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Abstract

Deep Neural Networks (DNNs) have demonstrated remark-
able accuracy in vision classification tasks. However, they ex-
hibit vulnerability to additional noises known as adversarial
attacks. Previous studies hypothesize that this vulnerability
might stem from the fact that high-accuracy DNNs heavily
rely on irrelevant and non-robust features, such as textures
and the background. In this work, we reveal that edge infor-
mation extracted from images can provide relevant and robust
features related to shapes and the foreground. These features
assist pretrained DNNs in achieving improved adversarial ro-
bustness without compromising their accuracy on clean im-
ages. A lightweight and plug-and-play EdgeNet is proposed,
which can be seamlessly integrated into existing pretrained
DNNs, including Vision Transformers, a recent family of
state-of-the-art models for vision classification. Our EdgeNet
can process edges derived from either clean nature images or
noisy adversarial images, yielding robust features which can
be injected into the intermediate layers of the frozen back-
bone DNNs. The cost of obtaining such edges using conven-
tional edge detection algorithms (e.g., Canny edge detector)
is marginal, and the cost of training the EdgeNet is equivalent
to that of fine-tuning the backbone network with techniques
such as Adapter.

Introduction
Deep Neural Networks (DNNs) have attracted significant at-
tention for their impressive performance in vision classifica-
tion tasks (LeCun et al. 1989, 1995; Krizhevsky, Sutskever,
and Hinton 2012; He et al. 2016; Zagoruyko and Komodakis
2016), demonstrating exceptional accuracy. However, their
vulnerability to adversarial attacks has been a subject of con-
cern (Goodfellow, Shlens, and Szegedy 2014; Madry et al.
2017; Hendrycks et al. 2021b,a; Hendrycks and Dietterich
2019). Adversarial attacks targeting classification models in-
volve introducing subtle perturbations into input data, lead-
ing to misclassification by the models.

Previous research (Geirhos et al. 2018; Li and Xu 2023)
suggests that the vulnerability of high-accuracy DNNs to
these attacks might be rooted in their heavy reliance on ir-
relevant and non-robust features such as textures and back-
grounds. In contrast, robust DNNs should instead base their
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predictions on relevant and robust features that pertain to
shapes and foreground elements within the images.

However, Tsipras et al. (2018) point out that these mod-
erately correlated features, while robust, can adversely af-
fect accurate predictions, making them both robust and non-
predictive. Conversely, the key to improving natural accu-
racy lies in utilizing weakly correlated and non-robust fea-
tures, which, despite lacking adversarial robustness, exhibit
predictive capability. Therefore, improving the adversarial
robustness of a DNN without compromising its natural ac-
curacy is challenging.

Based on the aforementioned theorem and the exis-
tence of high-accuracy large-scale pretrained models, the
enhancement of adversarial robustness in naturally pre-
trained models has emerged as a prominent subject. Re-
cently, TORA-ViTs (Li and Xu 2023) leverage the capabil-
ities of a fine-tuning technique known as Adapter (Houlsby
et al. 2019), effectively enhancing adversarial robustness
with an affordable training cost. However, a drawback is also
obvious. Through the incorporation of a fusion module to
balance predictive and robust features, their model requires
tuning a hyper-parameter to manage a trade-off. In certain
scenarios, natural accuracy is compromised to enhance ro-
bustness, and vice versa.

In this paper, we present an alternative approach wherein,
rather than directly augmenting parameters to the backbone
network, we introduce a mechanism for integrating specific
information extracted from the original images into the in-
termediate layers of the backbone network. To be specific,
our novel approach highlights the potential of edge informa-
tion extracted from images. This edge information holds the
capability to furnish relevant and robust features pertaining
to shapes and foreground elements within the images. These
features, when integrated, assist pretrained DNNs in achiev-
ing improved adversarial robustness without compromising
their natural accuracy in classifying clean images.

