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Abstract

Layout generation is a critical step in graphic design to
achieve meaningful compositions of elements. Most previous
works view it as a sequence generation problem by concate-
nating element attribute tokens (i.e., category, size, position).
So far the autoregressive approach (AR) has achieved promis-
ing results, but is still limited in global context modeling and
suffers from error propagation since it can only attend to the
previously generated tokens. Recent non-autoregressive at-
tempts (NAR) have shown competitive results, which pro-
vides a wider context range and the flexibility to refine with
iterative decoding. However, current works only use simple
heuristics to recognize erroneous tokens for refinement which
is inaccurate. This paper first conducts an in-depth analysis
to better understand the difference between the AR and NAR
framework. Furthermore, based on our observation that pixel
space is more sensitive in capturing spatial patterns of graphic
layouts (e.g., overlap, alignment), we propose a learning-
based locator to detect erroneous tokens which takes the wire-
frame image rendered from the generated layout sequence as
input. We show that it serves as a complementary modal-
ity to the element sequence in object space and contributes
greatly to the overall performance. Experiments on two pub-
lic datasets show that our approach outperforms both AR and
NAR baselines. Extensive studies further prove the effective-
ness of different modules with interesting findings. Our code
will be available at https://github.com/ffffatgoose/SpotError.

Introduction
Layout generation refers to the arrangement of elements
(i.e., size and position) on a canvas, which is essential for
creating visually appealing graphic designs (e.g., articles,
user interface). State-of-the-art systems (Jyothi et al. 2019;
Arroyo, Postels, and Tombari 2021; Kikuchi et al. 2021;
Yang et al. 2021) mostly view the task as a sequence gen-
eration problem where the sequence is composed of element
attribute tokens (i.e., category, position, size). Majority of
the works follow the autoregressive (AR) approach which
generates one token at a time based on the previously output
and have achieved promising results (Yang et al. 2021; Guo,
Huang, and Xie 2021; Yang et al. 2023; Weng et al. 2023).

*Work was done during the first author’s internship at Microsoft
mentored by Danqing Huang.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Illustration of (a) AR and (b) iterative-based NAR
approach in layout generation. The AR approach generates
one token at a time conditioned on previously generated to-
kens. NAR generates all tokens simultaneously and uses a
locator (usually heuristics) to detect erroneous tokens which
will be masked and re-predict in the next decoding iteration.

However, for layout generation, it is important to model re-
lationships between elements as well as the global context.
The inherent causal attention in the AR approach exposes
limitation in global context modeling and causes immutable
dependency chain issue and error propagation (Kong et al.
2022).

Recently, there are some attempts of non-autoregressive
(NAR) approaches (Kong et al. 2022; Zhang et al. 2023; In-
oue et al. 2023; Hui et al. 2023) that generate the entire se-
quence simultaneously. It allows a more flexible modeling
of bidirectional context and shows promising results in the
task. In this paper, we conduct an in-depth analysis to com-
pare the AR and NAR approaches (as shown in Figure 1)
with two findings: (1) we show that NAR is more robust to
different element orders in the sequence than AR; (2) similar
to the word repetition issue in non-autoregressive machine
translation (NMT) (Huang, Perez, and Volkovs 2022), NAR
tends to position elements to similar regions that will cause
overlap problem and results in inferior layouts.

Iterative decoding is an effective mechanism to allevi-
ate this issue. In the recent state-of-the-art NAR system
BLT (Kong et al. 2022), it uses a Transformer-based de-
coder (Vaswani et al. 2017) and applies a heuristic strategy
to choose the least confident tokens from the decoder’s pre-
diction as the erroneous ones. However, such simple heuris-
tic is likely to be biased to the decoder’s learned distribution
and potentially propagate the mistakes, acting as noises to
make a negative impact on subsequent iterations.

