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Abstract
Despite weakly supervised object detection (WSOD) being
a promising step toward evading strong instance-level an-
notations, its capability is confined to closed-set categories
within a single training dataset. In this paper, we propose
a novel weakly supervised open-vocabulary object detection
framework, namely WSOVOD, to extend traditional WSOD
to detect novel concepts and utilize diverse datasets with
only image-level annotations. To achieve this, we explore
three vital strategies, including dataset-level feature adapta-
tion, image-level salient object localization, and region-level
vision-language alignment. First, we perform data-aware fea-
ture extraction to produce an input-conditional coefficient,
which is leveraged into dataset attribute prototypes to iden-
tify dataset bias and help achieve cross-dataset generalization.
Second, a customized location-oriented weakly supervised
region proposal network is proposed to utilize high-level se-
mantic layouts from the category-agnostic segment anything
model to distinguish object boundaries. Lastly, we intro-
duce a proposal-concept synchronized multiple-instance net-
work, i.e., object mining and refinement with visual-semantic
alignment, to discover objects matched to the text embed-
dings of concepts. Extensive experiments on Pascal VOC
and MS COCO demonstrate that the proposed WSOVOD
achieves new state-of-the-art compared with previous WSOD
methods in both close-set object localization and detec-
tion tasks. Meanwhile, WSOVOD enables cross-dataset and
open-vocabulary learning to achieve on-par or even bet-
ter performance than well-established fully-supervised open-
vocabulary object detection (FSOVOD).

Introduction
In the past decades, the artificial intelligence community has
witnessed great progress in object detection. In particular,
large amount of human-annotated datasets significantly pro-
motes the prosperity and progress of fully-supervised ob-
ject detection (FSOD), such as Faster RCNN (Ren et al.
2015), YOLO (Redmon et al. 2016; Redmon and Farhadi
2017), Detr (Carion et al. 2020) and their variants (Zhu et al.
2021; Zheng et al. 2021; Sun et al. 2021). Nevertheless,
the laborious and lavish collection of instance-level anno-
tations has severely barricaded the applicability of FSOD
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(a) Paradigm comparisons.

(b) Qualitative comparisons.

Figure 1: Vanilla WSOD is confined to detecting known cat-
egories from the training set, e.g., Person, and Horse. The
proposed WSOVOD is generalized to unseen categories,
e.g., Flag, and Fence. WSOVOD outperforms the previous
state-of-the-art WSOD methods and achieves on-par or even
better performance than FSOVOD.

in practical application with large-scale categories. By ex-
cavating image-level category supervision that indicates the
presence or absence of an object, weakly supervised ob-
ject detection (WSOD) has attracted much attention recently
since image-level annotations are widely available in easily-
collected classification-like datasets.

Unfortunately, a de facto limitation of the existing WSOD
methods (Tang et al. 2017, 2018; Kim et al. 2020) stems
from their detectors only concentrating on few categories
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concepts within individual datasets, such as 20-category
Pascal VOC (Everingham et al. 2010) and 80-category MS
COCO (Lin et al. 2014). Little effort has been made to ex-
plore the limit of WSOD learning at scale toward detect-
ing novel objects. Thus, it may not fully exploit the la-
tent capacity of WSOD whose original intention is to lever-
age the tremendous amount of tagged images to train ob-
ject detectors. To solve the above limitation, as illustrated in
Fig. 1 (a), we extend WSOD settings to detect and localize
open-vocabulary concepts using joint large-scale weakly-
annotated datasets that are publicly available. Accordingly,
a weakly supervised open-vocabulary object detection, re-
ferred to as WSOVOD is put forth.

To this end, three main challenges, as we start in this
paper, obstacle to the implementation of WSOVOD. First,
non-identical data distributions may bring dataset bias (Kim,
Lee, and Choo 2021; Torralba and Efros 2011; Jiang
et al. 2022) to affect the feature learning, hindering the
vision-language alignment introduced as followed. For ex-
ample, ILSVRC (Russakovsky et al. 2015) is an object-
centric dataset with a balanced category distribution, while
LVIS (Gupta, Dollár, and Girshick 2019) has many complex
scenes with Zipfan distribution. Second, the reliance of ex-
isting WSOD methods upon traditional object proposal gen-
erators prevents models from learning proposal extraction at
different semantic levels, since they only use low-level fea-
tures computed on super-pixel (Felzenszwalb and Hutten-
locher 2004) or counters (Dollár and Zitnick 2013). Third,
weak supervision hardly aligns vision-language represen-
tation. In the existing open-vocabulary studies (Ma et al.
2022a; Gu et al. 2022; Zang et al. 2022), the visual-semantic
alignments are realized in a fully-supervised manner where
classification embeddings and box knowledge are necessary.
Though recent methods (Zhou et al. 2022b; Kamath et al.
2021; Zareian et al. 2021) resort to weak information, e.g.,
captions, they deeply rely on strong box-level annotations.

