Compact HD Map Construction via Douglas-Peucker Point Transformer

Authors

  • Ruixin Liu Xi'an Jiaotong University
  • Zejian Yuan Xi‘an Jiaotong University

DOI:

https://doi.org/10.1609/aaai.v38i4.28160

Keywords:

CV: Vision for Robotics & Autonomous Driving, CV: Object Detection & Categorization

Abstract

High-definition (HD) map construction requires a comprehensive understanding of traffic environments, encompassing centimeter-level localization and rich semantic information. Previous works face challenges in redundant point representation or high-complexity curve modeling. In this paper, we present a flexible yet effective map element detector that synthesizes hierarchical information with a compact Douglas-Peucker (DP) point representation in a transformer architecture for robust and reliable predictions. Specifically, our proposed representation approximates class-agnostic map elements with DP points, which are sparsely located in crucial positions of structures and can get rid of redundancy and complexity. Besides, we design a position constraint with uncertainty to avoid potential ambiguities. Moreover, pairwise-point shape matching constraints are proposed to balance local structural information of different scales. Experiments on the public nuScenes dataset demonstrate that our method overwhelms current SOTAs. Extensive ablation studies validate each component of our methods. Codes will be released at https://github.com/sweety121/DPFormer.

Published

2024-03-24

How to Cite

Liu, R., & Yuan, Z. (2024). Compact HD Map Construction via Douglas-Peucker Point Transformer. Proceedings of the AAAI Conference on Artificial Intelligence, 38(4), 3702-3710. https://doi.org/10.1609/aaai.v38i4.28160

Issue

Section

AAAI Technical Track on Computer Vision III