This paper proposes a learning-based locator module to
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Figure 2: Overview of our pipeline. Our model consists of a decoder and a locator. For each mask-predict iteration, the locator
detects the erroneous attribute tokens to be masked and the decoder predict the masked tokens in a non-autoregressive approach.

explicitly distinguish the incorrect tokens. Using a toy ex-
periment of comparing different layout representations, we
observe that pixel space is more sensitive in capturing spa-
tial patterns of layouts (e.g., overlap, alignment). Therefore,
our locator receives the input of wireframe image rendered
from the decoder’s generated sequence in the previous itera-
tion, and then detects the erroneous element and classify the
corresponding attribute tokens if they should be masked or
not. The wireframe serves as a complementary modality to
the layout sequence in object space which we will show is
effective. To train the locator, it requires the annotation of er-
roneous attributes in a noisy layout (e.g., the width of an ele-
ment is inaccurate and should be masked). One possible so-
lution is that we make random noise on the real layouts with-
out human labeling. However, our initial experiment shows
minor improvement when applying the locator to the refine-
ment process. In order to focus more on the decoder’s error
types and align with its distribution, we propose a novel au-
tomatic data construction pipeline. Specifically, we use the
decoder’s generated layout to retrieve the most similar real
layout as ground truth and apply Hungarian matching be-
tween the two sets of elements. For the matched element
pairs that with significant attribute value differences, we an-
notate the corresponding tokens as the targets to be masked.

We evaluate our approach on two public datasets related
to graphic design: RICO (Deka et al. 2017) for mobile app
UIs and PubLayNet (Zhong, Tang, and Yepes 2019) for sci-
entific articles. Experiment results show that our approach
outperforms current AR and NAR baselines in terms of
both quantitative and qualitative evaluations. Furthermore,
we conduct extensive analysis to better understand what our
model has learned.

To summarize, the contributions of this paper include:

• We conduct an in-depth analysis to compare between AR
and NAR models in layout generation. Though NAR is
robust to different input element orders, it exposes the
issue of repetitive token generation.

• We investigate the use of different layout representations
(i.e., object, pixel) with a toy experiment. We observe
that pixel space is more sensitive in capturing spatial pat-

terns than object space, which motivates us to incorporate
the image modality into the modeling process.

• To improve the iteration-based NAR, this paper proposes
a learning-based locator that takes a rendering wireframe
as input and detects erroneous tokens more accurately.

Related Works
Layout Generation
Layout generation is an important task in graphic design
intelligence (Huang et al. 2023; Li et al. 2021) (e.g., lay-
out representation learning (Xie et al. 2021; Feng et al.
2022), layout reverse engineering (Hao et al. 2023; Shi
et al. 2023; Zhu et al. 2024; Huang et al. 2021)). Traditional
works (Hurst, Li, and Marriott 2009; Kumar et al. 2011;
O’Donovan, Agarwala, and Hertzmann 2014; Tabata et al.
2019) are mostly based on heuristics with constraint opti-
mization, which usually ensure high-quality but limited out-
puts. Recently there are an increase in works based on deep
neural networks. LayoutGAN (Li et al. 2019) applies GAN
to synthesize the layout bounding box and proposes a differ-
ential wireframe rendering module to enable the training of
discriminator, and LayoutGAN++ (Kikuchi et al. 2021) ex-
tends LayoutGAN with Transformer backbone. LayoutVAE
(Jyothi et al. 2019) trains two VAEs separately, one to pre-
dict the element categories and the other to generate layouts
given the category condition. Several methods also follow
the VAE-based generative framework (Lee et al. 2020; Jiang
et al. 2022). Recent works (Yang et al. 2021; Arroyo, Pos-
tels, and Tombari 2021) build generative backbone based on
Transformer (Vaswani et al. 2017) to model long-distance
dependency and perform better.

BLT (Kong et al. 2022) is the first recent attempt of us-
ing non-autoregressive in layout generation. The decoder is
trained using BERT-like strategy to predict some randomly
masked tokens. During inference, it uses iterative decoding
that tokens with the least confident score are masked and
further refinement. Diffusion-based models also follow the
NAR framework (Inoue et al. 2023; Zhang et al. 2023; Hui
et al. 2023) which progressively infers a complete layout
from a noisy status with discrete diffusion process. Despite
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different modeling approaches, the above mentioned meth-
ods use element sequence to represent a layout. This paper
observes that layouts represented in pixel space offers a dif-
ferent aspect of features and hence we propose to combine
the object space and pixel space in the NAR framework for
better performance.

There are also some content-aware generation methods
(Zheng et al. 2019; Wang et al. 2022; Cao et al. 2022; Zhou
et al. 2022; Li, Zhang, and Wang 2022; Vaddamanu et al.
2022) that further considers the element content into model-
ing, which we will leave for future exploration.

