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Abstract
Motion prediction is a crucial task in autonomous driving,
and one of its major challenges lands in the multimodality of
future behaviors. Many successful works have utilized mix-
ture models which require identification of positive mixture
components, and correspondingly fall into two main lines:
prediction-based and anchor-based matching. The prediction
clustering phenomenon in prediction-based matching makes
it difficult to pick representative trajectories for downstream
tasks, while the anchor-based matching suffers from a lim-
ited regression capability. In this paper, we introduce a novel
paradigm, named Evolving and Distinct Anchors (EDA), to
define the positive and negative components for multimodal
motion prediction based on mixture models. We enable an-
chors to evolve and redistribute themselves under specific
scenes for an enlarged regression capacity. Furthermore, we
select distinct anchors before matching them with the ground
truth, which results in impressive scoring performance. Our
approach enhances all metrics compared to the baseline
MTR, particularly with a notable relative reduction of 13.5%
in Miss Rate, resulting in state-of-the-art performance on the
Waymo Open Motion Dataset. Appendix and code are avail-
able at https://github.com/Longzhong-Lin/EDA.

Introduction
In the field of autonomous driving, motion prediction is
an important task which contributes to scene understand-
ing and safe planning. Motion prediction utilizes historical
agent states and road maps to predict the future trajectories
of traffic participants. In recent years, an increasing amount
of research works (2023; 2023; 2022a; 2022; 2021; 2021;
2020; 2019; 2018; 2017) have focused on motion prediction.
A major challenge of motion forecasting is the multimodal-
ity of future behaviors, which means an agent could carry
out one of many underlying possibilities.

A bunch of works (Ngiam et al. 2021; Varadarajan et al.
2022; Shi et al. 2022a; Chai et al. 2019) have adopted mix-
ture models, like Gaussian Mixture Model (GMM), to rep-
resent multimodal future behaviors and have gained great
success, where potential trajectories are modeled as scored
components. These approaches typically employ a winner-
takes-all regression loss in conjunction with a classification
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Figure 1: The outcomes from different matching paradigms.
All of the strategies share the same network structure with
64 learnable queries. The top 6 predictions are selected from
the original ones by non-maximum suppression (NMS).

term, which necessitates identifying the positive and neg-
ative mixture components. For selecting positive compo-
nents, there are two main categories of existing methods:
prediction-based and anchor-based matching.

The prediction-based matching methods (Ngiam et al.
2021; Varadarajan et al. 2022) choose the predicted trajec-
tory that is closest to the ground truth as the positive com-
ponent, which is demonstrated in Fig. 2(a). Predictions gen-
erated by these methods honestly reflect the high degree of
uncertainty in future behaviors, which results in an origi-
nally lower minimum error and miss rate (Fig. 1(a)). How-
ever, as illustrated in Fig. 1(c), the output trajectories from
prediction-based matching tend to cluster around the most
probable regions and similar scores are made upon such pre-
dictions, making it difficult to pick representative trajecto-
ries for downstream tasks (Fig. 1(b)).

As demonstrated in Fig. 2(b), the anchor-based matching
methods (Shi et al. 2022a; Chai et al. 2019) associate each
component with an anchor endpoint or trajectory, and select
the positive one corresponding to the closest predefined an-
chor to ground truth. The introduction of spatial priors con-
siderably alleviates the burden of optimization in classifi-
cation, and the methods would prefer to generate trajecto-
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Figure 2: The demonstration of different matching paradigms with a 2-layer decoder. Each subfigure displays a workflow on
the left and corresponding illustration on the right. Objects with the same internal color belong to the same mixture component.
The numbers attached to each component represent the scores. (a) and (b) respectively present the prediction-based and anchor-
based matching. (c) demonstrates the design of proposed Evolving and Distinct Anchors (EDA), where the anchors for the 2nd
layer are updated using the outputs from the 1st layer. Additionally, a selection of distinct anchors is applied before matching.
As a result, the yellow component in the 2nd layer is excluded since it is close to the purple one but has a lower score.

ries around the predefined anchors. Nevertheless, to reduce
computational costs and prevent compromising the scoring
performance (Shi et al. 2022a), the anchors are usually dis-
tributed in a sparser manner compared to the outputs from
prediction-based matching. Hence the regression capability
of model is limited, which is shown in Fig. 1(a).