To solve the above three problems and overcome the
limitations of common WSOD approaches, our WSOVOD
framework (in Fig. 2) innovates in three aspects: 1) We ex-
tract data-aware features to generate for each image input-
conditional coefficients and combine dataset attribute proto-
types to identify dataset bias in proposal features of differ-
ent distributions. Explicitly, an additional branch learns to
squeeze the global image feature into a channel-wise global
vector as coefficients to weight dataset attribute prototypes
for re-calibrating final proposal features. 2) A location-
oriented region proposal network is proposed to leverage
high-level semantic layouts from the image segmenter to
distinguish object boundaries. Recent interactive segmenta-
tion work SAM (Kirillov et al. 2023) exhibits strong im-
age segmentation capabilities, but it lacks semantic recog-
nition ability. Here, we transfer the knowledge from SAM
to a customized region proposal network upon high-quality
proposals. 3) We introduce a proposal-concept synchronized
multiple-instance network that implements object mining
to discover objects under image-level classification em-
beddings, as well as instance refinement to align vision-
language representation. Specifically, we obtain text em-
beddings of the target vocabulary from the pre-trained text

encoder, which are considered as category prototypes for
multiple-instance learning. Also, we transform the multi-
branch refinement heads in the common WSOD framework
into open-vocabulary learning to further align object and
concept representation. In addition, we leverage SAM to re-
fine the box coordinates of the supervision between multi-
branch refinement heads.

Extensive experiments demonstrate that the proposed
WSOVOD achieves on-par or even better performance com-
pared to fully-supervised open-vocabulary detection meth-
ods, which paves a new way to explore the large number of
visual concepts from image-level supervisions. For example,
our method significantly outperforms OVR-CNN (Zareian
et al. 2021), ViLD (Gu et al. 2022) and Detic (Zhou et al.
2022b) that require box-level annotations of base cate-
gories, by 13.9%, 9.1% and 8.9% AP, respectively, for novel
categories in MS COCO. Moreover, WSOVOD achieves
new state-of-the-art performance compared to the previous
WSOD methods under the close-set and single-dataset set-
tings while being able to detect novel categories.

Related Work
Weakly Supervised Object Detection
Combining multiple-instance learning (MIL) (Dietterich,
Lathrop, and Lozano-Pérez 1997) with convolutional neural
networks (CNNs) has made great progress in WSOD. WS-
DDN (Bilen and Vedaldi 2016) is the prior work to intro-
duce MIL into CNN and model WSOD as a proposal classi-
fication. However, WSDDN suffers from local optimization
problems since the detector tends to detect high-activated
regions. OICR (Tang et al. 2017) further attaches multi-
branch refinement to WSDDN, which gradually propagates
the scores of the salient regions to the complete objects.
These methods are highly dependent on traditional proposal
generation methods (Uijlings et al. 2013; Pont-Tuset et al.
2016) and do not regress the final proposal boxes. Further-
more, UWSOD (Shen et al. 2020a) learns multi-scale fea-
tures and the region proposal network in an end-to-end uni-
fied framework. Nevertheless, the region proposal network
is prone to be saturated due to the noisy pseudo-ground-
truth boxes in the early training period, which has inferior
performance than the cutting-edge WSOD methods. Differ-
ent from these methods, we exploit knowledge transfer from
the category-agnostic segmenter to pursue high-quality and
high-recall object proposals.