Non-autoregressive Sequence Generation
Comared to AR (Huang et al. 2018a; Zhou and Huang
2019; Huang et al. 2018b), NAR is more efficient in in-
ference and has been applied in various tasks such as neu-
ral machine translation, automatic speech recognition and
text to speech. Here we mainly focus on the related works
of iteration-based non-autoregressive machine translation
(NMT) (Geng, Feng, and Qin 2021; Ghazvininejad et al.
2019; Huang, Perez, and Volkovs 2022; Saharia et al. 2020).
These iterative decoding methods using different mask-
ing strategies, including heuristics based and and learning-
based. Our locator is inspired from the latter approach. For a
more complete review, please refer to the survey (Xiao et al.
2022).

Preliminary Study
Task Formulation
Layout generation can be viewed as a sequence generation:

s = ([bos], c1, x1, y1, w1, h1, ..., cn, xn, yn, wn, hn, [eos])

where ci is the category label of the i-th element in the lay-
out (e.g., title, text, figure), xi, yi, wi, hi represent
the position and size which are converted to discrete tokens.
[bos], [eos] are special tokens for beginning and end. The to-
tal sequence length is 5n+ 2.

Autoregressive (AR) generation predicts the token one at
a time, conditioning on the previous generated sequence:

p(s) =
5n+2∏
i=2

p(si|s1:i−1) (1)

while in the non-autoregressive setting, the model predicts
one token with bidirectional attention and predicts the whole
sequence simultaneously:

p(s) =
5n+2∏
i=2

p(si|s1:i−1, si+1:5n+2) (2)

Non-Autoregressive Decoding Analysis
To better understand how different decoding methods (i.e.,
AR and NAR) behave in the layout synthesis process, this
paper conducts an in-depth analysis with some interesting
findings. In the following analysis, we use the state-of-the-
art AR model LayoutTransformer as well as the the NAR
model BLT on the scientific article dataset PubLaynet.

Figure 3: Comparison of AR (LayoutTransformer) and NAR
(BLT) approaches using different input element orders (i.e.,
position, category). Smaller overlap degree indicates better
performance.

Finding 1: NAR is robust to input element order. For
sequence generation, the input order is an important factor.
We compare the AR and NAR models with different ele-
ment orders used in previous works (Yang et al. 2021; Kong
et al. 2022): (1) position, where elements are sorted using
the top-left coordinates. While most previous works follow
this setting, it actually causes information leak of the ground
truth data during inference since they use absolution posi-
tions in real layouts to determine the order; (2) category,
where input elements are fed per category (e.g., generate all
the paragraph elements first, then followed by table).
Figure 3 shows the performances in terms of the Overlap
metric, which calculates the average overlap degree between
elements in a layout and is widely used for evaluation:

Overlap =
1

D

D∑
d=1

[ N∑
i=1

∑
j ̸=i

ei ∩ ej
ei

]
(3)

where D denotes the number of layouts, N is the element
number of a layout, ei indicates the i-th element in a layout,
ei ∩ ej means the overlap area between ei and ej .

Based on the general assumption that elements in a layout
should not overlap excessively, smaller value indicates bet-
ter quality. From the figure, we can see that the AR model
is more sensitive to orders as its performance drops signifi-
cantly from the ‘category’ setting to the ‘position’ one. Be-
ing compared, the NAR model is relatively robust to differ-
ent input orders.

Finding 2: NAR exposes the issue of repetitive genera-
tion. Compared to AR with causal masked attention over
previously generated tokens, NAR applies a full attention
over all tokens on a wider range of contexts, which is
difficult for the model to distinguish different tokens by
solely relying on positional encodings. Thus it is more likely
to generate repetitive tokens (Huang, Perez, and Volkovs
2022). Here we try to quantify this intrinsic error using the
aforementioned Overlapmetric. Higher overlap degree in-
dicates that the model is more likely to generate tokens in a
similar region. Table 1 shows the statistics considering over-
laps between (1) elements within the same category and (2)
all elements. We can see that the overlap problem in NAR
is more serious than AR (26.89 compared to 23.80 for all
elements), and nearly two times the degree under the ‘same
category’ setting (15.84 compared to 8.67). Furthermore, we
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Models Iter Overlap

same cat. All

LayoutTransformer (AR) / 8.67 23.80

BLT (NAR) 1 15.84 26.89
BLT 5 5.20 13.43
BLT 10 3.23 10.23

Table 1: NAR generates a larger percentage of repetitive to-
kens than the AR approach. The issue is alleviated with iter-
ations of refinement.

show that iterative refinement is an effective mechanism to
alleviate the issue as the overlap (all) decreases from 26.89
(iter 1) to 10.23 (iter 10).

