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Abstract

Previous 3D hand pose estimation methods primarily rely on
a single modality, either RGB or depth, and the comprehen-
sive utilization of the dual modalities has not been extensively
explored. RGB and depth data provide complementary infor-
mation and thus can be fused to enhance the robustness of
3D hand pose estimation. However, there exist two problems
for applying existing fusion methods in 3D hand pose esti-
mation: redundancy of dense feature fusion and ambiguity
of visual features. First, pixel-wise feature interactions intro-
duce high computational costs and ineffective calculations of
invalid pixels. Second, visual features suffer from ambiguity
due to color and texture similarities, as well as depth holes
and noise caused by frequent hand movements, which inter-
feres with modeling cross-modal correlations. In this paper,
we propose Keypoint-Fusion for RGB-D based 3D hand pose
estimation, which leverages the unique advantages of dual
modalities to mutually eliminate the feature ambiguity, and
performs cross-modal feature fusion in a more efficient way.
Specifically, we focus cross-modal fusion on sparse yet in-
formative spatial regions (i.e. keypoints). Meanwhile, by ex-
plicitly extracting relatively more reliable information as dis-
ambiguation evidence, depth modality provides 3D geometric
information for RGB feature pixels, and RGB modality com-
plements the precise edge information lost due to the depth
noise. Keypoint-Fusion achieves state-of-the-art performance
on two challenging hand datasets, significantly decreasing the
error compared with previous single-modal methods.

Introduction
3D hand pose estimation is a critical technology for inter-
active media and human-computer interaction applications,
many of which present more challenging scenarios and de-
mand higher accuracy in 3D hand pose estimation. For in-
stance, augmented reality applications involve hand-object
interactions with frequent movements and occlusions; and
more accurate poses are essential to enhance interactive re-
alism and user experience when manipulating objects. De-
spite recent advancements in single RGB or depth-based ap-
proaches (Kulon et al. 2020; Ge et al. 2019; Park et al. 2022;
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Figure 1: In the 3D hand pose estimation task, depth maps
are prone to (a) noise and depth holes at the edges of hands
and objects, especially during (b) motion.

Chen et al. 2021; Huang et al. 2020b,c), they encounter chal-
lenges due to the inherent defects of their respective modal-
ities. RGB-based methods are prone to color similarity and
lack local geometric information, while depth-based meth-
ods suffer from noise and depth holes at the edges of hands
and objects, especially during motion, as shown in Fig. 1.

Fortunately, there exist many complementary properties
between RGB and depth modalities. For example, RGB
data can provide rich texture and accurate edge information,
while depth data contains detailed geometric structure fea-
tures. By fusing their complementary advantages, the im-
pact of individual modality defects on the performance of
3D hand pose estimation can be alleviated.

Multi-sensor modality fusion has emerged as a significant
trend in visual perception technology. Although not widely
explored in 3D hand pose estimation, multimodal fusion
has been extensively studied in many other computer vision
tasks, such as LiDAR-camera 3D object detection and RGB-
D semantic segmentation. Early works (Hu et al. 2019; Chen
et al. 2020; Seichter et al. 2021) perform weighted aggrega-
tion of cross-modal features through the channel and spa-
tial attention mechanism (Woo et al. 2018). Recently, with
the extensive research of vision Transformer (Dosovitskiy
et al. 2020; Liu et al. 2021b; Vaswani et al. 2017), several
methods utilize the attention mechanism for interactions be-
tween cross-modal features. For instance, TransFusion (Bai
et al. 2022) uses object queries to obtain initial 3D bounding
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boxes from point cloud features, and fuses the image fea-
tures to boost the quality of the initial prediction. AutoAlign
(Chen et al. 2022c) uses the cross-attention mechanism to
aggregate the cross-modal feature between the camera-view
domain and the voxel domain. CMX (Liu et al. 2022a) con-
nects the soft attention and cross-attention mechanism in se-
rial to calibrate and aggregate the cross-modal feature.

However, there exist two key problems for applying exist-
ing fusion methods in 3D hand pose estimation. First, these
methods suffer from high computational costs introduced
by the dense interactions between multimodal feature ele-
ments, which contain redundant interactions of many invalid
pixels, such as empty voxels and background pixels. To re-
duce the computational complexity and memory usage, sev-
eral works (Chen et al. 2022b; Kim et al. 2022) introduce
deformable attention (Zhu et al. 2020) to generate the off-
sets and weights around the sampling points, and perform
sparse cross-modal feature fusion at a small set of sampling
locations. However, the pixel-level offsets adopted in these
fusion strategies have difficulty in capturing the joint-level
feature dependencies, while the correlation between long-
range joints has been proven to be crucial in 3D hand pose
estimation (Lin, Wang, and Liu 2021a,b).

