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Abstract

Driven by generative AI and the Internet, there is an in-
creasing availability of a wide variety of images, leading to
the significant and popular task of cross-domain image re-
trieval. To reduce annotation costs and increase performance,
this paper focuses on an untouched but challenging problem,
i.e., cross-domain image retrieval with partial labels (PCIR).
Specifically, PCIR faces great challenges due to the ambigu-
ous supervision signal and the domain gap. To address these
challenges, we propose a novel method called disambiguated
domain alignment (DiDA) for cross-domain retrieval with
partial labels. In detail, DiDA elaborates a novel prototype-
score unitization learning mechanism (PSUL) to extract com-
mon discriminative representations by simultaneously dis-
ambiguating the partial labels and narrowing the domain
gap. Additionally, DiDA proposes a prototype-based domain
alignment mechanism (PBDA) to further bridge the inherent
cross-domain discrepancy. Attributed to PSUL and PBDA,
our DiDA effectively excavates domain-invariant discrimina-
tion for cross-domain image retrieval. We demonstrate the
effectiveness of DiDA through comprehensive experiments
on three benchmarks, comparing it to existing state-of-the-art
methods. Code available: https://github.com/lhrrrrrr/DiDA.

1 Introduction
With the proliferation of digital platforms and the con-
tinuous generation of visual content, the need to orga-
nize, search, and retrieve images effectively has become
paramount. However, traditional image retrieval approaches
often suffer from limitations when confront with different
visual domains, e.g., medical images, art, fashion, and satel-
lite imagery. This is where cross-domain image retrieval
(CIR) has emerged as a promising research direction to over-
come these challenges, facilitating the exploration of images
across diverse domains. Given a query image from one do-
main, CIR aims to retrieve images from different domains
based on the similarity of visual representations. Notably,
CIR has important research implications in deepening the
comprehension of transferable visual features, along with
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Figure 1: Two images from different domains are equipped
with partial labels.

practical applications in many scenarios such as surveillance
(Liu et al. 2019) and e-commerce platforms (Lei et al. 2021).

One of the major challenges faced by CIR is the domain
gap caused by inconsistent feature distributions across dis-
tinct domains. To tackle this challenge, a rich line of stud-
ies (Sangkloy et al. 2016; Bhunia et al. 2022; Sain et al.
2023; Wang et al. 2022b; Sain et al. 2021; Wang et al.
2022c,a, 2023a) have been proposed. Among them, fully su-
pervised learning for CIR achieves excellent performance at-
tributed to its reliance on precise annotated labels. However,
acquiring such precise annotations for diverse domains can
be costly, time-consuming, and even require expert knowl-
edge. Undoubtedly, these limitations hinder the scalability
and practicality of existing CIR methods when dealing with
large-scale datasets or evolving domains. To overcome the
need for annotations, several unsupervised CIR (UCIR) ap-
proaches (Kim et al. 2021; Wang et al. 2023b) have been
proposed. While these methods could learn latent relation-
ships and semantics within and across domains without la-
bels or correspondence, their retrieval performance is not yet
promising.

To strike a balance between high labeling costs and
achieving excellent performance, this paper introduces a
new paradigm called cross-domain image retrieval with par-
tial labels (PCIR). In PCIR, each sample is equipped with a
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set of candidate labels, with the true label hidden within this
set. In other words, each training instance carries an anno-
tation that contains ambiguity. This paradigm reflects real-
world cross-domain data annotation scenarios where ambi-
guity exists in labeling tasks. For instance, in Fig. 1, the
image labeled as “Radio” presents an inherent ambiguity
that may make it challenging for the annotator to distinguish
whether it belongs to the category of “Radio” or “Oven”.
Similarly, the image labeled as “Oven” from another domain
also faces the same issue. Consequently, the annotator can
consider both options as potential labels, resulting in partial
labels. To the best of our knowledge, PCIR has not been ex-
plored in previous studies. Compared to CIR and UCIR, the
challenge of PCIR lies in learning discriminative represen-
tations from partial labels with ambiguity while bridging the
inherent gap across different domains.