In this paper, we introduce a novel paradigm, named
Evolving and Distinct Anchors (EDA), to define the pos-
itive and negative components for multi-modal motion pre-
diction based on mixture models. As illustrated in Fig. 2(c),
we first pre-define anchors and then update them by the
intermediate outputs, hence the name Evolving Anchors.
On the one hand, we utilize spatial priors in the form of
predefined anchors to alleviate the difficulties in trajectory
scoring posed by prediction-based matching approaches. On
the other hand, we allow anchors to redistribute themselves
based on predictions under specific scenes for a promoted
regression capability compared to the vanilla anchor-based
matching. As the anchors evolve multiple times, we observe
that the prediction clustering issue previously presented in
prediction-based matching arises and becomes pronounced,
which continues to bother the optimization in scoring tra-
jectories. In order to mitigate the ambiguity in classifica-
tion caused by the gathering problem, inspired by Dense
Distinct Query (Zhang et al. 2023) for object detection, we
select Distinct Anchors through non-maximum suppres-
sion (NMS) before matching them with the ground truth, as
demonstrated in Fig. 2(c). The adoption of distinct anchors

also encourages the model to prioritize the most probable
component among similar ones, facilitating the selection of
representative predictions for downstream jobs. It turns out
that our method leverages the benefits of both anchor-based
and prediction-based matching (as shown in Fig. 1), and
achieves state-of-the-art performance on the Waymo Open
Motion Dataset (Ettinger et al. 2021).

Our contributions can be summarized as follows:

1. We propose the Evolving Anchors for multimodal mo-
tion prediction based on mixture models, where we pre-
define spatial anchors and then update them by the in-
termediate outputs. This novel strategy strikes a balance
between the existing anchor-based and prediction-based
matching approaches.

2. We adopt Distinct Anchors to address the ambiguity in
classification induced by prediction clustering phenom-
ena. Employing NMS on anchors before matching them
with the ground truth, we reduce the optimization diffi-
culty in trajectory scoring and enhance the selection of
representative predictions for subsequent tasks.

3. We have performed experiments on the Waymo Open
Motion Dataset (2021). With the assistance of Evolving
and Distinct Anchors, our single model has surpassed
the performance of previous ensemble-free approaches,
exhibiting improvements on all metrics compared to the
baseline MTR (Shi et al. 2022a), particularly with a sig-
nificant relative reduction of 13.5% in Miss Rate.
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Related Work
Architectures for Motion Prediction
In recent times, there has been a significant increase in the
study of motion prediction owing to the rising interest in au-
tonomous driving. Motion prediction involves using the past
agent states and road maps to forecast the future paths of
traffic participants. Early studies (Chai et al. 2019; Casas
et al. 2020; Park et al. 2020; Gilles et al. 2021; Casas,
Sadat, and Urtasun 2021) commonly rasterize the inputs
into images and capture the contextual information through
CNNs. LaneGCN (Liang et al. 2020) and LaneRCNN (Zeng
et al. 2021) construct lane graphs to efficiently represent
the topology of road maps. Recent works (Gu, Sun, and
Zhao 2021; Varadarajan et al. 2022; Shi et al. 2022a) have
widely adopted the VectorNet (Gao et al. 2020) representa-
tion scheme, which regards the road maps as polylines. As
Transformers (Vaswani et al. 2017) have gained popularity,
an increasing number of studies (Liu et al. 2021; Ngiam et al.
2021; Jia et al. 2023) have utilized the attention mechanism
to encode scene context. Encouraged by the successful ap-
plication of DETR (Carion et al. 2020), many Transformer-
based models (Girgis et al. 2021; Varadarajan et al. 2022;
Nayakanti et al. 2023) have adopted learnable queries in de-
coder to generate multiple potential future trajectories. In
our study, we utilize the architecture presented in MTR (Shi
et al. 2022a), which is an advanced transformer framework
incorporating a local attention based encoder and a decoder
with intention queries.