Second, the frequent movement and high degrees of free-
dom of human hands, coupled with frequent interactions
with objects in real-world scenes, leads to severe feature
ambiguity, such as similarity in color and texture appear-
ance, as well as depth noise. Previous fusion methods di-
rectly fuse the multimodal features through the pixel-wise
weighted aggregation or cross-attention mechanism, which
are inherently data-driven and thus can be interfered with by
the aforementioned low-quality features.

The representation of keypoints is adopted in some 3D
hand pose estimation methods (Hampali et al. 2022) to rep-
resent potential joint locations, which unveils more informa-
tive feature regions in the image. By focusing cross-modal
fusion on these spatially sparse yet informative regions, it
is feasible to reduce redundant interactions involving invalid
pixels, thereby enhancing the efficiency of multimodal fu-
sion. In addition, there exists more reliable information in
the respective modality, which can be explicitly extracted as
robust disambiguation evidence to help alleviate the inter-
ference of intra-modal ambiguity on cross-modal fusion.

Inspired by the above motivation, we propose Keypoint-
Fusion, an RGB-D fusion approach for 3D hand pose es-
timation. We first propose a Keypoint Feature Aggrega-
tion Module (KFAM) to aggregate RGB and depth local
features around the initially predicted joints. During RGB
feature aggregation, the depth modality provides 3D geo-
metric structure information. Conversely, during depth fea-
ture aggregation, the RGB modality complements the pre-
cise edge information lost due to depth holes and noise.
Then, based on disambiguated and sparse keypoint features,
we employ cross-modal feature interaction to model long-
range feature correlations efficiently. Code is available at
https://github.com/ru1ven/KeypointFusion.

The main contributions of our work are threefold:
1) We propose a sparse RGB-D fusion approach for 3D

hand pose estimation, which performs cross-modal feature

RGB Input

Depth Input

RGB 
Backbone

Depth
Backbone

×N

…

…

Keypoint
Feature

C
ross-m

odal K
eypointInteraction

Hand Pose

Disambiguation 
Clues

RGB Keypoint
Feature Aggregation

Depth Keypoint
Feature Aggregation

Figure 2: Overview of Keypoint-Fusion.

interaction and fusion in a more efficient way.
2) We introduce a cross-modal information guidance

strategy, which can excavate the unique advantages of com-
plementary modalities to clarify intra-modal ambiguous in-
formation before cross-modal feature interaction.

3) Experiments show that our method achieves leading
performance on two challenging datasets, DexYCB (Chao
et al. 2021) and HO-3D (Hampali et al. 2020), significantly
outperforming previous state-of-the-art (SOTA) methods.

Related Work
Depth-based 3D Hand Pose Estimation
Existing depth-based 3D hand pose estimation methods can
be categorized into 2D image-based and 3D data-based
methods according to the input data. Early methods (Huang
et al. 2020c; Ren et al. 2019; Fang et al. 2020; Du et al.
2019) use the 2D convolutional neural network (CNN) to ex-
tract visual features and estimate the hand pose from single-
channel depth images. To overcome the lack of geometric
information in 2D images, some works (Huang et al. 2020a;
Ge, Ren, and Yuan 2018; Malik et al. 2020, 2021) use 3D
CNN and point cloud networks to process 3D point cloud or
volumetric representation converted by depth data. Recently,
IPNet (Ren et al. 2023) estimates the initial hand pose from
depth images and refines the hand pose through the point
cloud. However, due to the inherent defects of depth sensors,
hands are prone to depth holes and noise, which reduces the
performance of depth-based methods.

RGB-based 3D Hand Pose Estimation
RGB-based methods present more challenges due to the lack
of depth information. Some methods (Zheng et al. 2021b;
Moon and Lee 2020; Iqbal et al. 2018) introduce novel per-
pixel representations such as 2.5D heatmap to resolve scale
and depth ambiguities. In addition, some works (Lin, Wang,
and Liu 2021a,b; Chen et al. 2021; Ge et al. 2019) regress
3D joint and hand mesh from RGB feature using Graph Con-
volution Network (GCN) or Transformer. Recently, several
works (Hampali et al. 2022; Park et al. 2022) use Transform-
ers to model the interaction of non-local image features to
enhance the robustness against occlusion. However, RGB-
based methods face challenges due to the appearance simi-
larity and geometric ambiguities of visual features.
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Figure 3: The details of Keypoint-Fusion. Keypoint-Fusion first extracts RGB-D visual features and predicts the initial hand
pose. Then, the proposed KFAM aggregates RGB and depth local features around the joints, during which the unique advantages
of complementary modalities are leveraged to clarify intra-modal ambiguous information. Finally, Keypoint-Fusion performs
sparse cross-modal interaction between the aggregated keypoint feature.