Open-Vocabulary Object Detection
Open-vocabulary object detection (OVOD) (Zareian et al.
2021; Gu et al. 2022; Minderer et al. 2022; Zhou et al.
2022b) is an attractive research topic in recent years, whose
goal is to detect unseen or novel classes that occupy a partic-
ular semantically-coherent region within an image. OVOD
differs from zero-shot object detection (Bansal et al. 2018)
in that it can access large-scale novel objects with weakly-
supervised labels, e.g., tags, and captions. However, they
share the same paradigm of learning a cross-modal vision-
language representation space to model image regions and
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Figure 2: Illustration of the proposed WSOVOD framework. The proposal generator combines candidate regions from LO-
WSRPN and SAM that may potentially contain objects for subsequent object mining. The data-aware feature extractor outputs
unbiased dataset attribute features by identifying dataset bias from dataset attribute prototypes. The proposal-concept synchro-
nized multiple-instance learning discovers potential objects that match the target vocabularies in image-level labels.

word descriptors. The main challenge in this field is align-
ing proposal features with category text embeddings, thus it
is crucial to use image-text knowledge efficiently (Radford
et al. 2021; Li et al. 2022). OVR-CNN (Zareian et al. 2021)
pre-trains the detector on image-text pairs using contrastive
learning and fine-tunes it on detection data with a limited
vocabulary. OWL (Minderer et al. 2022) further transfers
knowledge from vision-language models to transformer-
based detectors with contrastive image-text pre-training and
detection fine-tuning. Detic (Zhou et al. 2022b) improves
OVOD performance of long-tail categories via image-level
annotated data. Different from these approaches, our pro-
posed WSOVOD uses MIL-based object mining to discover
potential objects and refines them by multi-branch refine-
ment open-vocabulary heads gradually. All of the above
methods are highly dependent on bounding-box annotations,
while WSOVOD is devoted to efficiently exploring weakly-
annotated data.

Methodology
As illustrated in Fig. 2, an image I first goes through the vi-
sion backbone to extract global image features X img. Then,
the data-aware feature extractor takes in X img to gener-
ate coefficients for combining dataset attribute prototypes
as data-aware features Xdaf . Meanwhile, a proposal gen-
erator also takes in X img to hypothesize object locations.
Next, RoI pooling crops the pooled features from global fea-
ture X img, and two fully-connected layers transform them to
get proposal features Xprop ∈ RR×D, where R is proposal
number in image I and D is feature vector length. We fur-
ther fuse proposal features Xprop with data-aware features
Xdaf to deal with dataset bias, resulting in X fuse. Finally,

a proposal-concept synchronized multiple-instance learning
takes in X fuse to discover objects constrained by image-level
classification embeddings and align representation between
objects and concepts. The overall training objective function
is formulated as:

LWSOVOD = LPG + LOM + LIR, (1)

where LPG is proposal generator loss. And LOM and
LIR are object mining and instance refinement losses for
proposal-concept synchronized multiple-instance learning.

Data-Aware Feature Extractor
To better align vision-language representation, it is neces-
sary to learn as many categories as possible, however, an
individual dataset contains limited concepts. This motivates
us to train one detector upon multiple datasets jointly to
generalize the detection scope of WSOD. The main chal-
lenge stems from domain incompatibility over non-identical
data distribution. Much of the bias can be accounted for by
the divergent goals of the different datasets: For example,
LVIS (Gupta, Dollár, and Girshick 2019) has an average of
11.2 instances from 3.4 categories per image with long-tail
Zipfan distribution, while most images in ILSVRC (Rus-
sakovsky et al. 2015) are object-centric with single category.
Such variant dataset biases hurt the representation learning,
thus simply combining multiple datasets has poor perfor-
mance as observed in our experiments. In contrast, such bias
could be well recognized even from a single image by hu-
mans and classifiers (Torralba and Efros 2011).

To this end, we design a data-aware feature extrac-
tor (DAFE) to generate generalized dataset-level features
for cross-dataset learning with different scenarios and dif-
ferent categories. The key intuition of DAFE is to capture
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the unique and identifiable “signature” of each dataset con-
ditioned on full-image information and adjust proposal fea-
tures accordingly. Specifically, it consists of a global average
pooling layer to squeeze the input information from image
feature maps X img. Then two fully-connected layers fol-
lowed by the Tanh activation function learn to generate coef-
ficients based on the image input to combine dataset attribute
prototypes for identifying the dataset bias from the squeezed
global features and produce data-aware feature Xdaf with
the same dimension of the proposal features. Finally, we ag-
gregate Xdaf with the proposal features Xprop by element-
wise summation: X fuse = Xprop + Xdaf . Thus, the input-
conditional vector Xdaf aims to re-calibrate the original pro-
posal features to de-bias the different distributions, which
are then used for the subsequent open-vocabulary object
mining and refinement.