Modeling for Multimodal Future Motion
Previous studies have investigated different approaches for
modeling multimodal future behaviors. Earlier generative
models (Lee et al. 2017; Gupta et al. 2018; Rhinehart, Ki-
tani, and Vernaza 2018; Rhinehart et al. 2019) generate a
collection of samples to represent the distribution of fu-
ture. Many other works (Chai et al. 2019; Mercat et al.
2020; Ngiam et al. 2021) have utilized mixture models
to parameterize multi-modal predictions, which mainly fall
into two lines: prediction-based and anchor-based matching,
as elaborated in introduction. In prediction-based match-
ing methods (Ngiam et al. 2021; Varadarajan et al. 2022;
Nayakanti et al. 2023), the positive mixture component is
chosen by directly comparing predicted trajectories to the
ground truth. Some models (Tang and Salakhutdinov 2019;
Girgis et al. 2021) using the loss based on EM algorithm
can also be viewed as prediction-based matching when its
KL term converges. Due to the challenge of selecting rep-
resentative future trajectories, these methods have opted
to use well-designed aggregation techniques (Varadarajan
et al. 2022; Nayakanti et al. 2023), or to directly utilize
an end-to-end version (Ngiam et al. 2021; Girgis et al.
2021). However, their scoring performance still lags be-
hind that of anchor-based matching methods. The anchor-
based matching (Chai et al. 2019; Zhao et al. 2021) re-
gards as positive the component matching the closest pre-
defined anchor to ground truth. The HOME series (Gilles
et al. 2021, 2022) and DenseTNT (Gu, Sun, and Zhao 2021)
can be considered as variations of anchor-based matching,

where the anchors are the grids in heatmaps or target can-
didates placed on roads, but they require an additional sam-
pling process to obtain the final predictions. The MTR (Shi
et al. 2022a) achieves remarkable scoring performance using
predefined anchors, while its end-to-end prediction-based
matching version demonstrates significantly better perfor-
mance in terms of minimum error and miss rate. Motivated
by the findings, we propose a novel matching paradigm to
exploit the regression potential hidden by the state-of-the-
art anchor-based matching strategy.

Dense Distinct Query for Label Assignment
According to Zhang et al., considering one-to-one label as-
signment in object detection, sparse queries cannot ensure
a high recall, while dense queries inevitably bring more
similar queries and face optimization challenges in clas-
sification. Therefore, they propose Dense Distinct Queries
(DDQ), in which dense queries are first laid and then distinct
queries are selected for one-to-one assignments. Inspired by
DDQ (Zhang et al. 2023), we adopt distinct anchors to mit-
igate the ambiguity in trajectory scoring induced by predic-
tion clustering phenomena.

Evolving and Distinct Anchors
For identifying positive components, there are two primary
strategies within the existing mixture-model based methods.
The prediction-based matching directly compares the pre-
dicted trajectories {Pi}NC

i=1 with the ground truth G:

Distance(Pi, G), i = 1, · · · , NC , (1)

where NC denotes the number of components. In anchor-
based matching, the spatial anchors {Ai}NC

i=1 are linked to
each component and matched with the ground truth G:

Distance(Ai, G), i = 1, · · · , NC . (2)

In this study, we present Evolving and Distinct Anchors
(EDA), a novel paradigm to define the positive and negative
mixture components by:

Distance(AEj
, G), j ∈ ID, (3)

where AE denotes the evolving anchors, and ID is the in-
dex set of distinct anchors. The main idea is illustrated
in Fig. 3. In the following we first introduce the encoder-
decoder structure upon which our method is built. Subse-
quently, we provide detailed descriptions of the proposed
Evolving Anchors and Distinct Anchors respectively.

Network Architecture
We have implemented our ideas on a cutting-edge encoder-
decoder structure, as the one presented in MTR (Shi et al.
2022a). This transformer framework employs an encoder
with local self-attention for scene context modeling, in ad-
dition to a multi-layer decoder that incorporates learnable
intention queries to predict multimodal trajectories.