Multi-Sensor Fusion

Recently, multi-sensor fusion methods have been widely
studied in many computer vision tasks, such as RGB-D se-
mantic segmentation and 3D object detection. Early works
(Hu et al. 2019; Sun et al. 2020; Chen et al. 2020; Se-
ichter et al. 2021) construct two parallel backbones for RGB
and depth images separately, employing attention mecha-
nisms to fuse RGB-D visual features. Inspired by the re-
cent superior success of Transformers in vision tasks, many
works employ Transformer to fuse features of homogeneous
modalities (e.g. RGB-D images) and heterogeneous modal-
ities (e.g. camera and LiDAR point clouds). CMX (Liu
et al. 2022a) comprehensively uses soft attention and cross-
attention for RGB-X semantic segmentation. TransFusion
(Bai et al. 2022) fuses the object queries from LiDAR point
cloud features and the image features with cross-attention.
FUTR3D (Chen et al. 2022a) uses 3D object queries to sam-
ple and aggregate multimodal features from multi-sensors.
AutoAlign (Chen et al. 2022c) models the mapping relation-
ship between the image and point clouds for pixel-level and
instance-level feature fusion. DeMF (Yang et al. 2022), Au-
toAlignv2 (Chen et al. 2022b) and 3D Dual-Fusion (Kim
et al. 2022) introduce deformable attention (Zhu et al. 2020)
to perform sparse LiDAR-camera feature fusion.

Method
Fig. 2 illustrates the overall pipeline of Keypoint-Fusion.
Given RGB and depth input images, we first use two paral-
lel 2D CNN backbones to extract RGB and depth visual fea-
tures, and predict initial 3D hand pose. Then, the proposed
Keypoint Feature Aggregation Module individually aggre-
gates the RGB and depth features around the joints, and it-
eratively updates the hand pose. During feature aggregation,
we use the precise geometric structure information of depth
modality to eliminate color feature ambiguity, and use the
fine-grained edge information of RGB modality to supple-
ment depth holes and noise. Finally, we perform long-range
cross-modal feature interaction on sparse keypoint features.

Initial Hand Pose Estimation
Firstly, we extract the RGB and depth visual features and
estimate the initial 3D hand pose. Specifically, given RGB
and depth images, we first adopt two ResNet-18 (He et al.
2016) as the RGB and depth CNN backbones to extract
the RGB visual features FRGB

2d ∈ RH×W×C and depth
visual features FD

2d ∈ RH×W×C respectively. Then, we
predict 2D heatmap H2d ∈ RH×W×J and initial 3D hand
pose Jinit ∈ R3×J from the depth feature map through the
weighted average regression (Huang et al. 2020c).
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Keypoint Feature Aggregation Module
As shown in Fig. 3, we aggregate RGB and depth local fea-
tures of each joint complying with the initial hand pose.
During aggregation, RGB-D features mutually resolve intra-
modal ambiguous information by leveraging reliable disam-
biguation clues from complementary modalities.

RGB Keypoint Feature Aggregation The ambiguity of
similar colors and the lack of local geometric information
are challenging problems of RGB local feature aggregation.
For example, the depth ordering of coupled fingers is in-
distinguishable due to the color similarity. Additionally, the
weights of the identical RGB feature pixels are ambiguous
due to the possibility of visual alignment but varying depths
among them. These ambiguities can be resolved by utilizing
the precise local geometric information of each joint from
depth data. Therefore, we introduce a per-joint local geo-
metric structure representation by calculating the real-world
distance between each predicted joint and feature pixels.

Specifically, we propose a learnable weighted aggrega-
tion operation for RGB feature aggregation. This operation
jointly utilizes the 2D heatmaps and geometry structure in-
formation to generate the weights. Firstly, we concatenate
2D heatmap H2d and RGB features FRGB

2d along the chan-
nel dimension, and then apply N 1×1 convolution kernels to
generate the heatmap-based weight map Whm ∈ RH×W×J :

Whm = ϕ(FRGB
2d ∥H2d), (1)

where N , ϕ, and ∥ represent the number of hand joints, the
convolution layer, and the concatenation operation, respec-
tively. In practice, during the first few training epochs, we
employ the ground truth 2D heatmap to supervise the gener-
ation of heatmap-based weight map Whm.