Discussion. The proposed DAFE, to some extent, is re-
lated to recent prompt tuning (Jia et al. 2022) that adapts
large foundation models to downstream tasks with a small
amount of task-specific learnable parameters. Our approach
differs from theirs in two folds. First, most prompt learn-
ing methods perform data-space adaptation by transforming
the input. For example, approaches in (Feng et al. 2022) ap-
pend a sequence of learnable vectors to the textual input, and
method in (Bahng et al. 2022) learns an image perturbation
to convert the image to the formats of downstream tasks.
Different from the above methods, our DAFE eliminates the
different dataset distributions by feature-space adaptation
with an input-conditional vector. Second, existing prompt
tuning mainly focuses on fully-supervised learning, which
is difficult to generalize to wide unseen categories. Input-
conditional prompt learning (Zhou et al. 2022a) still relies
on an online text encoder to generate input-specific weights
for each image. Our adaptation does not require an online
text encoder during training and inference.

SAM Guided Proposal Generator
Most existing WSOD methods use traditional proposal
methods with low-level features to generate region candi-
dates, which prevents the models from end-to-end learning
with high-level semantic information. We design a location-
oriented weakly supervised region proposal network (LO-
WSRPN) to recognize category-agnostic potential objects,
which further transfers knowledge of high-level semantic
layouts from SAM (Kirillov et al. 2023). In detail, similar
to RPN from Faster RCNN (Ren et al. 2015), LO-WSRPN
has a 3 × 3 convolutional layer with 256 channels followed
by three sibling 1 × 1 convolutional layers for localization
and shape quality estimations, respectively. The first two
convolutional layers are responsible for localization quality
estimation, predicting centerness c and foreground proba-
bilities p, respectively. We use s =

√
c · p as the localiza-

tion quality for each region proposal during inference. The
last convolutional layer is responsible for shape quality es-
timation. Different from anchor-based detectors, we directly
view locations as training samples instead of anchor boxes.
We replace the standard box-delta targets (x, y, h, w) with
distances t = (l, r, t, b) from the location to four sides of
the ground-truth box as in (Tian et al. 2019). The training

objective function of this module is formulated as:

LPG =LBCE(p, p
∗)+

1p∗=1{L1(c, c
∗) + LIoU(t, t

∗)}, (2)

where LBCE is the binary cross-entropy loss function, L1

constrains the distance between the sampling anchor points
and the pseudo-ground-truth (PGT) boxes, LIoU measures
the shape difference between the predicted boxes and the
PGT boxes, thereby constraining the shape of the predicted
boxes. We use WSOVOD’s final predictions as PGT boxes
and assign the corresponding targets, i.e., p∗, c∗, and t∗.

However, object proposals from LO-WSRPN are ex-
tremely noisy in the early stage of training as observed
in (Shen et al. 2020a), which has a negative impact on sub-
sequent object mining and brings in inferior PGT boxes. In-
spired by large-scale interactive segmentation models (Kir-
illov et al. 2023), we leverage SAM to generate additional
proposals during training, which helps stabilize subsequent
object mining. In detail, we first sprinkle evenly 32 × 32
grid points as the prompt input of SAM to generate addi-
tional proposals. Then, we concatenate the SAM proposals
with the learned proposals from LO-WSRPN as input to sub-
sequent object mining. Incorporating knowledge from SAM
not only helps enrich the high-quality object proposals but
also leverages high-level semantic layouts from the image
segmenter to distinguish object boundaries.

Proposal-Concept Synchronized Multiple-Instance
Network
The central idea of fully-supervised open-vocabulary object
detection (FSOVOD) is to align object features with text
embeddings which are pre-trained on large-scale image-text
pairs like CLIP (Radford et al. 2021). In detail, FSOVOD
methods convert a generic two-stage object detector to an
open-vocabulary detector by replacing the learnable classi-
fier head with fixed language embeddings, corresponding to
the category names. Thus, object-level annotations are re-
quired during training to maximize the embedding similari-
ties of positive region-category pairs and minimize that of
negative ones. However, it is challenging to align object-
level vision-language representation with only image-level
supervision. Fortunately, WSOD is often formulated as
multiple-instance learning (MIL) (Dietterich, Lathrop, and
Lozano-Pérez 1997) and implicitly learns instance-based
classifier from image-level information.