It is important to note that our approach presented in this
paper is centered on the design of loss. Consequently, the
proposed Evolving and Distinct Anchors (EDA) can be read-
ily applied to any network structure that includes a multi-
layer decoder.
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Figure 3: The illustration of the EDA paradigm. (a) shows an instance of the overall architecture with a 6-layer decoder and
anchors evolving at the 2nd, 4th layers. (b) reveals the details in each decoder layer, where distinct anchors are selected before
matching. Components that correspond to the excluded anchors, such as the yellow one in picture, are considered neutral.

Evolving Anchors
Although the spatial priors significantly alleviate the chal-
lenge in classification optimization, the vanilla anchor-based
matching encounters a limitation in its regression capabil-
ity, which will be demonstrated later. Regarding the above
issue and encouraged by the successful adoption of multi-
layer decoders in motion prediction (2021; 2022a), we nat-
urally consider enabling anchors to evolve through multiple
decoder layers for an enlarged regression capacity.

Take a 6-layer decoder for instance, as illustrated in
Fig. 3(a), we can implement twice-evolving anchors by up-
dating the anchors with outputs from the 2nd and 4th layers,
in which the evolving anchors for the n-th layer are:

A
(n)
E =


A, n = 1, 2

P (2), n = 3, 4

P (4), n = 5, 6

, (4)

where we have omitted the index subscripts for simplicity.
In a word, the evolving anchors are initially predefined

and later adjusted by the intermediate outputs from decoder
layers, which means the anchors are allowed to redistribute
themselves under specific scenes.

Effects of Evolving Anchors. The vanilla anchor-based
matching, as presented in Fig. 4, tends to make relative
small adjustments to the predefined anchors in each layer.
This is because, making significant changes to the anchor
that hits the ground truth would result in a considerable re-
gression loss, while the refinements to unlikely ones are not
encouraged. Besides, the anchors are usually distributed in
a sparser manner to reduce computational costs and avoid
compromising the scoring performance (Shi et al. 2022a).
Therefore, the regression capability of model is limited by
the anchor-based matching with static anchors.

Correspondingly, making anchors adjustable motivates
the model to modify unreasonable components in a larger
degree, as illustrated in Fig. 4. Nevertheless, substantial
refinements are made only when the potential benefits of

Figure 4: Layer outputs from different matching paradigms
under the same scene. The ? represents the anchor endpoint.
The typical trajectories are highlighted in bright colors, with
each color indicating the same component across various
methods, whereas the remaining ones are displayed in gray.

achieving successful regression outweigh the expected cost
of mistakenly making substantial adjustments. Hence the
modifications to anchors are restrained and progressive in
evolving anchors. In contrast, without the constraints from
predefined anchors, the prediction-based matching would
generate trajectories gathering around the most possible re-
gions, even in the earlier layers, as shown in Fig. 4.

Therefore, the proposed Evolving Anchors achieves a bal-
ance between the anchor-based and prediction-based match-
ing, where one can adjust the extent of modifications to pre-
defined anchors through the frequency of anchor updates.
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Distinct Anchors
Although predicting trajectories that cluster around the most
probable regions contributes to better coverage of future be-
haviors with high uncertainty in prediction-based matching,
this preference also introduces a serious issue of ambiguity
in the scoring task. With multiple gathering outcomes, it be-
comes difficult for the model to distinguish the actual one
closest to the ground truth. Hence the model tends to output
similar scores for such predictions, making it hard to pick
representative trajectories for downstream tasks.

In our proposed evolving anchors, as stated in the above
analysis on effects of evolving anchors, the more frequently
we update anchors, the greater the opportunity for substan-
tial adjustments to unreal components. However, this also in-
creases the potential for the phenomenon of prediction clus-
tering. Such patterns can be observed intuitively in Fig. 5.
As a result, this issue continues to pose a challenge for op-
timization in classification, particularly when updating the
anchors multiple times.