Then, by downsampling the depth image to the same size
as the RGB feature map and converting it to the real-world
coordinate system through the camera intrinsic parameters,
we can obtain the real-world coordinates (xp, yp, zp) of each
pixel point p of the RGB visual feature map. According to
the 3D coordinates (xj , yj , zj) of each joint J of the ini-
tial hand pose Jinit, the geometry adjacency map Wgeo ∈
RH×W×J can be generated by calculating the 3D Euclidean
distance from RGB visual feature pixels to each hand joint:

W J
geo(i, j) =

1

γ((xp − xj)2 + (yp − yj)2 + (zp − zj)2)
,

(2)
where γ reflects the speed at which the correlation be-
tween joints and feature pixels decreases as their distance
increases, and we set it to 10. The geometry adjacency map
Wgeo presents rich local geometric structure information of
each joint neighborhood and effectively reflects the correla-
tion between joints and feature pixels. Finally, the RGB key-
point feature KRGB ∈ RJ×C is aggregated according to the
heatmap-based weight map Whm and geometry adjacency
map Wgeo, which can be generalized as:

KRGB = FC((αWhm + (1− α)Wgeo)F
RGB
2d ), (3)

where FC represents Fully-Connected (FC) layer, and α is
a learnable parameter for adjusting the contribution of the
heatmap-based weight map and geometry adjacency map.

Depth Keypoint Feature Aggregation The 2D image
representation of depth data leads to the loss of 3D geomet-
ric structure, e.g., points that are far away in the real world
may be adjacent in the depth images (Liu et al. 2022c). To
address this problem, IPNet (Ren et al. 2023) proposes to
fuse point cloud and 2D depth features and generate the
point cloud features F 3d ∈ R(H×W )×C through a 2D-3D
projection module, which can effectively perceive the 3D
geometric information of point cloud data. However, due to
the inherent defects of depth sensors, depth data is prone
to noise and depth holes at the edges of hands and objects,
especially during motion. It is difficult to compensate for
these edge noises by relying solely on the intra-modal fu-
sion of different depth representations. On the other hand,
RGB modality can provide more reliable edge information
and texture information in most cases. Thus, we project the
RGB feature into the 3D point cloud space through the real-
world coordinates of each RGB feature pixel obtained in
RGB KFAM. Then, we fuse the projected RGB image fea-
tures FRGB

proj ∈ R(H×W )×C with the above point cloud fea-
tures F 3d. Finally, we aggregate the depth keypoint feature
KD ∈ RJ×C as:

KD = FA(ReLU(BN(W0F
RGB
proj +W1F

3d))), (4)

where ReLU , BN , and FA denote the ReLU activation
function, batch normalization layer, and local feature aggre-
gation module of IPNet (Ren et al. 2023); W0 and W1 are
two learnable parameter matrices used for adjusting the con-
tribution of RGB features and point cloud features.

As shown in Fig. 2, we construct the RGB and depth
keypoint feature aggregation as iterative and serial modules,
during which we refine the estimated hand pose, and the ag-
gregation and cross-modal fusion in the subsequent stages
can be performed based on more accurate positions of joints.

Cross-modal Keypoint Feature Interaction
The attention mechanisms of Transformer have been em-
ployed in previous 3D hand pose estimation methods for
non-local interaction of image features to enhance the weak-
ened local features caused by occlusion. However, due to
the huge number of pixels in the image features, previous
Transformer-based methods either perform intensive inter-
action with high computational complexity (e.g. HandOcc-
Net (Park et al. 2022)), or use a multi-layer Transformer En-
coder structure to reduce the dimension step by step, increas-
ing the complexity of the network structure (e.g. METRO
(Lin, Wang, and Liu 2021a)). To avoid the high computa-
tional costs caused by the dense cross-modal feature fusion
and global-scale attention, we perform sparse cross-modal
interaction at the joint level based on the obtained RGB and
depth keypoint feature. Considering the serial arrangement
of RGB-D KFAMs, we first perform intra-modal interaction
between the aggregated keypoint feature of depth modality,
and then perform inter-modal keypoint interaction to fuse
the cross-modal features.

Intra-modal Keypoint Feature Interaction Since the ag-
gregated keypoint feature contains rich local features around
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Input Modality Method MPJPE↓ PA-MPJPE↓S0 S1 S2 S3 Average

RGB Spurr et al. (Spurr et al. 2020) 17.34 22.26 25.49 18.44 20.88 6.83
RGB Liu et al. (Liu et al. 2021a) 15.28 - - - - 6.58
RGB Tse et al. (Tse et al. 2022) 16.05 21.22 27.01 17.93 20.55 -
RGB METRO (Lin, Wang, and Liu 2021a) 15.24 - - - - 6.99
RGB HandOccNet (Park et al. 2022) 14.04 - - - - 5.80
Depth A2J (Xiong et al. 2019) 23.93 25.57 27.65 24.92 25.52 -
Depth AWR (Huang et al. 2020c) 11.23 - - - - -

RGB-D SA-Fusion (Liu et al. 2023) 9.51 - - - - -
RGB-D DiffHand (Li et al. 2023) 12.10 - - - - 4.98

D&Point Cloud IPNet (Ren et al. 2023) 8.03 9.01 8.60 7.80 8.36 -

RGB-D Keypoint-Fusion 6.94 8.64 7.56 7.02 7.54 4.79

Table 1: Comparison with SOTA methods of the MPJPE and PA-MPJPE (mm) on the DexYCB dataset.

