-
fidence is low. It is note-worthy that the question policy is
invoked more often when the agent is moderately confident.
Though it potentially risks being penalized by asking wrong
questions, it benefits from seeking confirmation from the or-
acle using its own beliefs to alleviate uncertainty, thus navi-
gating efficiently.
Insights into Differential Rewarding: In Table 3, we report
the CAVEN performances on varying the penalty parameter
δques. Note that our differential rewarding scheme gives no
penalty when the agent makes a correct question δques = 0,
however penalizes heavily for mistakes. Thus, the gap be-
tween the two penalties act as an incentive for the agent to
make more number of correct trajectory predictions than in
a case where this penalty gap is lower (e.g., δques = 0.5, 1.0
in which case it is similar to the penalty it receives for the
wrong question). The success rate is higher suggesting that
the incentive the agent receives in making a correct question
influences learning of the trajectory forecasting significantly.

Conclusions
In this paper, we introduced CAVEN for embodied naviga-
tion in an audio-visual setting for the audio goal task, where
the agent is also equipped to converse with an oracle in natu-
ral language, when uncertain. We introduced a novel budget-
aware partially observable semi-Markov decision process to
learn the various control policies for solving the task. Quan-
titative evaluations of CAVEN under various noisy problem
settings, using established and novel metrics, demonstrate
large improvements in performance over competing meth-
ods, substantiating the benefits of our proposed interaction
policies and our architecture.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

3771



References
Anderson, P.; Wu, Q.; Teney, D.; Bruce, J.; Johnson, M.;
Sünderhauf, N.; Reid, I.; Gould, S.; and Van Den Hen-
gel, A. 2018. Vision-and-language navigation: Interpreting
visually-grounded navigation instructions in real environ-
ments. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 3674–3683.
Banerjee, S.; et al. 2021. The RobotSlang benchmark:
Dialog-guided robot localization and navigation. In Con-
ference on Robot Learning, 1384–1393. PMLR.
Bubeck, S.; Chandrasekaran, V.; Eldan, R.; Gehrke, J.;
Horvitz, E.; Kamar, E.; Lee, P.; Lee, Y. T.; Li, Y.; Lundberg,
S.; Nori, H.; Palangi, H.; Ribeiro, M. T.; and Zhang, Y. 2023.
Sparks of Artificial General Intelligence: Early experiments
with GPT-4. arXiv:2303.12712.
Cao, Y.; Lu, K.; DeFazio, D.; and Zhang, S. 2022. Goal-
oriented Vision-and-Dialog Navigation via Reinforcement
Learning. In Findings of the Association for Computational
Linguistics: EMNLP 2022, 4473–4482.
Chang, A.; Dai, A.; Funkhouser, T.; Halber, M.; Niessner,
M.; Savva, M.; Song, S.; Zeng, A.; and Zhang, Y. 2017. Mat-
terport3d: Learning from rgb-d data in indoor environments.
arXiv preprint arXiv:1709.06158.
Chen, C.; et al. 2020. Soundspaces: Audio-visual navigation
in 3d environments. In European Conference on Computer
Vision, 17–36. Springer.
Chen, C.; et al. 2021a. Learning to Set Waypoints for Audio-
Visual Navigation. In International Conference on Learning
Representations.
Chen, C.; et al. 2021b. Semantic audio-visual navigation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 15516–15525.
Chen, S.; Guhur, P.-L.; Schmid, C.; and Laptev, I. 2021c.
History aware multimodal transformer for vision-and-
language navigation. Advances in Neural Information Pro-
cessing Systems, 34.
Chi, T.-C.; Shen, M.; Eric, M.; Kim, S.; and Hakkani-tur, D.
2020. Just ask: An interactive learning framework for vision
and language navigation. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, 2459–2466.
Chowdhery, A.; Narang, S.; Devlin, J.; Bosma, M.; Mishra,
G.; Roberts, A.; Barham, P.; Chung, H. W.; Sutton, C.;
Gehrmann, S.; et al. 2022. Palm: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018.
Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805.
Fang, K.; Toshev, A.; Fei-Fei, L.; and Savarese, S. 2019.
Scene memory transformer for embodied agents in long-
horizon tasks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 538–547.
Fried, D.; Hu, R.; Cirik, V.; Rohrbach, A.; Andreas, J.;
Morency, L.-P.; Berg-Kirkpatrick, T.; Saenko, K.; Klein, D.;
and Darrell, T. 2018. Speaker-follower models for vision-
and-language navigation. Advances in Neural Information
Processing Systems, 31.