Therefore, our WSOVOD extends the common MIL-
based WSOD framework (Bilen and Vedaldi 2016) to mine
large-scale category concepts in an open-vocabulary man-
ner. The fused proposal features X fuse are forked into two
fully-connected layers parallel, namely classification stream
W c ∈ RD×C and detection stream W d ∈ RD×C , pro-
ducing two score matrices Sc, Sd ∈ RR×C respectively,
where C and R denote the number of categories and pro-
posals during training in image I , respectively. Different to
work in (Bilen and Vedaldi 2016), we adapt text embed-
ding T ∈ RD×C of category names as the parameters W c

of classification stream so that it imposes explicit visual-
semantic constraint during MIL optimization. At the same
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time, the detection stream is still learnable, since it focuses
on localizing the foreground proposals, which is expected
to be category-agnostic. Thus, the two score matrices are
computed as: Sc = Xfuse

∥Xfuse∥
T

∥T∥ and Sd = X fuseW d. Then,
both score matrices are normalized by softmax functions
σ(·) over category and proposal axes, respectively. The final
score S for assigning category c to region r is computed via
an element-wise product: S = σ(Sc)⊙ σ((Sd)T )T ∈ [0, 1].
To acquire image-level classification scores for training, S
is summed for all regions φc =

∑R
r=1 Src. Then the object-

mining objective function is binary cross-entropy loss:

LOM =
C∑

c=1

yc log(φc) + (1− yc) log(1− φc), (3)

where y ∈ {0, 1}C is the category one-hot label indicating
image-level existence of category c.

Recently, WSOD works (Tang et al. 2017, 2018) also ex-
plicitly assign pseudo labels from the above mining mod-
ule to learn more discriminative classifiers, which are also
called instance refinement modules. Thus, we also develop
multiple open-vocabulary classification heads which uses a
shared vision-language representation space to refine dis-
covered object. In addition, to reduce miss-localization,
for each refinement branch we regress the bounding boxes
which need high-quality proposals to provide PGT boxes.
Therefore, the PGT boxes mined by the object mining mod-
ule are used as box prompt input to SAM to refine boxes to
supervise the first refinement branch, and the former refine-
ment branch supervises the latter one. Thus, the objective
function of this multi-branch refinement is the sum of clas-
sification and regression losses over all branches:

LIR =
K∑

k=1

Lk
cls + Lk

reg, (4)

We concatenate the text embedding T with a background
zero-vector as the classifier parameters W r ∈ RD×(C+1) of
refinement branch k. The classification loss is defined as:

Lk
cls =

R∑
r=1

C+1∑
c=1

wk
c ŷ

k
r,c logS

k
r,c, (5)

where wk
c is the weight factor to smooth the learning process

following (Tang et al. 2017), Sk ∈ RR×(C+1) is computed
by Xfuse

∥Xfuse∥
W r

∥W r∥ and ŷkr,c is the PGT labels of proposal r for
category c in branch k. And Lk

reg is the smooth L1 loss (Ren
et al. 2015) in branch k.

Experiments
Datasets. We evaluate the proposed WSOVOD framework
on Pascal VOC 2007, 2012 (Everingham et al. 2010) and
MS COCO (Lin et al. 2014), which are widely used for
WSOD. In addition, we also use ILSVRC (Russakovsky
et al. 2015) and LVIS (Gupta, Dollár, and Girshick 2019) for
open-vocabulary learning, both of which are widely used for
FSOVOD.

Evaluation Metrics. Following the common setting of
FSOVOD, we also split COCO into 17 novel classes and 48
base classes, and use APN and APB to evaluate the results
of 17 novel classes and 48 base classes, respectively. We also
use AP to evaluate the results of 17 + 48 total classes. To
compare the model performance in the WSOD setting, we
use two evaluation metrics: CorLoc and mAP. Correct lo-
calization (CorLoc) is a commonly-used measurement that
quantifies the localization performance by the percentage of
images that contain at least one object instance with at least
50% IoU to the ground-truth boxes. Mean average preci-
sion (mAP) follows standard Pascal VOC protocol to report
the mAP at 50% IoU of the detected boxes with the ground-
truth ones. Furthermore, we report standard COCO metrics
for WSOD, including AP at different IoU thresholds.

Implementation Details. We use VGG16 (Simonyan and
Zisserman 2015), RN18/50-WS-MRRP (Shen et al. 2020b),
initialized with the weights pre-trained on ILSVRC as vision
backbones. We use synchronized SGD training on Nvidia
3090 with a batch size of 4, a mini-batch involving 1 im-
ages per GPU. We use learning rates of 1e−3 and 1e−2 for
VGG16 and RN18/50-WS-MRRP backbone, respectfully, a
momentum of 0.9, a dropout rate of 0.5, a learning rate de-
cay weight of 0.1. We fix the backbone weights for WSOD
but set a 1e−5 learning rate to backbones for OVOD.