To tackle the challenge, we propose a novel method
termed DiDA. This method effectively unifies two mech-
anisms, namely the prototype-score unitization learning
mechanism (PSUL) and the prototype-based domain align-
ment mechanism (PBDA), to accomplish the task of PCIR.
Unlike existing approaches in partial label learning, PSUL
enjoys the advantage of simultaneously achieving label dis-
ambiguation and mitigating domain gaps. To be specific,
PSUL transforms the prototypes from different domains into
prototype-scores and progressively brings them closer to the
target unit matrix. This process not only bridges the proto-
types from distinct domains but also facilitates the network
to learn more accurate class probabilities, thus promoting la-
bel disambiguation. Additionally, to enhance domain align-
ment, PBDA computes the similarities between learned rep-
resentations and prototypes from different domains. By re-
ducing the discrepancy between these similarities, PBDA
further narrows the cross-domain gap.

The main contributions are summarized as follows: (1)
We propose a novel method called Disambiguated Domain
Alignment (DiDA) to tackle an untouched problem, i.e.,
cross-domain image retrieval with partial labels. To the
best of our knowledge, this work could be the first study
on this problem. (2) A novel prototype-score unitization
learning mechanism (PSUL) is presented to learn common
discrimination by alleviating the domain gap and promot-
ing label disambiguation. (3) A novel prototype-based do-
main alignment mechanism (PBDA) is proposed to learn
domain-invariant information and further eliminate the in-
herent discrepancy across different domains. (4) Extensive
experiments are conducted on three widely-used bench-
marks, showcasing the promising performance of DiDA for
the PCIR task. Notably, our DiDA consistently delivers re-
markably stable performance as the partial rate increases,
outperforming existing state-of-the-art methods.

2 Related Work
2.1 Partial Label Learning
To learn the objective information from partial labels, nu-
merous approaches are proposed to alleviate the ambigui-
ties and improve the performance of the model. One typical
strategy is to consider each candidate label equally while av-

eraging the modeling outputs as prediction, named average-
based methods (Hüllermeier and Beringer 2006; Cour, Sapp,
and Taskar 2011; Zhang and Yu 2015). However, their per-
formance is generally less effective than identification-based
methods (Jin and Ghahramani 2002; Nguyen and Caru-
ana 2008; Liu and Dietterich 2012; Yu and Zhang 2016).
Identification-based methods treat the label as a latent vari-
able and iteratively evolve the confidence of each candidate
label. For example, Jin and Ghahramani (2002) adopt the
maximum likelihood criterion and Yu and Zhang (2016) use
the maximum margin criterion to identify the true label.

With the advances in deep neural networks, partial la-
bel learning (PLL) has drawn great attention. For instance,
Feng et al. (2020) develop a risk-consistent method and a
classifier-consistent method. Moreover, Wen et al. (2021)
design a leveraged weighted loss to consider the impact of
partial labels and non-partial labels simultaneously. Moti-
vated by contrastive learning, PICO (Wang et al. 2021b)
is presented to learn discriminative representations and em-
ploy the prototypes to disambiguate the partial label. Mean-
while, Wu, Wang, and Zhang (2022) rethink the utiliza-
tion of consistency regularization and employ non-partial
labels to perform supervised learning. After that, Xia et al.
(2023) propose a guided prototypical classifier to facilitate
the model to learn more effective representations. However,
the aforementioned approaches are all implemented in one
specific domain and the performance in cross-domain sce-
narios could be not satisfactory due to the huge domain gap.
Therefore, PLL in cross-domain scenarios is still an unex-
plored and challenging issue.

2.2 Cross-domain Image Retrieval
Image retrieval is a fundamental task in computer vision that
aims to retrieve relevant images from a large database based
on a given query image. Cross-domain image retrieval (CIR)
extends the conventional image retrieval task by address-
ing the challenge of searching for relevant images across
different domains. To mitigate the domain gap and pro-
mote retrieval performance, numerous methods have been
proposed. For example, Sangkloy et al. (2016) utilize both
instance-level similarity and category-level similarity and
Song et al. (2017) introduce a higher-order learnable energy
function (HOLEF) based loss. Moreover, a transferable cou-
pled network (Wang et al. 2021a) is presented for zero-shot
sketch-based image retrieval. Motivated by meta-learning,
Sain et al. (2021) propose a style-agnostic SBIR model
which could dynamically adapt to unseen sketch styles. In
addition, there are several approaches (Kim et al. 2021;
Wang et al. 2023b) for solving unsupervised cross-domain
retrieval (UCIR) tasks. For instance, Wang et al. (2023b)
employ a correspondence-free domain alignment (CoDA)
strategy to boost retrieval performance without correspon-
dence and category annotations. In this paper, we focus on
a new paradigm, i.e., cross-domain image retrieval with par-
tial labels (PCIR). To the best of our knowledge, PCIR has
not been touched in previous studies. Compared with CIR
and UCIR, PCIR involves learning domain-invariant infor-
mation from ambiguous annotation information, which is
challenging but meaningful.
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Figure 2: The pipeline of our DiDA for cross-domain image retrieval with partial labels. PSUL (Lcls and Lpsu) facilitates the
model to extract discriminative and domain-invariant representations while promoting label disambiguation. Meanwhile, PBDA
(Lpda) further bridges the inherent gap across different domains.