In this paper, we focus on the iteration-based NAR gen-
eration approach and propose a simple but effective locator
module to improve the iterative refinement process.

Layout Representation: Object v.s. Pixel
Previous layout generation methods are far more based on
primitive elements with attributes to form a sequence. Mean-
while, layouts can also be represented by a wireframe image
which is rendered by the element attributes, which provides
a more direct visual perception (Li et al. 2019). We argue
that both representations are informative for capturing im-
portant features in different aspects.

To verify our claim, we design a toy experiment of detect-
ing the erroneous element attributes in a noisy layout using
the two different representations respectively. For training
and evaluation, we sample elements in real layouts as good
layouts, and add random noise on some attributes x, y, w, h
as the bad layouts. In the object space given a sequence of
element attributes, we adopt a Transformer with a classifi-
cation layer on the top to predict good/bad for each token.
In the pixel space we use the convolutional-based Faster-
RCNN (Ren et al. 2015) to detect the inferior elements and
classify each of its attributes. Table 2 shows the classifica-
tion results. As we can see, when the noise range is large
(e.g., 0.5), models in both spaces can detect accurately with
F1 score over 96%. If the noise is decreased to a smaller
range (e.g., 0.1) where the noisy layouts are less visually
different from the real ones, models in pixel space performs
significantly better. This indicates that pixel representation
is more sensitive in capturing fine-grained spatial patterns
such as minor misalignment and occlusion.

Our Approach
We generate graphic layouts using the non-autoregressive
approach. Our model consists of a decoder to generate
the tokens and a locator to recognize the erroneous tokens
which will be revised by the decoder iteratively. Figure 2
shows the pipeline overview.

Decoder
Following BLT (Kong et al. 2022), we use a multi-layer
transformer decoder to predict the layout sequence in paral-

Repre. Noise range Precision Recall F1 Score

Object 0.1 84.80 79.70 82.17
Pixel 0.1 92.19 88.78 90.45

Object 0.2 96.36 93.62 94.97
Pixel 0.2 96.56 95.73 96.14

Object 0.5 99.16 93.08 96.02
Pixel 0.5 97.35 95.58 96.46

Table 2: Classification results of our toy experiment to com-
pare different layout representations (i.e., object and pixel
space) using random noise data.

lel. Each token in the sequence is represented by the sum of
its attribute embedding (i.e., category, position or size) and
three additional position encodings γ to better distinguish
different tokens, (1) the token index in a sentence; (2) the
element-level index where tokens belonging to the same el-
ement will have the same value. (3) the number of elements
where all tokens share the same value.

PE(i) = γ1(i) + γ2(⌊i/5⌋) + γ3(n) (4)

where i ∈ 5n+ 2.
During training, we randomly mask some tokens in the

layout sequence s similar to BERT (Devlin et al. 2018) and
compute the loss on these mask positions M to minimize the
negative log-likelihood:

Lmask = −Es∈D

[ ∑
i∈M

log p(si|sM )
]

(5)

In inference, we replace all the attributes which are not
given with [MASK] token (in conditional generation, the el-
ement categories are given) to initialize the input sequence
and the decoder is then used to predict the masked tokens.

Wireframe Conditioning. Given the wireframe image I
encoded with a convoluational network (LeCun et al. 1998)
φ, we apply the cross-attention of the Transformer-based de-
coder to the image, which provide the model a spatial con-
text for learning to attend to relevant regions:

Attention(s, I) = softmax
(
ϕ(s)φ(I)T√

dk

)
(6)

where ϕ(s) is the query matrix derived from the transformer
decoder, φ(I) is the key matrix from the convolutional net-
work, respectively, and dk is the dimension of the key φ(I).

Locator
In the iteration-based NAR models, the dominant approach
to identify the erroneous tokens for masking and re-predict
is to employ heuristic rules to roughly choose the least con-
fident tokens from decoder output. However, relying on the
decoder‘s confidence score is likely to cause bias to its
learned distribution, and the heuristic rules might not be suf-
ficient to cover a wide range of cases.

This paper proposes to utilize a learning-based locator
module to select the tokens. The locator consists of three
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Algorithm 1: Training data construction for locator.