Input Method MPJPE↓ MPJPE↓
(align.)

RGB METRO (Lin, Wang, and Liu 2021a) - 2.89
RGB Liu et al. (Liu et al. 2021a) 3.00 3.17
RGB I2L-MeshNet (Moon and Lee 2020) 2.68 2.60
RGB Keypoint TR (Hampali et al. 2022) - 2.57
RGB Zheng et al. (Zheng et al. 2021a) - 2.51
RGB ArtiBoost (Li et al. 2021) - 2.53
RGB HandOccNet (Park et al. 2022) 2.49 2.40
RGB Hampali et al. (Hampali et al. 2020) - 3.04
RGB Hasson et al. (Hasson et al. 2019) 5.52 3.18
Voxel HandVoxNet++ (Malik et al. 2021) 2.46 -

RGB-D DiffHand (Li et al. 2023) 2.37 -
D&PCL IPNet (Ren et al. 2023) 1.81 2.01

RGB-D Keypoint-Fusion 1.79 1.87

Table 2: Comparison with SOTA methods of the MPJPE
(cm) before and after scale-translation alignment on HO-3D.

joints while lacking long-range interactions, we first per-
form intra-modal keypoint-level interaction utilizing the
self-attention mechanism to model the long-range correla-
tion of keypoint feature. As shown in Fig. 3, for the input
depth keypoint feature KD ∈ RC×J , we employ a single
Transformer encoder to perform self-attention between key-
point feature, and then use an FC layer to estimate the re-
fined hand pose Jrefine.

Inter-modal Keypoint Feature Interaction We model
cross-modal keypoint correlation through a Transformer de-
coder and a Transformer encoder. Specifically, we take the
RGB keypoint feature KRGB ∈ RJ×C as query Q, and take
the depth keypoint feature KD ∈ RJ×C which models intra-
modal long-range keypoint correlation as Key K and Value
V . Then, the transformer decoder performs cross-attention
to fuse the RGB keypoint feature with the depth keypoint
feature that contains rich geometry information and long-
range correlation. Next, the Transformer encoder performs
self-attention to model the non-local dependency of fused
keypoints, Finally, we apply an FC layer on the fused key-

Input Method MPJPE↓

Depth 2D CNN baseline (Huang et al. 2020c) 11.23
RGB-D 1-stage Keypoint-Fusion 7.23
RGB-D 2-stages Keypoint-Fusion 6.94
RGB-D 3-stages Keypoint-Fusion 6.89

Table 3: Comparison of MPJPE (mm) among different num-
bers of fusion stages of Keypoint-Fusion on DexYCB.

point feature to estimate the final hand pose Jfuse.

Experiments
Experiments Setup
DexYCB dataset DexYCB is a hand-object dataset cap-
tured by multiple RGB-D cameras, containing 582K RGB-
D frames over 1,000 sequences of 10 subjects grasping 20
different objects from 8 views. DexYCB has four official
dataset splits of train/val/test, namely S0, S1, S2, and S3,
split by the sequences, subjects, views, and objects, respec-
tively. We conduct performance comparisons on all four
splits and use the default S0 split in ablation studies.

HO-3D dataset HO-3D is an RGB-D hand-object interac-
tion dataset, containing 66,034 training images and 11,524
test images from a total of 68 sequences. The sequences are
captured in multi-camera and single-camera setups and con-
tain 10 different subjects manipulating 10 different objects
from YCB dataset. Evaluation of the HO-3D test set is con-
ducted at an online submission server.

Implementation Details Our experiments are conducted
with an NVIDIA RTX 4090 GPU. The network is imple-
mented based on PyTorch (Paszke et al. 2019). We use an
AdamW optimizer (Kulon et al. 2019) with an initial learn-
ing rate of 8e-4. The whole training process takes 15 and 25
epochs on DexYCB and HO-3D, respectively. For data aug-
mentation, we crop the input RGB-D images to the size of
128×128, and perform random rotation ∈ [-180, 180], ran-
dom scaling ∈ [0.9, 1.1], and random translating ∈ [-10, 10].
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Input Method IF MPJPE↓

RGB-D SA-Fusion (Liu et al. 2023) 7.54 9.51
D&PCL IPNet (Ren et al. 2023) 19.91 8.03
RGB-D Dense Fusion baseline 16.19 9.76

RGB-D 1-stage Keypoint-Fusion 12.47 7.23

Table 4: Comparison of the inference time (ms) and MPJPE
(mm) with the fusion-based 3D hand pose estimation meth-
ods on DexYCB. IF represents the inference time.