3 Methodology
3.1 Problem Formulation
Notations. For a clear presentation, we first give the for-
mal definition of the cross-domain retrieval task with partial
labels (PCIR). Let X be the input space, Y = {1, 2, ...,K}
be the label space with K classes. Given two sets of train-
ing datasets DA = {(xA

i , Y
A
i )}NA

i=1 from domain A and
DB = {(xB

i , Y
B
i )}NB

i=1 from domain B, PCIR assumes that
each input image x ∈ X has a candidate label set Y ⊆ Y .
We only know the true label is included in Y but it’s not
clear which one is. Further, we define the vector form of
Y as y ∈ RK , where the element corresponding to the
class in Y is 1 and the rest are 0. Our goal is to learn a
feature encoder f (·) which is able to learn discriminative
representation q from partial labels and efficiently bridge
the domain gap. Formally, given a data point x, the em-
bedded features can be computed by q = f(x) ∈ RL,
where L is the dimension of the common space. Meanwhile,
we define a softmax classifier g(·) to transform the repre-
sentation q into the probability distribution z = g(q) ∈
RK . Additionally, to enhance the generalization and ro-
bustness of the network, we construct weak augmentation
Augw(·) and strong augmentation Augs(·). The representa-
tions of all the augmentations from domain A are denoted as
QA = {QA

w ∪ QA
s }, where QA

w = {f(Augw(xA
i ))}

NA
i=1 and

QA
s = {f(Augs(x

A
i ))}

NA
i=1. Meanwhile, the probability dis-

tributions of all the augmentations are ZA = {ZA
w ∪ ZA

s }.
Similarly, we have QB and ZB for domain B.

Overview. To disambiguate partial labels and bridge the
domain gap, a novel cross-domain image retrieval method
(DiDA) is proposed to learn common discrimination from
partial labels while aligning the domains. As shown in

Fig. 2, we present a prototype-score unitization learning
mechanism (PSUL) to learn domain-invariant features and
promote label disambiguation. Furthermore, we propose a
prototype-based domain alignment mechanism (PBDA) to
further narrow the cross-domain gap. The overall objective
function could be formulated as:

L = Lcls + α(t) · Lpsu︸ ︷︷ ︸
PSUL

+ β(t) · Lpda︸ ︷︷ ︸
PBDA

, (1)

where Lcls and Lpsu are the objectives employed by the
prototype-score unitization learning mechanism (PSUL) and
Lpda is the objective adopted by the prototype-based domain
alignment mechanism (PBDA). Both α(t) and β(t) are dy-
namic trade-off parameters increasing with the epoch num-
ber t. To train the proposed DiDA, we minimize the loss
function in a batch-by-batch manner by using a stochastic
gradient descent optimizer. In the following sections, we will
elaborate on the proposed DiDA approach.

3.2 Prototype-Score Unitization Learning
To excavate the discrimination and domain-invariant infor-
mation from partial labels, we rethink the characteristics of
the prototype and propose the prototype-score unitization
learning mechanism, which can facilitate the model to en-
capsulate more discriminative representations and bridge the
domain gap while achieving label disambiguation. In this
section, we first describe the label disambiguation approach
and then introduce the disambiguation-based prototype set-
ting. Finally, the prototype-score unitization learning mech-
anism is proposed.