Require: Generated layouts Lg with n elements,
ground truth layout Lreal with the same categories
(c0, c1, . . . , cn), threshold δ

1: erroneous attribute set to be masked M [k] = {} for k in
attributes {x, y, w, h}

2: Set matching {egi } and {erealj } with distance function d
3: for i = 1, · · · , n do
4: if abs(egi [k]− erealj [k]) > δ then
5: M [k] = M [k] + egi [k]
6: end if
7: end for

components: a backbone network, a mask classifier, and a
bounding box predictor. Given the wireframe input I , the
backbone network extracts features Ffeat from I , the mask
classifier binary classifies each of the attributes (x, y, w, h)
to determine if it should be masked or not:

Ffeat = Conv(I), (7)
Cmask = WcRPN(Ffeat) + bc (8)

where Wc and bc are the parameters of mask classifier.
To train the locator, there is no direct annotated data of

noisy layout with targeted erroneous tokens. Here we intro-
duce a novel algorithm to construct the training data, which
is described in Algorithm 1. Specifically, we collect the gen-
erated noisy layouts from the trained decoder in different
iterations. For each layout, we retrieve the ground truth lay-
outs with the same element categories and conduct a bipartie
matching between elements in the generated layout {egi } and
the real one {erj}. The matching function d considers the cat-
egory constraint (element categories must be the same) and
the spatial relationships (i.e., the bounding box overlap ratio,
position distance, and the size disparities):

d(egi , e
r
j) = α11ci ̸=cj + α2IoU(e

g
i , e

r
j)

+ α3fpos(e
g
i , e

r
j) + α4farea(e

g
i , e

r
j),

(9)

where fpos and farea are the functions which compute the
position and area differences.

After matching, we choose elements whose overlap with
the ground truth smaller than a threshold as the mistakes and
annotate its corresponding attributes to be masked.

Experiments
Dataset
We experiment with two widely used public datasets in dif-
ferent design types: Rico (Deka et al. 2017; Liu et al. 2018)
and Publaynet (Zhong, Tang, and Yepes 2019). Rico is a
UI/UX design dataset consisting of over 66k UI layouts col-
lected from Android mobile apps. We filter out layouts with
the number of elements in a layout more than 9 and use
the most common 13 category in Rico following the pre-
vious work (Kikuchi et al. 2021). There are 20,606 layouts
in total finally. We split train/val/test dataset at a rate of
0.85/0.05/0.10. PubLaynet contains over 360k layouts of

scientific paper pages from PubMed Central. We use the of-
ficial split train and test set. Similarly, we exclude layouts
elements more than 9, which are in total 173,225 layouts.
For inference, we use the ‘category‘ input order mentioned
in previous section for conditional generation.

Evaluation Metrics
There are 4 metrics commonly used to measure the gener-
ated layout quality:
• Maximum IoU. Given the generated layouts and the ref-

erences, this metric computes the intersection over the
union of the two sets with a permutation to maximize the
IoU as a similarity measurement.

• Alignment. Layout elements are usually aligned with
each other to create an organized composition. Align-
ment calculates on average the minimum distance in the
x- or y-axis between any element pairs in a layout.

• Overlap. It is assumed that elements should not overlap
excessively. Overlap computes the average IoU of any
two elements in a layout. Layouts with small overlap val-
ues are often considered to be high quality.

• FID. Compared to the above heuristic metrics, FID is a
sample-based metric for image generation (Heusel et al.
2017) and has been adopted in layout generation. It pre-
trains a feature network to classify real or fake layouts
which is then used to extract features of two data sets
and calculate the Fréchet distance. Here we use two pre-
trained FID, namely SeqFID (Kikuchi et al. 2021) and
PixelFID (Yang et al. 2023) using different layout repre-
sentations (object and pixel respectively). Please refer to
Yang et al. (2023) for a more comprehensive comparison
between the two metrics.

Baselines
We consider the following public-available works as
baselines, including the autoregressive models: Layout-
VAE (Jyothi et al. 2019) takes the latent code and category
labels (optional) as input and generates the element bound-
ing boxes in an autoregressive manner. VTN (Arroyo, Pos-
tels, and Tombari 2021) uses transformer layer to enhance
the performance of VAE as well as increase the number of
elements in layouts. LayoutGAN++ (Kikuchi et al. 2021)
improves LayoutGAN with Transformer backbone and ap-
plies several beautification post-process for alignment and
non-overlap. LayoutTransformer (Yang et al. 2021) autore-
gressively generates a sequence of element tokens. And we
also compare with the state-of-the-art non-autoregressive
model BLT (Kong et al. 2022). Specifically, they apply a
heuristic strategy HSP for iterative decoding: attributes are
grouped into category, size and position, and tokens in dif-
ferent groups are predicted in a pre-defined order. In our ex-
periment, we observe that such strategy is not always effec-
tive so we also show the result BLT w/o HSP.