Gan, C.; Zhang, Y.; Wu, J.; Gong, B.; and Tenenbaum, J. B.
2020. Look, listen, and act: Towards audio-visual embod-
ied navigation. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), 9701–9707. IEEE.
Gu, J.; Stefani, E.; Wu, Q.; Thomason, J.; and Wang,
X. E. 2022. Vision-and-Language Navigation: A Survey
of Tasks, Methods, and Future Directions. arXiv preprint
arXiv:2203.12667.
Guhur, P.-L.; Tapaswi, M.; Chen, S.; Laptev, I.; and Schmid,
C. 2021. Airbert: In-domain pretraining for vision-and-
language navigation. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, 1634–1643.
Gupta, T.; and Kembhavi, A. 2023. Visual programming:
Compositional visual reasoning without training. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 14953–14962.
He, K.; et al. 2021. Landmark-RxR: Solving Vision-and-
Language Navigation with Fine-Grained Alignment Super-
vision. In Ranzato, M.; and etal, eds., Advances in Neural
Information Processing Systems, volume 34, 652–663. Cur-
ran Associates, Inc.
Hong, Y.; Wu, Q.; Qi, Y.; Rodriguez-Opazo, C.; and Gould,
S. 2021. VLN BERT: A Recurrent Vision-and-Language
BERT for Navigation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 1643–1653.
Ke, L.; Li, X.; Bisk, Y.; Holtzman, A.; Gan, Z.; Liu, J.; Gao,
J.; Choi, Y.; and Srinivasa, S. 2019. Tactical rewind: Self-
correction via backtracking in vision-and-language naviga-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 6741–6749.
Kesiraju, S.; Plchot, O.; Burget, L.; and Gangashetty, S. V.
2020. Learning document embeddings along with their un-
certainties. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 28: 2319–2332.
Le, T. P.; et al. 2018. A deep hierarchical reinforcement
learning algorithm in partially observable Markov decision
processes. Ieee Access, 6: 49089–49102.
Li, G.; Wei, Y.; Tian, Y.; Xu, C.; Wen, J.-R.; and Hu, D.
2022. Learning to Answer Questions in Dynamic Audio-
Visual Scenarios. arXiv:2203.14072.
Li, J.; et al. 2023. BLIP-2: Bootstrapping Language-Image
Pre-training with Frozen Image Encoders and Large Lan-
guage Models. arXiv:2301.12597.
Lin, C.; Jiang, Y.; Cai, J.; Qu, L.; Haffari, G.; and Yuan, Z.
2022. Multimodal transformer with variable-length memory
for vision-and-language navigation. In Computer Vision–
ECCV 2022: 17th European Conference, Tel Aviv, Israel,
October 23–27, 2022, Proceedings, Part XXXVI, 380–397.
Springer.
Liu, C.; Zhu, F.; Chang, X.; Liang, X.; Ge, Z.; and Shen,
Y.-D. 2021. Vision-language navigation with random envi-
ronmental mixup. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, 1644–1654.
Liu, X.; et al. 2023. Tackling Data Bias in MUSIC-
AVQA: Crafting a Balanced Dataset for Unbiased Question-
Answering. arXiv:2310.06238.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