Open-Vocabulary and Cross-Dataset Detection
Since we are the first exploration for WSOVOD, we
compare the proposed WSOVOD framework with fully-
supervised open-vocabulary object detection (FSOVOD).
Noted that FSOVOD divides the MS COCO categories into
48 base and 17 novel classes (Bansal et al. 2018), and uses
object-level annotations of 48 base classes during training.
In addition, in order to expand vocabulary learning, some
works (Zareian et al. 2021; Zhou et al. 2022b; Zareian
et al. 2021) use weak annotation information including novel
classes, such as tags, captions, and etc. The first and sec-
ond parts of Tab. 1 shows the state-of-the-art FSOVOD re-
sults without and with image-level annotation, respectively.
The 6th row in the second part removes COCO captions
in Detic (Zhou et al. 2022b), which results in a dramatic
performance drop in novel classes with only 1.3% APN .
This shows that fully-supervised methods are hard to gen-
eralize well to detect novel classes if they lack the super-
vision information of a large vocabulary. Therefore, it is
necessary to study WSOVOD on large-vocabulary datasets
with only category annotations. As shown in the third part
of Tab. 1, WSOVOD exhibits strong generalization abil-
ity despite large differences between train and test distri-
butions. In particular, WSOVOD significantly improves the
APN performance of novel classes compared to FSOVOD
with only object-level supervision. On COCO novel classes,
WSOVOD even surpasses FSOVOD methods, which require
both image-level and object-level supervision.

We further conduct experiments to train our WSOVOD
with multiple datasets jointly in the bottom part of Tab. 1.
We observe that: (1) Cross-dataset learning achieves supe-
rior or at least comparable results to the corresponding sin-
gle dataset. For instance, combing VOC07 and VOC12 sig-
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Method Bakcbone Train Supervision COCO VOC07

Image-level Object-level APN APB AP mAP

ZS-LAB (Bansal et al. 2018) Incept.-Res. v2 – COCO 48 cls. 0.3 24.9 – –
DELO(Zhu, Wang, and Saligrama 2020) DarkNet19 – COCO 48 cls. 3.4 – 13.0 –
PL (Rahman, Khan, and Barnes 2020) RN50-FPN – COCO 48 cls. 4.1 35.9 7.4 –
SAN (Rahman, Khan, and Porikli 2020) RN50 – COCO 48 cls. 2.6 13.9 4.3 –
BLC (Zheng et al. 2020) RN50 – COCO 48 cls. 4.5 42.1 8.2 –
SSB (Khandelwal et al. 2023) RN101 – COCO 48 cls. 10.2 48.9 16.9 –
RRFS (Huang et al. 2022) RN101 – COCO 48 cls. 13.4 42.3 20.4 –

OVR-CNN (Zareian et al. 2021) RN50-C4 COCO Cap. COCO 48 cls. 22.8 46.0 39.9 52.9
ViLD (Gu et al. 2022) RN50-FPN CLIP400M COCO 48 cls. 27.6 59.5 51.3 –
ZSD-YOLO (Xie and Zheng 2022) CSP-DarkNet53 CLIP400M COCO 48 cls. 13.6 31.7 19.0 –
HierKD (Ma et al. 2022b) RN50-FPN Conceptual Cap. COCO 48 cls. 20.3 51.3 43.2 –
Detic (Zhou et al. 2022b) RN50-C4 COCO Cap. COCO 48 cls. 27.8 47.1 45.0 –
Detic (Zhou et al. 2022b) RN50-C4 – COCO 48 cls. 1.3 – 39.3 –
RKDWTF (Bangalath et al. 2022) RN50-C4 COCO Cap. COCO 48 cls. 36.6 54.0 49.4 –
SGDN (Shi, Hayat, and Cai 2023) RN50 Flickr30K, VG COCO 48 cls. 37.5 61.0 54.9 –
PBBL (Gao et al. 2022) RN50 COCO Cap., VG, SBU Cap. COCO 48 cls. 30.8 46.1 42.1 59.2

WSOVOD RN50-WS-MRRP VOC07 – 15.4 7.8 9.8 63.4
WSOVOD RN50-WS-MRRP VOC12 – 17.0 9.3 11.3 64.8
WSOVOD RN50-WS-MRRP ILSVRC – 9.1 6.4 7.0 26.7
WSOVOD RN50-WS-MRRP LVIS – 16.7 11.0 13.2 31.0
WSOVOD RN50-WS-MRRP COCO – 35.0 27.9 29.8 60.9