Taking inspiration from DDQ (Zhang et al. 2023) in the
object detection domain, we attempt to adopt distinct an-
chors to improve scoring performance. Specifically, we ap-
ply non-maximum suppression (NMS) to the anchors for
each decoder layer prior to matching them with the ground
truth during training, as illustrated in Fig. 3(b). Mixture
components that correspond to the excluded anchors will
neither serve as positive nor negative samples. Through the
aforementioned operations:

• We prevent the labeling of similar anchors as opposite,
which significantly reduces the optimization difficulty
for the classification task.

• Moreover, the model is encouraged to prioritize the most
probable trajectory among the similar ones, making it
easier to select the representative predictions using sim-
ple post-processing techniques such as NMS.

Training Losses
We train the model with a combination of winner-takes-all
regression loss and classification term, which is commonly
used in mixture-model based methods (Chai et al. 2019;
Nayakanti et al. 2023). Same as MTR (Shi et al. 2022a),
we employ a Gaussian regression loss. Instead of Cross En-
tropy (CE) in MTR, we use Binary Cross Entropy (BCE) for
classification loss, which is suitable for arbitrary numbers of
mixture components filtered by distinct anchors. Please refer
to the Appendix (Lin et al. 2023) for more implementation
details.

Experiments
Experimental Setup
Dataset and metrics. We assess our method on the large-
scale Waymo Open Motion Dataset (WOMD) proposed by
Ettinger et al., which extracts interesting behaviors from ac-
tual traffic scenes. The WOMD (Ettinger et al. 2021) in-
cludes 487k training scenes, 44k validation and 44k test-
ing scenes, where each scene contains up to 8 target agents.
Each agent is comprised of 1 second of historical states and

Figure 5: A typical example illustrating the prediction clus-
tering phenomenon in evolving anchors.

8 seconds of future information. The long time horizon chal-
lenges the model’s capacity to capture a broad field of view
and adapt to a vast output space for trajectories.

Due to the complexity of reasoning about numerous po-
tential future behaviors, benchmark metrics limit the num-
ber of trajectories under consideration. The official web-
site offers an evaluation on submissions with up to 6 mo-
tion predictions for each target agent, returning metrics in-
cluding minADE (Minimum Average Displacement Error),
minFDE (Minimum Final Displacement Error), Miss Rate,
Overlap Rate, mAP and Soft mAP. Hence the top 6 metrics
we provide are obtained from the official evaluation server,
whereas we utilize a local evaluation tool based on the offi-
cial API to compute metrics on a greater number of mixture
components.

Implementation details. Our design is built upon the
state-of-the-art MTR framework (Shi et al. 2022a), where
we adopt the default setting of the network structure and
training configuration. We train the model for 30 epochs
on 16 GPUs (NVDIA RTX 3090) with the batch size of
80 scenes. The predefined anchors we use are the 64 in-
tention points generated by a k-means clustering algorithm
on the training set, as used in MTR. To achieve a more sta-
ble matching, except for predefined anchors we assign labels
based on the full trajectories of intermediate outputs that act
as evolving anchors.

For evaluation, we pick top 6 predictions by employing
NMS on the endpoints of 64 predicted trajectories. Follow-
ing Shi et al., the distance threshold σ is scaled proportion-
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Anchor
Evolving Times

Classification
Loss

Distinct
Anchors

mAP ↑
minADE ↓ minFDE ↓ Miss Rate ↓

original scaled rank
0 CE 0.4059 0.4167 0.4121 0.6012 1.2277 0.1348
0 BCE 0.4053 0.4171 0.4126 0.6050 1.2376 0.1357
1 CE 0.4013 0.4211 0.4183 0.5867 1.2109 0.1240
1 BCE 0.4060 0.4255 0.4228 0.5838 1.2012 0.1221
1 BCE X 0.4173 0.4221 0.4278 0.5776 1.1895 0.1203
2 CE 0.3868 0.4107 0.4101 0.5881 1.2145 0.1227
2 BCE 0.3957 0.4236 0.4207 0.5888 1.2144 0.1229
2 BCE X 0.4235 0.4251 0.4353 0.5708 1.1730 0.1178
5 CE 0.3647 0.4051 0.4002 0.5996 1.2444 0.1264
5 BCE 0.3675 0.4063 0.4037 0.5998 1.2412 0.1272
5 BCE X 0.4186 0.4185 0.4322 0.5817 1.2056 0.1245

Table 1: Top 6 metrics on the validation set of Waymo Open Motion Dataset (Ettinger et al. 2021). The terms “original”,
“scaled” and “rank” under the “mAP” heading respectively represent the results upon the original, scaled and ranking-oriented
top 6 scores, as elaborated in implementation details.