Label disambiguation. The core of label disambiguation
is how to identify the ground truth from the ambiguous par-
tial label y and then iteratively train the model relying on
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the guidance of the disambiguated label ŷ. To achieve label
disambiguation, we adopt a classifier-based disambiguation
strategy as follows:

ŷA = zA ◦ yA, ŷB = zB ◦ yB , (2)
where zA ∈ ZA

w and zB ∈ ZB
w . The element in z can

be considered as the probability that sample x is the corre-
sponding class, so we employ the Hadamard product ◦ of the
probability distribution z and the partial label y as the new
disambiguated label ŷ. Meanwhile, the new disambiguated
label ŷ is normalized to the probability distribution.

To further promote label disambiguation and enhance the
performance, we adopt a classification loss as follows:

LA
cls =

∑
zA∈ZA

DKL(z
A||ŷA), (3)

where DKL is the Kullback-Leibler (KL) divergence which
is used to quantify the difference between two probability
distributions. Specifically, LA

cls measures the KL divergence
of zA and ŷA. At the beginning of training, we use normal-
ized y as the initial ŷ. Similarly, we have the classification
loss function LB

cls for domain B as follows:

LB
cls =

∑
zB∈ZB

DKL(z
B ||ŷB). (4)

Finally, the total classification loss Lcls can be written as:
Lcls = LA

cls + LB
cls. (5)

Disambiguation-based prototype. Prototypes serve as
compact representations of classes in a suitable embedding
space, allowing the model to capture the essential charac-
teristics of each class and enable efficient comparison and
classification of new samples. To begin with, we describe
the definition of the prototypes:

PA =
[
pA
1 pA

2 · · · pA
K

]
, (6)

PB =
[
pB
1 pB

2 · · · pB
K

]
, (7)

where PA ∈ RL×K and PB ∈ RL×K represent the proto-
types of domain A and domain B respectively and pk ∈ RL

denotes the prototype of the corresponding class k. Mean-
while, both PA and PB are initialized with all zeros. In
order to better evolve the prototypes, we use pseudo labels
k̂A and k̂B to respectively select the most probable class for
the samples xA and xB :

k̂A = argmax (zA ◦ yA), (8)

k̂B = argmax (zB ◦ yB). (9)
Specifically, the class with the largest probability in the par-
tial label is chosen as pseudo label k̂ at every epoch. Guided
by the pseudo labels k̂A and k̂B , we adopt a moving-average
mechanism to stably update the class prototypes pA

k and pB
k

with the normalized representations qA and qB :
pA
k = λ(t)pA

k + (1− λ(t))qA, if k̂A = k, (10)

pB
k = λ(t)pB

k + (1− λ(t))qB , if k̂B = k, (11)
where qA ∈ QA

w , qB ∈ QB
w , λ(t) is a dynamic momentum

parameter and the prototypes pA
k and pB

k are further normal-
ized. Intuitively, as the training progresses, the accuracy of
identifying the pseudo label k̂ is increasing and the learned
representation q is more discriminative. Therefore, we set
λ(t) ∈ [0.9, 0.5] to gradually decrease with the epoch t.

Prototype-score unitization. As aforementioned, we re-
consider the essential properties of the prototypes. For each
class k, there is a specific prototype pk to represent the cen-
ter of the class. We argue that since the class k of each pro-
totype pk is certain, we can utilize it as supervisory infor-
mation of the prototype pk for network training, which is
referred to as prototype-score unitization learning. Specifi-
cally, we transfer the prototype pk to the prototype-score sk
by the classifier g(·) and perform fully supervised learning
with the target unit vector ek. The prototype-score matrices
SA ∈ RK×K and SB ∈ RK×K are defined as:

SA = g(PA) =
[
sA1 sA2 · · · sAK

]
, (12)

SB = g(PB) =
[
sB1 sB2 · · · sBK

]
, (13)

where sAk = g(pA
k ) ∈ RK and sBk = g(pB

k ) ∈ RK are the
prototype-score of the k-th prototype of domain A and do-
main B respectively. We further define the target unit matrix
of prototype-score matrices SA and SB as EK ∈ RK×K :

EK = [e1 e2 · · · eK ] , (14)

where ek serves as the corresponding target unit vector of
sAk and sBk and ek ∈ RK represents a one-hot vector with 1
for the k-th class and 0 for other classes. Obviously, our pur-
pose is to make the prototype-score matrices SA and SB ap-
proximate the target unit matrix EK . Therefore, we design a
loss function LA

psu to unitize the prototype-score matrix SA

to EK :
LA
psu =

∑
k∈Y

U(eAk , s
A
k ), (15)

where U(·, ·) denotes the cross-entropy loss. Similarly, we
define the prototype-score unitization loss of domain B as:

LB
psu =

∑
k∈Y

U(eBk , s
B
k ). (16)

Finally, the total prototype-score unitization loss can be writ-
ten as:

Lpsu = LA
psu + LB

psu. (17)

By minimizing Eq. (17), our model not only learns com-
mon discriminative representations but also boosts label dis-
ambiguation. Detailly, as the ambiguity of the labels de-
creases, the network could obtain more accurate pseudo la-
bels to correctly update the prototypes for prototype-score
unitization learning. Therefore, driven by Lpsu, the network
can learn more accurate class probabilities, thus enhancing
disambiguation. Obviously, promising positive feedback is
formed. Moreover, the cross-domain discrepancy is allevi-
ated as the prototype-score matrices of different domains si-
multaneously converge to the target unit matrix. Thanks to
such a mechanism, Lpsu endows our DiDA with the ability
to learn domain-invariant features as well.

3.3 Prototype-Based Domain Alignment
With prototype-score unitization learning, the model learns
discriminative representations while mitigating the domain
gap. However, the discrepancy between different domains
still exists and needs to be eliminated. Hence, it is nec-
essary to further align the distinct domains and excavate
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OfficeHome Office31 ImageCLEFMethod
0.1 0.2 0.3 0.1 0.2 0.3 0.3 0.4 0.5

best 0.733 0.733 0.733 0.940 0.940 0.940 0.787 0.787 0.787Supervised last 0.714 0.714 0.714 0.934 0.934 0.934 0.762 0.762 0.762

best 0.452 0.452 0.452 0.738 0.738 0.738 0.709 0.709 0.709CDS (Kim et al. 2021) last 0.414 0.414 0.414 0.663 0.663 0.663 0.591 0.591 0.591
best 0.486 0.486 0.486 0.788 0.788 0.788 0.727 0.727 0.727CoDA (Wang et al. 2023b) last 0.482 0.482 0.482 0.781 0.781 0.781 0.721 0.721 0.721

best 0.639 0.505 0.418 0.911 0.839 0.748 0.766 0.747 0.716CC (Feng et al. 2020) last 0.576 0.499 0.410 0.891 0.811 0.703 0.743 0.730 0.703
best 0.641 0.505 0.418 0.910 0.841 0.746 0.764 0.744 0.710RC (Feng et al. 2020) last 0.602 0.499 0.411 0.894 0.813 0.706 0.740 0.726 0.696
best 0.645 0.505 0.419 0.911 0.840 0.746 0.764 0.742 0.710PRODEN (Lv et al. 2020) last 0.607 0.501 0.414 0.897 0.817 0.710 0.744 0.729 0.699
best 0.642 0.503 0.418 0.905 0.834 0.742 0.763 0.743 0.711LWC (Wen et al. 2021) last 0.605 0.498 0.410 0.893 0.806 0.704 0.738 0.722 0.690
best 0.688 0.590 0.343 0.921 0.896 0.817 0.741 0.734 0.721PICO (Wang et al. 2021b) last 0.673 0.579 0.268 0.915 0.893 0.809 0.721 0.727 0.717
best 0.676 0.556 0.473 0.924 0.879 0.814 0.771 0.753 0.725DPLL (Wu, Wang, and Zhang 2022) last 0.626 0.550 0.467 0.912 0.858 0.784 0.719 0.721 0.694
best 0.662 0.525 0.437 0.923 0.866 0.792 0.750 0.724 0.691PaPi (Xia et al. 2023) last 0.647 0.502 0.404 0.883 0.803 0.699 0.668 0.632 0.595

best 0.712 0.653 0.594 0.930 0.911 0.890 0.781 0.771 0.764DiDA (Ours) last 0.704 0.650 0.591 0.924 0.905 0.886 0.765 0.762 0.755

Table 1: The average mAP retrieval performance comparison for our DiDA and other compared methods on OfficeHome,
Office31 and ImageCLEF datasets under different partial rates (0.1-0.5). The best performance results are shown in bold.

domain-invariant information. For this purpose, we adopt a
prototype-based domain alignment loss:

LA
pda =

∑
qA∈QA

∑
k∈Y

|qA · pA
k − qA · pB

k |. (18)