To achieve this objective, we propose the incorporation
of a side branch named EdgeNet. This lightweight, plug-
and-play network can seamlessly integrate into existing pre-
trained deep models, including the state-of-the-art mod-
els such as Vision Transformers (ViTs) (Dosovitskiy et al.
2020). Our EdgeNet operates by processing edge informa-
tion extracted from input images. This process yields a set
of robust features that can be strategically injected into the
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intermediary layers of the frozen backbone DNNs. This
augmentation empowers the network to boost its defenses
against adversarial perturbations while sustaining its accu-
racy in recognizing unaltered clean images.

The building blocks feature a “sandwich” architecture,
comprising two zero convolutions (Zhang and Agrawala
2023) at both the input and output, sandwiching a ViT block
in the middle. These two zero convolutions selectively trans-
mit relevant inputs to the intermediate block and inject rele-
vant outputs into the pretrained backbone. Furthermore, the
zero convolution at the output position ensures that the in-
formation injected into the backbone initiates from a zero
point, thereby ensuring the stability and trainability of our
method.

Our approach incurs minimal additional computational
overhead, comparable to using Adapters for fine-tuning ViT.
Firstly, obtaining edge information through conventional
edge detection algorithms, such as the well-known Canny
edge detector (Canny 1986), incurs only marginal computa-
tional costs compared to DNNs. Furthermore, our EdgeNet-
ViT-B/16, which incorporates 4 new blocks, is composed of
119.9M parameters and involves 24.37G floating-point op-
erations (FLOPs). In contrast, the TORA-ViT-B/16 model,
relying on Adapters, consists of 111.2M parameters and
requires 26.0G FLOPs (Li and Xu 2023). Our approach
achieves reduced computational overhead while slightly in-
creasing memory consumption. This affordability, combined
with its effectiveness, positions EdgeNet as a compelling
tool for enhancing DNN robustness in a resource-efficient
manner.

Our experiments cover a wide range of robust bench-
marks, including white-box and black-box adversarial at-
tacks on ImageNet-1K, employing FGSM (Goodfellow,
Shlens, and Szegedy 2014) and PGD (Madry et al. 2017).
The robustness of our EdgeNet extends beyond adversarial
attacks to encompass scenarios that involve natural adver-
sarial examples in ImageNet-A (Hendrycks et al. 2021b),
out-of-distribution data in ImageNet-R (Hendrycks and Di-
etterich 2019), and common corruptions in ImageNet-C
(Hendrycks et al. 2021a). In particular, our EdgeNet demon-
strates slightly superior or comparable performance to the
most balanced configuration (λ = 0.5) of TORA-ViTs
across clean ImageNet-1K and ImageNet-A/R/C datasets.
Furthermore, it achieves significantly improved accuracy
under FGSM and PGD attacks (69.8% compared to 54.7%
and 48.8% compared to 38.0%, respectively). The results re-
veal that our EdgeNet effectively enhances the robustness of
pretrained ViTs.

Related Works
Adversarial Robustness
FGSM (Goodfellow, Shlens, and Szegedy 2014) claims that
the vulnerability of neural networks to adversarial attacks
stems from their linear characteristics, rather than the previ-
ously assumed factors of nonlinearity and overfitting. In line
with this understanding, the authors present a simple and
efficient method to generate adversarial examples for adver-
sarial training proposed based on such a perspective to re-

duce adversarial error. PGD (Madry et al. 2017) studies the
adversarial robustness from the view of robust optimization.
A first-order gradient-based method for iterative adversarial
is proposed. This method utilizes PGD on the negative loss
function as a universal “first-order adversary”, signifying the
strongest attack utilizing this approach.

Robustness to Other Perturbations
More recently, perturbations beyond adversarial attacks are
gaining increasing interests. ImageNet-A (Hendrycks et al.
2021b) considers natural adversarial examples, which place
objects in unusual contexts or orientations. By using a sim-
ple adversarial filtration technique, the dataset ensures that
real-world, unmodified examples transfer to various unseen
models reliably, highlighting shared weaknesses in com-
puter vision models. ImageNet-C (Hendrycks and Dietterich
2019) considers common corruptions, which applies a se-
ries of 19 common visual corruptions in 5 categories to
images. This benchmark standardizes and expands on the
topic of corruption robustness, aiming to show which classi-
fiers are preferable in safety-critical applications. ImageNet-
R (Hendrycks et al. 2021a) considers out-of-distribution
data, which contains abstract or rendered versions of ob-
jects. The authors critically evaluate previously proposed
methods for improving out-of-distribution robustness, re-
vealing that larger models and artificial data augmentations
can enhance real-world robustness. Contrary to some claims
in prior work, the findings emphasize that these techniques
are effective and that improvements in artificial robustness
benchmarks can indeed transfer to real-world distribution
shifts.