3772



Ma, C.-Y.; Lu, J.; Wu, Z.; AlRegib, G.; Kira, Z.; Socher,
R.; and Xiong, C. 2019a. Self-monitoring navigation
agent via auxiliary progress estimation. arXiv preprint
arXiv:1901.03035.
Ma, C.-Y.; Wu, Z.; AlRegib, G.; Xiong, C.; and Kira,
Z. 2019b. The regretful agent: Heuristic-aided naviga-
tion through progress estimation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 6732–6740.
Majumdar, A.; Shrivastava, A.; Lee, S.; Anderson, P.;
Parikh, D.; and Batra, D. 2020. Improving vision-and-
language navigation with image-text pairs from the web.
In European Conference on Computer Vision, 259–274.
Springer.
Nguyen, K.; Dey, D.; Brockett, C.; and Dolan, B. 2019a.
Vision-based navigation with language-based assistance via
imitation learning with indirect intervention. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 12527–12537.
Nguyen, K.; et al. 2019b. Help, Anna! Visual Naviga-
tion with Natural Multimodal Assistance via Retrospective
Curiosity-Encouraging Imitation Learning. In Proc. Conf.
Empirical Methods Natural Lang. Process. 9th Int. Joint
Conf. Natural Lang. Process. (EMNLP-IJCNLP), 684–695.
Hong Kong, China: Association for Computational Linguis-
tics.
OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774.
Ouyang, L.; Wu, J.; Jiang, X.; et al. 2022. Training lan-
guage models to follow instructions with human feedback.
arXiv:2203.02155.
Pashevich, A.; et al. 2021. Episodic transformer for
vision-and-language navigation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
15942–15952.
Paul, S.; et al. 2022. AVLEN: Audio-Visual-Language Em-
bodied Navigation in 3D Environments. arXiv preprint
arXiv:2210.07940.
Peng, B.; Li, C.; He, P.; Galley, M.; and Gao, J.
2023. Instruction tuning with gpt-4. arXiv preprint
arXiv:2304.03277.
Pennington, J.; et al. 2014. Glove: Global vectors for
word representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language processing
(EMNLP), 1532–1543.
Ram, A.; Prasad, R.; Khatri, C.; Venkatesh, A.; Gabriel, R.;
Liu, Q.; Nunn, J.; Hedayatnia, B.; Cheng, M.; Nagar, A.;
et al. 2018. Conversational ai: The science behind the alexa
prize. arXiv preprint arXiv:1801.03604.
Shah, D.; Osinski, B.; Ichter, B.; and Levine, S. 2022. LM-
Nav: Robotic Navigation with Large Pre-Trained Models of
Language, Vision, and Action. arXiv:2207.04429.
Siddhant, A.; and Lipton, Z. C. 2018. Deep bayesian active
learning for natural language processing: Results of a large-
scale empirical study. arXiv preprint arXiv:1808.05697.
Sutton, R. S.; et al. 1999. Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforce-
ment learning. Artificial intelligence, 112(1-2): 181–211.

Tan, H.; et al. 2019. Learning to navigate unseen environ-
ments: Back translation with environmental dropout. arXiv
preprint arXiv:1904.04195.
Thomason, J.; Murray, M.; Cakmak, M.; and Zettlemoyer,
L. 2020. Vision-and-dialog navigation. In Conference on
Robot Learning, 394–406. PMLR.
Touvron, H.; Lavril, T.; Izacard, G.; Martinet, X.; Lachaux,
M.-A.; Lacroix, T.; Rozière, B.; Goyal, N.; Hambro, E.;
Azhar, F.; Rodriguez, A.; Joulin, A.; Grave, E.; and Lample,
G. 2023. LLaMA: Open and Efficient Foundation Language
Models. arXiv:2302.13971.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. Advances in neural information pro-
cessing systems, 30.
Wang, X.; Huang, Q.; Celikyilmaz, A.; Gao, J.; et al. 2019.
Reinforced cross-modal matching and self-supervised imita-
tion learning for vision-language navigation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 6629–6638.
Wijmans, E.; Kadian, A.; Morcos, A.; Lee, S.; Essa, I.;
Parikh, D.; Savva, M.; and Batra, D. 2019. Dd-ppo: Learning
near-perfect pointgoal navigators from 2.5 billion frames.
arXiv preprint arXiv:1911.00357.
Xiao, Y.; and Wang, W. Y. 2019. Quantifying uncertain-
ties in natural language processing tasks. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33,
7322–7329.
You, C.; Chen, N.; Liu, F.; Ge, S.; Wu, X.; and Zou, Y.
2022. End-to-end Spoken Conversational Question Answer-
ing: Task, Dataset and Model. In In Findings of NAACL
2022.
Yu, Y.; Huang, W.; Sun, F.; Chen, C.; Wang, Y.; and Liu, X.
2022. Sound Adversarial Audio-Visual Navigation. arXiv
preprint arXiv:2202.10910.
Zhou, G.; et al. 2023. NavGPT: Explicit Reasoning
in Vision-and-Language Navigation with Large Language
Models. arXiv:2305.16986.
Zhu, W.; Hu, H.; Chen, J.; Deng, Z.; Jain, V.; Ie, E.; and
Sha, F. 2020. Babywalk: Going farther in vision-and-
language navigation by taking baby steps. arXiv preprint
arXiv:2005.04625.
Zhu, Y.; Weng, Y.; Zhu, F.; Liang, X.; Ye, Q.; Lu, Y.; and
Jiao, J. 2021. Self-Motivated Communication Agent for
Real-World Vision-Dialog Navigation. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion (ICCV), 1594–1603.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

3773