Specifically, we compute the similarities of the normalized
representation qA and the prototypes pA

k and pB
k respec-

tively, and then employ the MAE loss to minimize the dis-
crepancy between them. Meanwhile, we adopt both weakly
augmented and strongly augmented images as inputs to en-
courage robustness and generalization. Similarly, we have
the prototype-based domain alignment loss for domain B:

LB
pda =

∑
qB∈QB

∑
k∈Y

|qB · pB
k − qB · pA

k |. (19)

Finally, the total prototype-based domain alignment loss can
be written as follows:

Lpda = LA
pda + LB

pda. (20)

As the Lpda decreases, the model focuses more on the com-
mon information across different domains. Both the repre-
sentations from different domains and the domain-specific
prototypes gradually converge to the common space.

4 Experiments
4.1 Datasets
To evaluate the effectiveness of our method, we con-
duct extensive comparison experiments on three cross-
domain benchmark datasets, i.e., Office31 (Saenko et al.

2010), OfficeHome (Venkateswara et al. 2017) and Image-
CLEF (Long et al. 2017). These datasets are briefly intro-
duced as follows: Office31: Office31 is a benchmark dataset
with three object domains: Amazon (A), DSLR (D) and We-
bcam (W). The dataset consists of 31 categories of images
and the three domains contain 2817, 498, and 795 images
respectively. We conduct six retrieval tasks, i.e., A-D, A-
W, D-A, D-W, W-A and W-D. OfficeHome: OfficeHome
is a large dataset of 15,500 images which has 65 categories
and four domains: Artistic (A), Clipart (C), Product (P), and
Real-world (R). Image-CLEF: The Image-CLEF dataset is
composed of four domains: Bing (B), Caltech256 (C), Im-
ageNet ILSVRC 2012 (I), and Pascal VOC 2012 (P). It has
12 categories and each domain has 600 images. We perform
twelve retrieval tasks on OfficeHome and Image-CLEF re-
spectively. The above datasets are randomly partitioned into
training sets and testing sets in an 80-20 ratio.

4.2 Implementation Detail
In DiDA, we utilize the ResNet-50 network as the encoder
and initialize it with parameters pre-trained in ImageNet.
Note that, the last fully connected layer is substituted by a
512-D randomly initialized linear layer and the output fea-
tures are l2-normalized. Meanwhile, the classifier consists
of a linear layer and is initialized by the Xavier initialization
method (Glorot and Bengio 2010). Furthermore, we adopt
the Stochastic Gradient Descent (SGD) optimizer with a mo-
mentum of 0.9 and set the learning rate to 0.003 and 0.0001
for the encoder and classifier respectively. For a fair compar-
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Cross-domain Retrieval Task on OfficeHome Dataset (Partial Rate:0.1)
Method A-C A-P A-R C-A C-P C-R P-A P-C P-R R-A R-C R-P Avg

Supervised 0.683 0.678 0.660 0.625 0.787 0.723 0.658 0.788 0.793 0.648 0.731 0.790 0.714

CDS 0.327 0.438 0.492 0.282 0.360 0.381 0.402 0.377 0.542 0.441 0.397 0.523 0.414
CoDA 0.347 0.494 0.530 0.329 0.421 0.440 0.502 0.446 0.648 0.531 0.457 0.650 0.482

CC 0.525 0.593 0.561 0.400 0.652 0.575 0.483 0.652 0.726 0.452 0.587 0.707 0.576
RC 0.526 0.617 0.585 0.438 0.685 0.608 0.520 0.674 0.738 0.491 0.604 0.737 0.602
PRODEN 0.536 0.609 0.583 0.439 0.692 0.615 0.531 0.682 0.752 0.494 0.617 0.734 0.607
LWC 0.541 0.611 0.588 0.432 0.680 0.608 0.525 0.680 0.751 0.496 0.605 0.737 0.605
PICO 0.579 0.652 0.639 0.573 0.746 0.678 0.630 0.735 0.778 0.604 0.678 0.782 0.673
DPLL 0.552 0.607 0.600 0.413 0.726 0.663 0.528 0.725 0.773 0.497 0.668 0.757 0.626
PaPi 0.563 0.623 0.613 0.498 0.722 0.681 0.585 0.706 0.777 0.563 0.662 0.769 0.647

DiDA (Ours) 0.628 0.677 0.662 0.612 0.764 0.714 0.656 0.767 0.793 0.657 0.712 0.801 0.704

Table 2: The mAP retrieval performance (obtained from the last epoch) comparison for our DiDA and other compared methods
on the OfficeHome dataset under partial rate: 0.1. The best performance results are shown in bold.

ison with baselines, the batch size is set to 16 and the total
epochs are 50. All the experiments are carried out using Py-
Torch with two Nvidia GeForce RTX 3090 GPUs.