WSOVOD RN50-WS-MRRP VOC07, VOC12 – 19.2 12.4 15.1 65.0
WSOVOD RN50-WS-MRRP COCO, VOC07, VOC12 – 35.4 27.3 29.8 65.0
WSOVOD RN50-WS-MRRP COCO, ILSVRC – 35.6 27.7 30.0 61.2
WSOVOD RN50-WS-MRRP COCO, LVIS – 36.7 28.4 30.3 62.3

Table 1: Comparison with the state-of-the-art OVOD methods on MS COCO and Pascal VOC.

nificantly improves the COCO APN with gains of 3.8%
and 2.2% compared to separately using VOC07 and VOC12
datasets, respectively. (2) Adding more image-level concepts
to COCO further improves the COCO APN . For instance,
adding ILSVRC to COCO performs better than adding
VOC07 and VOC12 to COCO. (3) Adding denser image-
level annotations significantly improves results. For exam-
ple, LVIS and COCO share the same training set, and di-
rectly combining LVIS and COCO improves 1.7% APN , al-
though the image-level labels in LVIS are incomplete.

Rescuing Federated and Long-Tail Data
We further conduct experiments on the difficult federated
and long-tail distribution LVIS dataset, as shown in Tab. 3.
When only using LVIS for training, the performance of
WSOVOD reaches saturation around 1 epoch. This is be-
cause LVIS is a federated dataset with sparse annotations
where image-level labels are not exhaustively annotated
with all classes. The missing classes are treated as back-
ground and generate incorrect supervision signals. To this
end, we introduce a batch-class-aware sampling, termed
BCAS. In BCAS, the data sampler first picks a category
and then selects multiple images containing that category to
form a mini-batch. When equipped with BCAS for LVIS,
WSOVOD reaches saturation at about 3 epochs and im-
proves 3.8% AP0.5 on COCO. We further add COCO to
LVIS training without BCAS and observe substantial per-

formance improvements on VOC07 with gains of 30.7%
mAP and 34.8% CorLoc, respectively. Compared to single
COCO, combing LVIS with COCO also significantly im-
proves the VOC07 mAP from 60.5% to 61.7% and CorLoc
from 78.2% to 79.3%, respectively. This reveals that incom-
plete image-level annotated data is helpful for WSOVOD.

Weakly Supervised Object Detection

We compare our proposed method with the state-of-the-art
WSOD methods. Tab. 2 shows the performance comparisons
on the VOC 2007, VOC 2012, and MS COCO, where I, O
and B denote image-level supervision, object-level supervi-
sion with class labels, and object-level supervision without
class labels, respectively. With the VGG16 backbone, the
proposed WSOVOD suppresses the performances of all pre-
vious WSOD methods for mAP and CorLoc on VOC and
AP0.5:0.95 on MS COCO. The proposed WSOVOD with
RN18-WS-MRRP backbone reaches the new state-of-the-
art of 80.6% and 81.0% CorLoc on VOC 2007 and 2012,
respectively, and 29.7% AP0.5 on MS COCO. With RN50-
WS-MRRP backbone, WSOVOD further sets new state-of-
the-art of 63.4% and 62.1% mAP on VOC 2007 and VOC
2012, respectively, and 20.5% AP0.5:0.95 and 21.4% AP0.75

on MS COCO. Furthermore, with object-level supervision
without class labels, our proposed WSOVOD even shows
comparable performance compared to FSOD in all datasets.
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Method Sup. Bakcbone
VOC 2007 VOC 2012 MS COCO

mAP CorLoc mAP CorLoc Avg. Precision, IoU:
0.5:0.95 0.5 0.75

WSDDN(Bilen and Vedaldi 2016) I VGG16 34.8 53.5 – – 9.5 19.2 8.2
OICR (Tang et al. 2017) I VGG16 41.2 60.6 37.9 62.1 – – –
PCL (Tang et al. 2018) I VGG16 43.5 – – – 8.5 19.4 –
WSOD2 (Zeng et al. 2019) I VGG16 53.6 69.5 47.2 71.9 10.8 22.7 –
C-MIDN (Gao et al. 2019) I VGG16 52.6 68.7 50.2 71.2 9.6 21.4 –
MIST (Ren et al. 2020) I VGG16 54.9 68.8 52.1 70.9 12.4 25.8 10.5
UWSOD (Shen et al. 2020a) I RN18-WS-MRRP 45.0 63.8 46.2 65.7 3.1 10.1 1.4
SPE (Liao et al. 2022) I CaiT 51.0 70.4 – – 7.2 18.2 4.8
Seo et al. (Seo et al. 2022) I RN101 58.7 69.8 56.2 71.2 14.4 29.0 12.4