Robust ViTs
ViTs, or Vision Transformers, represent an emerging fam-
ily of new architectures for vision models. Several empiri-
cal studies (Bhojanapalli et al. 2021; Mahmood, Mahmood,
and Van Dijk 2021; Paul and Chen 2022) have discovered
that ViTs exhibit robustness against various types of per-
turbations. To enhance the robustness of ViTs, the Robust
Vision Transformer (RVT) (Mao et al. 2022) has been intro-
duced, which restructures the building blocks of ViTs and in-
troduces two plug-and-play methods: position-aware atten-
tion scaling and patch-wise augmentation. In contrast to this
approach, pyramid adversarial training (PyramidAT) (Her-
rmann et al. 2022) does not alter the network architecture
but instead devises pyramid attacks to create adversarial ex-
amples by disturbing the input image on multiple scales.

Extending Backbones for Robustness
Lately, there have been efforts aimed at enhancing the ro-
bustness of existing visual model backbones through im-
provements. Li et al. (2021) explore the adversarial ro-
bustness of convolutional neural networks (CNNs) from a
Neural Architecture Search (NAS) perspective, identifying
a critical vulnerability to adversarial attacks despite their
remarkable performance in certain tasks. Recognizing the
trade-off between standard accuracy and robustness, they
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propose “Neural Architecture Dilation” as a method to en-
hance the resilience of CNNs. This approach aims to im-
prove the backbone CNNs’ robustness without significantly
compromising their accuracy. Li and Xu (2023) explore the
vulnerability of deep neural networks (DNNs) to input per-
turbations, focusing on the trade-off between natural accu-
racy and robustness in Vision Transformers (ViTs). They
find that despite inherent robustness to various perturba-
tions, ViTs still exhibit a trade-off between accuracy and
robustness. Therefore, they propose a “trade-off” between
the robustness and accuracy of Vision Transformers (TORA-
ViTs), aiming to efficiently transfer pre-trained ViT models
to balance both accuracy and robustness.

Methodology
Firstly, we provide a brief overview of adversarial training
as a preliminary. Next, we illustrate the integration of edge
information into the backbone and introduce the architecture
of building blocks in our EdgeNet. Lastly, we provide nec-
essary details of the edge detection algorithm and establish
our joint optimization objective.

Preliminary: Adversarial Training
The common method for achieving robustness of a DNN
ŷ = f(x) against adversarial attacks is adversarial training.
This method involves formulating the training objective in a
minimax form, wherein the goal is to minimize the loss to
discover the optimal model while concurrently maximizing
the loss to identify the optimal adversarial examples:

f∗ := argmin
f

E(x,y)∼D

[
max

x′∈Bp(x,ε)
ℓ (f(x′), y)

]
, (1)

where f∗ is the robust model resulting from adversarial
training, x and y represent images and labels sampled from
a training distribution D, and Bp(x, ε) = {x′ : ∥x−x′∥p ≤
ε} defines a ball covering all allowed adversarial examples
x′, with the clean image x as its center, the allowed magni-
tude of perturbation ε as its radius, and the lp-norm serving
as a measure of distance.

Integration of Edge Information
In Eq. 1, the model f(·) solely considers the images x (for
clean examples) or x′ (when subjected to an attack). We pro-
pose to integrate edge information into the model, enhancing
the performance of the model:

ŷ = f(x, e), (2)

where e is the edge obtained by e = Edge(x), and Edge(·)
is an edge detection algorithm, such as the Canny edge de-
tector.