ID RGB KFAM Depth KFAM MPJPE↓HWM GAM PCL RGB REF
0 11.23
1 ✓ ✓ 7.54
2 ✓ ✓ ✓ ✓ 7.17
3 ✓ ✓ ✓ ✓ 7.11
4 ✓ ✓ ✓ 7.09
5 ✓ ✓ ✓ ✓ 6.97
6 ✓ ✓ ✓ ✓ 6.96
7 ✓ ✓ 8.76
8 ✓ ✓ ✓ 7.19
9 ✓ ✓ ✓ 7.27
10 ✓ ✓ ✓ ✓ ✓ 6.94

Table 5: Ablation study for the KFAM on DexYCB. HWM
and GAM represent heatmap-based weight map and geome-
try adjacency map. PCL and RGB represent the aggregation
of point cloud feature and projected RGB feature. REF rep-
resents pose refinement with the depth keypoint feature.

We evaluate our method using the metric of Mean Per Joint
Position Error (MPJPE).

Comparisons with State-of-the-arts
We compare the performance with SOTA 3D hand pose
estimation methods on DexYCB. As shown in Table 1,
Keypoint-Fusion achieves the lowest MPJPE on all four of-
ficial splits of DexYCB. Compared with the SOTA method
IPNet (Ren et al. 2023), our method achieves an average
MPJPE reduction of 13.6% (from 8.03mm to 6.94mm) on
the default S0 split. Additionally, several RGB-based meth-
ods are also evaluated in terms of the MPJPE after Pro-
crustes Alignment (PA-MPJPE) on DexYCB S0 split, and
our method achieves the best performance on all metrics.

The performance comparison with SOTA methods on
the HO-3D dataset is shown in Table 2. We adopt two
ConvNeXt-T (Liu et al. 2022b) as the 2D backbones. We
report the hand pose results based on MPJPE and MPJPE
after scale-translation alignment of the root joint, which are
two significant metrics of 3D hand pose estimation. As can
be seen, both for the MPJPE before and after alignment, our
method achieves the best performance on HO-3D.

Ablation Study
Number of Iterative Fusion Stages We design the key-
point feature aggregation as iterative and serial modules, so

(a) RGB-D Input 
& GT Pose (c)(b) Geometry Adjacency Map

(i) (ii) (iii)  (i) (ii) (iii) 

Heatmap-based Weight Map

Figure 4: Visualization of the proposed geometry adjacency
map and heatmap-based weight map. We show (i) wrist, (ii)
thumb tip, and (iii) index tip among 21 joints of DexYCB.

the cross-modal interaction in the later stages can be per-
formed based on more accurate joint positions. To verify
the effectiveness of the above iterative fusion design, we
conduct an ablation study on Keypoint-Fusion with various
numbers of fusion stages on DexYCB. For the 2D CNN
baseline, we adopt ResNet-18 as the backbone. As shown
in Table 3, our model reduces the Mean Per Joint Position
Error (MPJPE) by 4.0mm through a single fusion stage com-
pared with the 2D CNN baseline. In addition, by increasing
the number of fusion stages, the performance can be further
significantly improved.

Efficiency Analysis To verify the efficiency of the pro-
posed sparse fusion strategy, we conduct an ablation study
on the inference time with SA-Fusion (Liu et al. 2023), an
existing RGB-D image-based fusion method, and with IP-
Net (Ren et al. 2023), which constructs point cloud fea-
tures efficiently. Additionally, we consider a dense fusion
baseline by ablating the proposed KFAMs and performing
cross-modal features interaction in a dense manner. Table
4 demonstrates that: (i) Compared with previous RGB-D
image-based fusion method, our method achieves significant
performance improvements with an acceptable additional in-
ference time; (ii) Compared with IPNet, our method enables
cross-modal fusion in 3D space and shows higher efficiency
and effectiveness. (iii) Compared with the dense fusion base-
line, our method can perform cross-modal feature interac-
tion in a more efficient way.