4.3 Experimental Setup
To validate the effectiveness of our proposed method, we
compare our DiDA with seven PLL methods, two unsu-
pervised cross-domain methods and one fully supervised
method with true labels. The compared PLL methods are
as follows: CC and RC (Feng et al. 2020), PRODEN (Lv
et al. 2020), LWC (Wen et al. 2021), PICO (Wang et al.
2021b), DPLL (Wu, Wang, and Zhang 2022) and PaPI (Xia
et al. 2023). The fully supervised method is implemented
by the cross-entropy loss with ground-truth labels. Addition-
ally, we adopt CDS (Kim et al. 2021) and CoDa (Wang et al.
2023b) as the unsupervised methods. For a fair comparison,
all the methods utilize the same 512-D features from the
encoder for retrieval. Moreover, our evaluation metric em-
ploys mean average precision (mAP) on all retrieved results
and we report the mAP results for all methods. To more rig-
orously evaluate the robustness of the methods under var-
ious label ambiguities, we set three different partial rates
for each dataset based on the number of categories of the
datasets, i.e., {0.1, 0.2, 0.3} for OfficeHome and Office31,
{0.3, 0.4, 0.5} for Image-CLEF.

4.4 Comparison with State-of-the-Art Methods
We conduct cross-domain image retrieval with partial la-
bels on the three datasets to evaluate the performance of
our DiDA and the compared methods. The experimental re-
sults under different partial rates are reported in Tables 1
and 2, with additional results available in the Supplemen-
tary. As shown in these tables, our DiDA is superior to the
existing methods on the three datasets. From the experimen-
tal results, we could obtain the following observations: (1)
As shown in Table 1, our DiDA outperforms other base-
lines on all datasets with different partial rates. For exam-
ple, with the partial rate of 0.3, our DiDA exceeds DPLL
by 0.121 on the OfficeHome dataset and PICO by 0.073 on

the Office31 dataset. It demonstrates that DiDA more ef-
ficiently learns common discriminative features from par-
tial labels while bridging the domain gap. (2) Since PLL
methods (PICO, DPLL, PaPi, etc.) are designed for domain-
specific tasks, they cannot achieve desirable results on multi-
domain tasks. For example, they even underperform the un-
supervised cross-domain retrieval methods when the partial
rate is large. This reveals that the cross-domain discrepancy
significantly impacts their performances. (3) In general, the
performance of training with partial labels will be inferior
to the fully supervised method. However, our method could
achieve comparable even better performance to the fully su-
pervised method when the partial rate is relatively low. For
instance, as shown in Table 2, our DiDA surpasses the fully
supervised method by 0.011 on the R-P retrieval task of the
OfficeHome dataset, which shows the superiority of our ap-
proach. (4) Obviously, as the partial rate increases, the ambi-
guity of data labels also increases, resulting in a significant
decline in the performance of the compared methods. How-
ever, our DiDA can against this increasing ambiguity more
effectively. According to Table 1, as the partial rate increases
from 0.1 to 0.3, the average mAP of our method reduces by
only 0.118 on the OfficeHome dataset, while PICO, DPLL
and PaPi decrease by 0.345, 0.203 and 0.225, respectively.

4.5 Ablation Study
In this section, we investigate the contribution of each pro-
posed component (i.e., loss Lcls, Lpsu and Lpda) for cross-
domain image retrieval with partial labels. For this purpose,
we conduct three variants of our method, i.e., Variant 1:
DiDA with Lcls only; Variant 2: DiDA with Lcls and Lpsu;
Variant 3: DiDA with Lcls and Lpda. For a fair compari-
son, we perform ablation experiments on the OfficeHome
and Office31 datasets under the same experimental settings.
From the experimental results shown in Table 3, one can
observe that Lpsu can dramatically boost the performance,
which indicates its effectiveness in label disambiguation and
domain-gap reduction. Meanwhile, the results also demon-
strate that Lpda further aligns the distinct domains. In con-
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clusion, DiDA can effectively enhance the performance on
distinct datasets under different partial rates.