WSOVOD I VGG16 59.1 77.2 59.8 79.7 18.8 27.1 19.7
WSOVOD I RN18-WS-MRRP 63.0 80.6 61.9 81.0 20.1 29.7 21.2
WSOVOD I RN50-WS-MRRP 63.4 80.1 62.1 80.7 20.5 29.1 21.4

Fast RCNN (Girshick 2015) O VGG16 66.9 – 65.7 – 18.9 38.6 –
Faster RCNN (Ren et al. 2015) O VGG16 69.9 – 67.0 – 21.2 41.5 –

WSOVOD B VGG16 67.2 88.2 65.4 84.5 16.4 31.1 15.3
WSOVOD B RN18-WS-MRRP 68.8 90.9 66.3 89.2 19.8 37.6 18.5
WSOVOD B RN50-WS-MRRP 71.8 91.0 69.7 90.0 21.6 40.6 20.8

Table 2: Comparison with the state-of-the-art WSOD methods on PASCAL VOC 2007, 2012 and MS COCO.

Train

Test

VOC07 MS COCO

mAP CorLoc Avg. Precision, IoU:
0.5:0.95 0.5 0.75

LVIS 31.0 44.5 4.8 12.9 5.9
LVIS* 31.7 47.7 6.6 16.7 7.8
COCO 60.5 78.2 20.1 29.7 21.2

LVIS, COCO 61.7 79.3 21.0 30.1 22.2

Table 3: Comparison with the results of WSOVOD trained
on LVIS with RN18. (“*” refers to sampling by BCAS.)

Train Data without DAFE with DAFE
mAP CorLoc mAP CorLoc

VOC07 62.6 78.7 63.0 (↑ 0.4) 80.6 (↑ 1.9)
VOC07, VOC12 63.5 79.2 64.1 (↑ 0.6) 82.2 (↑ 3.0)
VOC07, COCO 61.4 78.2 63.0 (↑ 1.6) 80.5 (↑ 2.3)

Table 4: Ablation study of DAFE with RN18-WS-MRRP
backbone on VOC 2007.

Ablation Study
We conducted two sets of ablation studies to investigate
the effectiveness of the proposed modules. We firstly ab-
late DAFE in Tab. 4 to verify the effectiveness of DAFE
for training multiple datasets. We test all models on VOC07
test. When training on VOC12 and VOC07, DAFE improves
mAP by 0.6% and CorLoc by 3.0%. Thus, DAFE signifi-
cantly improves the detection and localization performance,
indicating that DAFE is simple and effective. When train-
ing on COCO and VOC07, DAFE improves mAP by 1.6%

Proposal mAP CorLoc

LO-WSRPN 46.7 65.1
MCG (Pont-Tuset et al. 2016) 54.2 (↑ 7.50) 71.9 (↑ 6.80)
SAM (Kirillov et al. 2023) 61.7 (↑ 15.0) 77.5 (↑ 12.4)
LO-WSRPN + SAM 62.5 (↑ 15.8) 79.9 (↑ 14.8)
LO-WSRPN + SAM + refine 63.0 (↑ 16.3) 81.0 (↑ 15.9)

Table 5: Ablation study of proposal generator with RN18-
WS-MRRP backbone on VOC 2007.

and CorLoc by 2.3%. It demonstrates that DAFE also deals
well with the large distribution gap. DAFE also performs
well on a single dataset. Thus, introducing global image-
level context to local proposal-level features is helpful to
WSOD. This reveals that DAFE not only successfully gath-
ers dataset-level bias but also image-level context. Secondly,
we ablate the proposal generator in Tab. 5. It shows that,
as observed in (Shen et al. 2020a), only using predictions
from the model itself as supervision results in noisy train-
ing. When using proposals from MCG, the performance is
significantly improved, but compared with SAM proposals
based on high-level semantic information, it is still much
worse. When adding SAM proposals to LO-WSRPN pro-
posals with the refinement mechanism, our method improves
mAP and CorLoc by 16.3% and 15.9%, respectively.

Conclusion
In this paper, we propose a weakly supervised open-
vocabulary object detection framework, namely WSOVOD,
which extends WSOD to detect and localize open-
vocabulary concepts and utilizes diverse and large-scale
datasets with only image-level annotation.
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