Main Results
Following BLT, we consider two settings of conditional gen-
eration: (1) Condition on Category (C→SP), which only el-
ement categories are given as input and the model needs to
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Models PubLaynet Rico
SeqFID↓ PixelFID↓ Max IoU↑ Overlap↓ Alignment↓ SeqFID↓ PixelFID↓ Max IoU↑ Overlap↓ Alignment↓

Layout VAE 27.18 158.72 0.2473 45.81 0.6617 87.61 12.52 0.3678 63.20 0.8709
LayoutTransformer 10.20 76.96 0.3465 23.80 0.0912 44.77 16.31 0.4165 61.04 0.0731
VTN 8.60 78.76 0.3122 26.51 0.2196 18.49 28.34 0.4332 63.22 0.4411
Layout GAN++ 9.52 53.71 0.4827 14.50 0.2019 13.49 6.78 0.5038 65.14 0.3087
BLT 7.88 4.60 0.3865 8.73 0.0765 32.67 3.80 0.5669 72.64 0.2361
BLT w/o HSP 6.00 3.82 0.3985 9.21 0.0988 32.06 3.36 0.5773 68.66 0.2152

Ours (dec-only) 6.30 2.52 0.3959 8.64 0.0740 31.21 2.65 0.5807 66.33 0.1995
Ours (w/ locator) 9.99 2.33 0.2962 7.57 0.0634 27.04 2.82 0.5693 62.25 0.2075

Real data 4.91 0.02 0.5300 0.22 0.0400 4.26 1.16 0.6600 48.43 0.2000

Table 3: Conditional generation results when given element category (C→SP). The best results are in bold.

Models PubLaynet Rico
SeqFID↓ PixelFID↓ Max IoU↑ Overlap↓ Alignment↓ SeqFID↓ PixelFID↓ Max IoU↑ Overlap↓ Alignment↓

LayoutVAE 22.93 134.90 0.3295 45.59 0.6257 86.64 7.71 0.4124 63.79 0.4899
LayoutTransformer 26.49 130.77 0.3131 36.04 0.3261 59.81 11.77 0.4262 59.42 0.1737
BLT 2.39 3.04 0.5502 8.96 0.1404 20.07 2.26 0.5737 69.31 0.3941
BLT w/o HSP 2.27 1.60 0.5493 8.47 0.1356 18.08 2.17 0.5800 64.73 0.2858

Ours (dec-only) 2.09 1.51 0.5450 8.44 0.1275 19.42 1.91 0.5774 65.24 0.2647
Ours (w/ locator) 2.04 1.44 0.5428 9.69 0.1280 17.88 1.88 0.5801 62.47 0.3070

Real data 4.91 0.02 0.5300 0.22 0.0400 4.26 1.16 0.6600 48.43 0.2000

Table 4: Conditional generation results given element category and size (CS→P). The best results are in bold.

predict the element size and position; (2) Condition on Cat-
egory + Size (CS→P), which the element category and size
are specified and the model predicts only the positions. We
show the performances in Table 3 and Table 4 respectively1.

As we can see, the NAR baseline BLT can already achieve
similar performances as the AR approaches, and even
significantly better on PubLaynet under both C→SP and
C→SP settings. For our approach, only using the wireframe-
conditioned decoder (dec-only) achieves promising results
(e.g., PixelFID 2.52 compared to 4.60 in BLT on PubLaynet
under C→SP setting). Coupled with our learning-based lo-
cator, we reach the best results in most of the metrics. Please
note that for the two FID evaluators, we see similar trends
in relative comparison between different systems, but Pix-
elFID is proved to be more robust and unbiased to different
decoder architecture (Yang et al. 2023).

Qualitative Results
Here we show some generated layouts from the baselines
(i.e., LayoutTransformer, BLT) and our approach, as well as
the real layouts, in Figure 4. We can observe a typical error
in the AR model LayoutTransformer that when it generates
an inferior element of large area, it is impossible to revise
and thus the subsequent elements can only be placed over,
resulting in bad occlusion. Similar, BLT also suffers from
the occlusion issue which might caused by the simple but
weak heuristics that detect the erroneous tokens. Being com-
pared, our model generates more balanced layouts that ele-
ments are evenly distributed, which indicates that our model

1Due to space limit, we show the unconditional task in Suppl.

has a stronger capability of capturing global contexts and lo-
cating mistakes. Moreover, our generated results enjoys bet-
ter alignment and less overlap in most cases.