Design of Keypoint Feature Aggregation Module We
ablate various designs of the KFAM as illustrated in Ta-
ble 5. First, by individually adopting RGB KFAM (ID 1)
or depth KFAM (ID 4), the performance of the network is
significantly improved compared with the depth-only based
baseline. Second, discarding RGB feature fusion (ID 2) or
hand pose refinement (ID 3) in the depth feature aggregation
causes performance degradation. Next, the performance of
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(a) IPNet (b) Initial (c) Keypoint-Fusion (d) GT

Figure 5: Qualitative results on the DexYCB dataset.

the network can be reduced without adopting the geometry
adjacency map (ID 5) or heatmap-based weight map (ID 6)
in RGB feature aggregation. Furthermore, without the com-
plement of local RGB features in the depth KFAM, the per-
formance gap among different designs of the RGB KFAM
can be further widened (ID 7-9).

Visualization of Keypoint-Fusion
To explore the perception ability of the proposed RGB
KFAM to local feature information, we visualize the geom-
etry adjacency map Wgeo and heatmap-based weight map
Whm in Fig. 4. In ordinary cases (row 1 to row 4), the
heatmap-based weight map focuses on the relevant spatial
regions around the joints in terms of color features, and the
geometry adjacency map provides local geometric structure
information to help distinguish between joints and invalid
pixels, such as backgrounds, objects in contact, and other
hand regions. For occluded joints (row 5 and thumb tip in
row 6), visual features with similar colors and adjacent dis-
tances are comprehensively considered, and the geometry
adjacency map suppresses features in occluded regions that
are visually adjacent but far away from the joint. In addition,
when it is hard to determine the relative distance between
joints from single RGB images due to hand color similar-
ity, such as the wrist and index tip in row 6, the geometry

(a)

(b)

Figure 6: Qualitative results of (a) the initial hand pose and
(b) the output hand pose of Keypoint-Fusion on HO-3D.

adjacency map pinpoints relevant feature regions.

Qualitative Results

We present the qualitative results on DexYCB in Fig. 5. The
results of our method are additionally shown on the depth
map to intuitively demonstrate its robustness to depth holes
and noise. Compared with the SOTA IPNet, our method
demonstrates superior performance in handling challenging
samples with noise and depth holes (row 1, row 3, row 4),
motion blur (row 2), and severe occlusion (row 5, row 6, row
7). Our method accurately predicts the position of visually
blurred joints and mitigates the impact of insufficient depth
information. Additionally, ours achieves a more accurate es-
timation of unseen joints. Meanwhile, through cross-modal
disambiguation and interaction, our method can effectively
refine the initial hand pose estimated by the 2D CNN back-
bone in the presence of edge noise and object occlusion.

The qualitative results on HO-3D are shown in Fig. 6.
Since the ground truth joint positions of the HO-3D test set
are not provided, we only present the initial hand pose and
output hand pose estimated by our method. Compared with
the initial hand pose, our method more accurately estimates
the joints that are occluded during interaction with objects.

Conclusion

In this work, we propose Keypoint-Fusion for RGB-D
based 3D hand pose estimation, which effectively eliminates
intra-modal ambiguous information and efficiently performs
cross-modal feature interaction. We first propose a Key-
point Feature Aggregation Module to aggregate local fea-
tures around the hand joints, and leverage the inherent ad-
vantages of complementary modalities to provide disam-
biguation clues mutually. In particular, during RGB aggrega-
tion, we construct a per-joint local geometric structure repre-
sentation using depth data, to clarify the ambiguous weights
of RGB feature pixels. In turn, during depth aggregation,
we project RGB features to the 3D point cloud space to
complement the edge information lost due to depth holes
and noise. Then, our method efficiently performs cross-
modal feature interaction based on sparse keypoints. Exper-
iments on DexYCB and HO-3D datasets demonstrate that
our method significantly outperforms other SOTA methods.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

3762



Acknowledgments
This work was supported by the National Natural Sci-
ence Foundation of China under Grants (62171057,
62101064, 62201072, U23B2001, 62001054, 62071067),
the Ministry of Education and China Mobile Joint Fund
(MCM20200202, MCM20180101), Beijing University of
Posts and Telecommunications-China Mobile Research In-
stitute Joint Innovation Center, in part by the Project funded
by China Postdoctoral Science Foundation (2023TQ0039).