Figure 6: Minimum Error (left) and Miss Rate (right) on original 64 components for each decoder layer.

ally to the length L of trajectory with the highest confidence:
σ = min[3.5,max[2.5, 2.5 + 1.5 × (L − 10)/(50 − 10)]].
The same NMS distance threshold is also applied to the se-
lection of distinct anchors. To improve the mAP metrics, the
MTR (2022a) scales the original top 6 scores for each sam-
ple through dividing them by their sum, making the scores
comparable across different agents. As far as we are con-
cerned, it also makes sense to consider the rank of trajec-
tories in a sample when comparing predictions across dif-
ferent agents. Therefore, We add a rank-related integer to
the original scores ranging between 0 and 1, to ensure that
when computing the mAP metrics, the top-ranked trajec-
tories of all samples will be sorted at the top, followed by
the 2nd-ranked, 3rd-ranked, and so on. For instance, we add
5 for the top-ranked trajectory, 4 for the 2nd-ranked, 3 for
the 3rd-ranked, and so forth. In order to align with previous
works, we still present the mAP metrics upon the original
and scaled scores in the following ablation study.

Ablation Study
We first investigate the impacts of Evolving Anchors, and
then assess the effectiveness of Distinct Anchors. All mod-
els are evaluated on the validation set of WOMD (Ettinger

et al. 2021). In terms of mAP metrics, the results based on
the original, scaled, and ranking-oriented top 6 scores are all
presented, as referred in implementation details.

Evolving Anchors. Starting from the baseline with 0 time
of anchor updating, which is actually the MTR (Shi et al.
2022a) that uses the anchor-based matching with static an-
chors, we apply various anchor evolving times to explore the
effects of evolving anchors. Upon the adopted 6-layer de-
coder, we update anchors at the 3rd layer for once-updating
anchors, at the 2nd and 4th layers for twice-evolving an-
chors, and at every but the final layer for 5 times of anchor
evolving. The corresponding top 6 metrics are displayed in
the rows highlighted in gray of Table 1, while the results on
original 64 components are included in Fig. 6.

Fig. 6 shows that the regression capacity of model im-
proves as the number of anchor updates increases, with a
significant enhancement each time the anchors evolve. This
finding supports the idea that evolving anchors present op-
portunities to unlock the potential in regression hidden by
the vanilla anchor-based matching. And the more frequently
we update the anchors, the greater the potential for adjust-
ments to enhance the regression.
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Set Method Soft mAP ↑ mAP ↑ minADE ↓ minFDE ↓ Miss Rate ↓ Overlap Rate ↓

Test

MotionCNN (2022) - 0.2136 0.7400 1.4936 0.2091 0.1560
ReCoAt (2022) - 0.2711 0.7703 1.6668 0.2437 0.1642

DenseTNT (2021) - 0.3281 1.0387 1.5514 0.1573 0.1779
SceneTransformer (2021) - 0.2788 0.6117 1.2116 0.1564 0.1473

HDGT (2023) - 0.2854 0.5933 1.2055 0.1511 -
MTR (2022a) 0.4216 0.4129 0.6050 1.2207 0.1351 0.1277

MTR++ (2023) 0.4414 0.4329 0.5906 1.1939 0.1298 0.1281
EDA (Ours) 0.4510 0.4401 0.5718 1.1702 0.1169 0.1266

Val
MTR (2022a) - 0.4164 0.6046 1.2251 0.1366 -

MTR++ (2023) - 0.4351 0.5912 1.1986 0.1296 -
EDA (Ours) 0.4462 0.4353 0.5708 1.1730 0.1178 0.1273

Table 2: Performance comparison on the validation and test sets of Waymo Open Motion Dataset (Ettinger et al. 2021).