Model Analysis
To better understand what our model has learned, this sub-
section conducts several ablation studies on different model
components. The following experiments are conducted on
PubLaynet. In addition, we show more results in the suppl.

Performance along Iterations. Figure 6 shows the over-
lap performance of BLT and our model in different itera-
tions. As we can see, our model gets significantly improved
from iteration 1 to 10 (smaller overlap is better), which
means that the iterative decoding with our learning-based
locator is effective to recognize erroneous element attributes
and refine the layouts. Furthermore, our model gets faster
convergence than BLT, achieving stable results in around it-
eration 6. As the number of iterations increases, the perfor-
mance gain is becoming smaller, which is expected since the
generated layouts have been refined to be better after several
iterations of mask-predict.

Locator Ablations. This experiment investigates the im-
pacts of different locator settings in Table 5. Besides the end-
to-end results, we show the intermediate detection accuracy
of the locator. Here we obtain two interesting observations:

(1) pixel space is more informative than object space
for capturing spatial patterns. Similar to the previous toy
experiment in Table 2, we try the two data representation
for locator input. To exclude the factor of model back-
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Figure 4: Qualitative results on Publaynet and Rico.

Figure 5: Decoder-Wireframe cross-attn visualization.

Figure 6: Overlap performance of BLT and our models with
different decoding iterations.

bone and ensure a fairer comparison, we try different lo-
cator backbones (i.e., Convolution-based Faster-RCNN and
Transformer-based DETR (Carion et al. 2020)) with similar
parameter size. As we can see that different backbones in
the pixel space perform comparably well, and are both sig-
nificantly better than the one in object space. Specifically,
locator in pixel space (FasterRCNN) detects the inferior ele-
ments more accurately (f1 score 59.82 compared to 29.52 in
object space setting), and thus results in a better end-to-end
results. This further indicates that pixel space can capture
more informative spatial patterns in the layout.

(2) training data distribution matters for aligning the
locator and the decoder. As previously mentioned, we train
the locator using the decoder generated outputs, which aims
to align better with the decoder’s distribution. To support our
argument, we use a different training set for locator where
we add random noise to the element attributes in real lay-
outs, which is the same as the data construction in Table 2.

cls. e2e
Settings p r f1 PixelFID↓ Overlap↓
Dec-only - - - 113.36 26.89
Object 35.55 25.24 29.52 14.11 11.11
Pixel (FasterRCNN) 62.75 57.14 59.82 2.33 7.57
Pixel (DETR) 36.10 98.53 52.84 3.12 7.71
Dec-output 62.75 57.14 59.82 2.33 7.57
RandNoise 20.40 53.45 29.53 19.23 19.69

Table 5: Performances under different locator settings, in-
cluding input layout representation (Object, Pixel), back-
bone architecture (FasterRCNN, DETR), training data
source (Dec-Output, RandNoise).

From the last two rows in Table 5, we can see that using
decoder-output data (Dec-output) is more effective than the
one using random-noise data (RandNoise), indicating that
the distribution alignment can help locator better focus on
the decoder’s error cases and result in higher performance.

Visualization of Decoder-Wireframe Cross-Attention.
Different from BLT, our decoder is conditioned on a wire-
frame image which is rendered from the decoder’s output
sequence in the previous iteration. To investigate what the
model has captured, we visualize the cross attention weight
(Equation 6) in Figure 5.Both the two elements’ category
tokens have correctly attended the corresponding regions in
the wireframe, which means that the decoder can effectively
utilize contexts in pixel space for better generation.

Conclusion
NAR layout generation shows competitive results compared
to the AR approach. In this paper, we conduct a detailed
analysis to compare the two frameworks, as well as different
layout representations (i.e., object and pixel). Based on our
observation, we propose a wireframe locator which explic-
itly learns to detect the erroneous tokens with visual input.
Experiments show that our approach can achieve remark-
able improvements over previous models. Further analysis
reveals patterns that our model has learned. In the future,
we would like to extend to content-aware generation. How
to distill the knowledge in large-scale multimodal model for
graphic design is another interesting direction to explore.
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