References
Bai, X.; Hu, Z.; Zhu, X.; Huang, Q.; Chen, Y.; Fu, H.; and
Tai, C.-L. 2022. Transfusion: Robust lidar-camera fusion for
3d object detection with transformers. In CVPR, 1090–1099.
Chao, Y.-W.; Yang, W.; Xiang, Y.; Molchanov, P.; Handa,
A.; Tremblay, J.; Narang, Y. S.; Van Wyk, K.; Iqbal, U.;
Birchfield, S.; et al. 2021. DexYCB: A benchmark for cap-
turing hand grasping of objects. In CVPR, 9044–9053.
Chen, X.; Lin, K.-Y.; Wang, J.; Wu, W.; Qian, C.; Li, H.;
and Zeng, G. 2020. Bi-directional cross-modality feature
propagation with separation-and-aggregation gate for RGB-
D semantic segmentation. In ECCV, 561–577. Springer.
Chen, X.; Liu, Y.; Ma, C.; Chang, J.; Wang, H.; Chen, T.;
Guo, X.; Wan, P.; and Zheng, W. 2021. Camera-space hand
mesh recovery via semantic aggregation and adaptive 2d-1d
registration. In CVPR, 13274–13283.
Chen, X.; Zhang, T.; Wang, Y.; Wang, Y.; and Zhao, H.
2022a. Futr3d: A unified sensor fusion framework for 3d
detection. arXiv preprint arXiv:2203.10642.
Chen, Z.; Li, Z.; Zhang, S.; Fang, L.; Jiang, Q.; and Zhao,
F. 2022b. Autoalignv2: Deformable feature aggregation for
dynamic multi-modal 3d object detection. arXiv preprint
arXiv:2207.10316.
Chen, Z.; Li, Z.; Zhang, S.; Fang, L.; Jiang, Q.; Zhao, F.;
Zhou, B.; and Zhao, H. 2022c. Autoalign: Pixel-instance
feature aggregation for multi-modal 3d object detection.
arXiv preprint arXiv:2201.06493.
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; et al. 2020. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929.
Du, K.; Lin, X.; Sun, Y.; and Ma, X. 2019. Crossinfonet:
Multi-task information sharing based hand pose estimation.
In CVPR, 9896–9905.
Fang, L.; Liu, X.; Liu, L.; Xu, H.; and Kang, W. 2020. Jgr-
p2o: Joint graph reasoning based pixel-to-offset prediction
network for 3d hand pose estimation from a single depth
image. In ECCV, 120–137. Springer.
Ge, L.; Ren, Z.; Li, Y.; Xue, Z.; Wang, Y.; Cai, J.; and Yuan,
J. 2019. 3d hand shape and pose estimation from a single
rgb image. In CVPR, 10833–10842.
Ge, L.; Ren, Z.; and Yuan, J. 2018. Point-to-point regression
pointnet for 3d hand pose estimation. In ECCV, 475–491.

Hampali, S.; Rad, M.; Oberweger, M.; and Lepetit, V. 2020.
Honnotate: A method for 3d annotation of hand and object
poses. In CVPR, 3196–3206.
Hampali, S.; Sarkar, S. D.; Rad, M.; and Lepetit, V. 2022.
Keypoint transformer: Solving joint identification in chal-
lenging hands and object interactions for accurate 3d pose
estimation. In CVPR, 11090–11100.
Hasson, Y.; Varol, G.; Tzionas, D.; Kalevatykh, I.; Black,
M. J.; Laptev, I.; and Schmid, C. 2019. Learning joint re-
construction of hands and manipulated objects. In CVPR,
11807–11816.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In CVPR, 770–778.
Hu, X.; Yang, K.; Fei, L.; and Wang, K. 2019. Acnet: Atten-
tion based network to exploit complementary features for
rgbd semantic segmentation. In 2019 IEEE International
Conference on Image Processing, 1440–1444. IEEE.
Huang, L.; Tan, J.; Liu, J.; and Yuan, J. 2020a. Hand-
transformer: non-autoregressive structured modeling for 3d
hand pose estimation. In ECCV, 17–33. Springer.
Huang, L.; Tan, J.; Meng, J.; Liu, J.; and Yuan, J. 2020b.
Hot-net: Non-autoregressive transformer for 3d hand-object
pose estimation. In Proceedings of the 28th ACM Interna-
tional Conference on Multimedia, 3136–3145.
Huang, W.; Ren, P.; Wang, J.; Qi, Q.; and Sun, H. 2020c.
Awr: Adaptive weighting regression for 3d hand pose esti-
mation. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, 11061–11068.
Iqbal, U.; Molchanov, P.; Gall, T. B. J.; and Kautz, J. 2018.
Hand pose estimation via latent 2.5 d heatmap regression. In
ECCV, 118–134.
Kim, Y.; Park, K.; Kim, M.; Kum, D.; and Choi, J. W.
2022. 3D Dual-Fusion: Dual-Domain Dual-Query Camera-
LiDAR Fusion for 3D Object Detection. arXiv preprint
arXiv:2211.13529.
Kulon, D.; Guler, R. A.; Kokkinos, I.; Bronstein, M. M.; and
Zafeiriou, S. 2020. Weakly-supervised mesh-convolutional
hand reconstruction in the wild. In CVPR, 4990–5000.
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