We start with a backbone network, composed of L build-
ing blocks as expressed in the following equation:

fb =
{
f
(l)
b , l = 1, . . . , L

}
, (3)

where each building block f
(l)
b : hl−1 7→ hl maps the pre-

vious layer’s representation hl−1 to the subsequent one hl.

Figure 1: The architecture of our EdgeNet with ViT as the
backbone. We employ an interval of N , signifying the addi-
tion of one EdgeNet block for every N× ViT blocks. Each
EdgeNet block features a “sandwich” architecture, com-
mencing with zero convolutions at both the input and output
to initialize them with zeros. The output of each EdgeNet
block is integrated into the intermediate layer of the ViT
backbone through element-wise addition. Throughout the
optimization process, the backbone remains frozen, while
the EdgeNet and classification head undergoes training.

We enhance the backbone architecture by introducing an ad-
ditional set of Le blocks capable of processing edge infor-
mation, which we refer to as EdgeNet:

fe =
{
f (l)
e , l ∈ 1, . . . , Le

}
, (4)

where each building block f
(l)
e : el−1 7→ el are mappings

similar to f
(l)
b but deals with edge-related features el.

In order to control the scale of the new blocks, we intro-
duce a hyper-parameter N , which determines the insertion
interval for incorporating these additional blocks. This is
achieved through the relationship Le = L/N . More specif-
ically, when considering each building block indexed by
l = 1, . . . , L, we have{

h′
l = hl + el/N if lmodN is 0,

h′
l = hl otherwise.

(5)

h′
l is then used as the input to the l + 1 block f

(l+1)
b . Fig. 1

demonstrate the overall architecture of this framework.
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EdgeNet Building Blocks
We implement a “sandwich” architecture for each build-
ing block in our EdgeNet framework, as depicted in Fig. 1.
To be specific, we add zero convolutions Z(·) (Zhang and
Agrawala 2023) to both the input and output of each block.
Nestled between the two zero convolutions, we place a ViT
block T (·) with randomized initialization, maintaining the
same architecture to those found in the backbone:

el = Z(l)
out

(
T (l)

(
Z(l)

in (el−1)
))

. (6)

Zero convolutions are defined as 1 × 1 convolution layer
with both weight and bias initialized with zeros. Therefore,
the input to the intermediate ViT block and the output of the
EdgeNet building block are both start with zero.

Utilizing zero inputs, Z(l)
in (·) functions as a filter for ex-

tracting information related to the optimization objective.
Employing zero outputs, Z(l)

out(·) functions as a filter for de-
termining information to be integrated into the backbone.
Furthermore, the addition of zeros to the backbone at the
beginning ensures that the information flow within the back-
bone remains unaffected. Consequently, the subsequent fine-
tuning of EdgeNet is significantly streamlined.

Edge Detection
We utilize the Canny edge detector (Canny 1986) for edge
detection. Firstly, the image is processed with a Gaussian
filter to reduce noise and smooth the intensity variations.
Subsequently, the gradient magnitude and direction are com-
puted using convolution with Sobel filters. The gradient di-
rection helps determine the orientation of the edges. Non-
maximum suppression is then applied to thin out the edges
by retaining only the local maxima in the gradient magnitude
along the gradient direction. Finally, a double thresholding
step categorizes the edge pixels as strong, weak, or non-
edges. Strong edges are retained, while weak edges are sub-
jected to connectivity analysis to determine if they should be
preserved.

Within the double thresholding phase, we employ the fol-
lowing equations to automatically determine the lower and
upper thresholds:

lower = max(0, 0.7×median value), (7)
upper = min(255, 1.3×median value), (8)

where median value is the median value of pixels obtained
from the previous step.

Joint Optimization
During the training process, the pre-existing ViT blocks
and the patch embedding layer within the backbone remain
fixed, undergoing no updates. The optimization objective
solely focuses on the new ViT blocks and patch embedding
layer introduced for edge features, in addition to the classi-
fication head within the backbone.