However, as illustrated in Fig. 5, the phenomenon of pre-
diction clustering also becomes severe when the anchors are
updated more times, since the increased freedom in modi-
fying the predefined anchors results in outputs more resem-
bling those from the prediction-based matching. This issue
adversely affects the performance of trajectory scoring, lead-
ing to a decline in top 6 metrics when two or more anchor
updates are employed, as presented in Table 1.

Distinct Anchors. We utilize the BCE loss to accommo-
date varying numbers of the mixture components selected
for distinct anchors, which is different from the MTR (Shi
et al. 2022a) using the CE loss. Hence we begin by assessing
the influence of various options for the classification loss.
From both Fig. 6 and Table 1, it can be observed that, over-
all, the BCE loss leads to only marginal differences in the
results, along with a slightly better mAP. This suggests that
the BCE loss can be considered a reasonable substitute for
the CE classification loss.

After validating the impact of BCE loss, we now eval-
uate the efficacy of Distinct Anchors. As seen in Table 1,
the use of distinct anchors brings a considerable enhance-
ment in the top 6 metrics for models with evolving an-
chors. What’s more, the progress, particularly in mAP (e.g.,
+0.5%, +1.46%, +2.85% for 1, 2, 5 anchor updates respec-
tively upon ranking-oriented scores), becomes notable with
a higher frequency of anchor evolving. Nevertheless, the
regression metrics on original 64 mixture components, as
shown in Fig. 6, do not exhibit a significant improvement.
Such evidences indicate that the adoption of distinct anchors
does facilitate the selection for the representative behaviors
as well as the scoring performance, which is hindered by the
prediction clustering phenomenon.

But the benefits of distinct anchors are not limitless. As
depicted in Table 1, both with the help of distinct anchors,
the performance of 5 anchor updates cannot surpass that of
twice-evolving anchors at all. And the unusual deterioration
in Miss Rate when using distinct anchors for 5 times of an-
chor evolving (Fig. 6) implies that the model may be still
plagued by too many anchor updates.

Benchmark Results
We evaluate the model that performs the best in our abla-
tion study, namely twice-evolving and distinct anchors with
ranking-oriented top 6 scores, on the test set of WOMD (Et-
tinger et al. 2021). We need to point out that the model for
testing is trained solely on the WOMD training set without
any ensemble techniques applied, consistent with our base-
line MTR (Shi et al. 2022a).

As shown in Table 2, our single model outperforms previ-
ous ensemble-free approaches on the WOMD. The proposed
EDA has demonstrated significant improvements in all per-
formance metrics compared to the baseline MTR on both the
validation and test sets. Specifically, there is a relative im-
provement of 13.5% on Miss Rate, 5.5% on minADE, and
4.1% on minFDE, as well as a +2.94% absolute growth in
SoftmAP on the test set. Furthermroe, the performance of
our EDA surpasses that of MTR++ (Shi et al. 2023), the lat-
est improved version of MTR, on both the validation and
test sets of WOMD. It is worth noting that MTR++ primar-
ily enhances the network structure of MTR, while our ap-
proach centers on the design of loss, which means that com-
bining the two complementary refinements has the potential
to yield even more remarkable performance. Please refer to
the Appendix (Lin et al. 2023) for more experimental results.

Conclusions
In this paper, we present Evolving and Distinct Anchors
(EDA), a novel paradigm to define the positive and nega-
tive components for multi-modal motion prediction based
on mixture models. We pre-define anchors and update them
with intermediate outputs, and pick distinct anchors before
matching them with the ground truth. Allowing the anchors
to evolve and redistribute themselves under specific scenes
promotes the regression capability of model. The adoption
of distinct anchors addresses the ambiguity in classification
induced by the prediction clustering issue, and facilitates the
selection of representative predictions for downstream tasks.
It turns out that our approach exhibits a significant improve-
ment compared to the baseline MTR, achieving state-of-the-
art performance on the Waymo Open Motion Dataset.
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