OfficeHome Office31Method 0.1 0.2 0.3 0.1 0.2 0.3

Variant 1 0.673 0.560 0.477 0.919 0.861 0.788
Variant 2 0.698 0.644 0.573 0.923 0.904 0.868
Variant 3 0.698 0.583 0.503 0.923 0.893 0.828
Full DiDA 0.704 0.650 0.591 0.924 0.905 0.886

Table 3: The average mAP retrieval performance (obtained
from the last epoch) comparison for the DiDA and its three
variants on OfficeHome and Office31 datasets.

4.6 Effect of Coefficient α and β

To analyze the impact of the coefficient α and β in Eq. (1),
we conduct parameter analysis experiments on the Office-
Home A-C task and Office31 D-A task. As shown in Fig. 3,
we plot mAP scores w.r.t. different parameters of α and β.
From the figure, we can observe that the model yields a sta-
ble performance when α and β are in two relatively large
ranges (i.e., α ∈ [5, 10] and β ∈ [0.01, 0.1]) respectively.

0 1.0 5.0 7.0 10.0 20.0 50.0
α

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55

m
AP

Partial Rate:0.2
Partial Rate:0.3

(a) α on OfficeHome A-C

0 0.001 0.01 0.05 0.1 0.5 1.0
β

0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55

m
AP

Partial Rate:0.2
Partial Rate:0.3

(b) β on OfficeHome A-C

0 1.0 5.0 7.0 10.0 20.0 50.0
α

0.70
0.72
0.74
0.76
0.78
0.80
0.82
0.84

m
AP

Partial Rate:0.2
Partial Rate:0.3

(c) α on Office31 D-A

0 0.001 0.01 0.05 0.1 0.5 1.0
β

0.55

0.60

0.65

0.70

0.75

0.80

0.85

m
AP

Partial Rate:0.2
Partial Rate:0.3

(d) β on Office31 D-A

Figure 3: PCIR performance of DiDA in terms of mAP
scores versus different values of α and β on OfficeHome
A-C task and Office31 D-A task.

4.7 Performance of Label Disambiguation
To visually investigate the performance of label disambigua-
tion, we plot the label distance (i.e., the Euclidean distance
between the disambiguated label and the true label) versus
epochs for our DiDA, DiDA without Lpsu and the compared
methods (i.e., DPLL and PaPi). As shown in Fig. 4, we con-
duct the experiments on the Office31 A-D task under partial
rates of 0.1 and 0.2. It is evident that the proposed method

excels in disambiguation performance and Lpsu makes a sig-
nificant contribution to disambiguation. This showcases the
effectiveness of DiDA in eliminating ambiguity from partial
labels and approaching ground truth within the label space.
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Figure 4: Label disambiguation performance versus epochs
on Office31 A-D task under different partial rates.

4.8 Effect of Domain-Gap Elimination
To investigate the contribution of Lpsu and Lpda on domain-
gap elimination, we plot the domain discrepancy in terms of
maximum mean discrepancy (MMD) for our DiDA, DiDA
w. Lcls & Lpsu and DiDA w. Lcls only under different par-
tial rates. As shown in Fig. 5, we conduct the experiments on
the OfficeHome A-C task and Office31 D-A task. It demon-
strates that Lpsu can effectively achieve domain-gap reduc-
tion and Lpda can further minimize the domain discrepancy.
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Figure 5: The MMD of distinct domains on Office31 D-A
task and OfficeHome A-C task under different partial rates.

5 Conclusion
In this paper, we study a new problem, i.e., cross-domain im-
age retrieval with partial labels (PCIR). To this end, a novel
method termed DiDA is proposed to project distinct domains
into a common space under the supervision of partial labels.
Specifically, our DiDA adopts a novel prototype-score uniti-
zation learning mechanism (PSUL) to encapsulate discrimi-
native features into the domain-invariant space while achiev-
ing label disambiguation. Meanwhile, we employ a novel
prototype-based domain alignment mechanism (PBDA) to
eliminate the inherent gap across different domains fur-
ther. Comprehensive experiments are conducted compared
to several state-of-the-art approaches on three multi-domain
datasets, demonstrating the effectiveness of our DiDA.
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