Considering that our primary focus is not directed towards
balancing the trade-off between accuracy and robustness, we

adopt a simplified joint optimization objective:

min
f

E(x,y)∼D

[
α · ℓ (f(x,Edge(x)), y)

+ β · max
x′∈Bp(x,ε)

ℓ (f(x′,Edge(x′)), y)
]
, (9)

where α is the weight for accuracy and β is the weight for ro-
bustness. The cross-entropy loss is used for ℓ(·, ·). Through
the adjusting of α and β, we can fine-tune our EdgeNet in
a manner that enhances its robustness, meanwhile ensuring
that the accuracy won’t drop significantly.

Experiments
Settings
Pretrained ViTs. In our experiments, we adopt the vanilla
ViT architecture introduced by Dosovitskiy et al. (2020).
In our specific approach, we employ the ViT-B/16 variant,
which is characterized by several key parameters. This vari-
ant encompasses an input size of 224 × 224 pixels, with
each image divided into patches of dimensions 16× 16. The
embedding dimension is set at 768, and the architecture is
comprised of a total of 12 blocks. To initialize the network,
we employ pretrained parameters made available by Steiner
et al. (2021).

Training. For the joint training objective in Eq. 9, we set
the hyper-parameters α = 1.2 and β = 0.8. We use FGSM
with l∞-norm for adversarial training and adopt a perturba-
tion magnitude of ε = 1/255. We use the SGD optimizer,
with a fixed learning rate of 1 × 10−4, a momentum of 0.9,
and a weight decay of 2× 10−5.

Evaluations. Our evaluations cover 5 distinct settings.
1. We initiate our analysis by addressing white-box at-

tacks. To investigate the robustness of our model, we
employ both single-step FGSM (Goodfellow, Shlens, and
Szegedy 2014) and multi-step PGD (Madry et al. 2017)
on the ImageNet-1K dataset. Consistent with Mao et al.
(2022), we adopt a l∞-norm and a perturbation magni-
tude of ε = 1/255 for both FGSM and PGD. For PGD,
we execute it for 5 steps, using a step size of 0.5/255.

Figure 2: Instances selected from ImageNet-1K, -A, -R, and
-C, accompanied by their respective edges extracted by the
Canny edge detector.
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# Intervals # New Blocks FLOPs
(G)

Params
(M)

Throughput
(Images/Sec) Clean Attacks ImageNet Variants

FGSM PGD A R C (↓)
1 12 37.88 186.14 375.16 83.4 69.0 48.0 39.5 56.8 34.3
3 4 24.37 119.99 543.40 83.7 69.8 48.8 39.6 56.9 34.4
6 2 21.00 103.45 601.64 83.3 66.8 46.3 37.6 57.2 35.0

- 0 17.60 88.1 635.81 80.2 41.1 15.5 22.1 42.0 56.9

Table 1: The performance of EdgeNet across varying scales. The “# Intervals” determines the frequency of adding a new block
in relation to existing ones, while “# New Blocks” denotes the total number of added blocks. We also include results achieved
by fine-tuning the classification head of the backbone for comparison (the last row).

2. Moving on, we delve into the realm of black-box attacks.
Initially, the ViT backbone is used to generate adversarial
perturbations to attack our EdgeNet-ViT. Subsequently,
we employ a ResNet-50 model to generate adversarial
perturbations to attack both the ViT backbone and our
EdgeNet-ViT.

Expanding the scope beyond adversarial attacks, we extend
our evaluations to assess the robustness of our EdgeNet-ViT
in broader scenarios.
3. In the domain of natural adversarial examples, we use

the ImageNet-A dataset (Hendrycks et al. 2021b). This
dataset places the ImageNet objects in unusual contexts
or orientations, challenging the model’s adaptability to
unconventional scenarios.

4. In the domain of out-of-distribution data, we use the
ImageNet-R dataset (Hendrycks et al. 2021a). This
dataset contains abstract or rendered versions of objects,
probing the model’s capacity to generalize beyond its
trained data distribution.

5. In the domain of common corruptions, we use the
ImageNet-C dataset (Hendrycks and Dietterich 2019),
which applies 19 common corruptions categorized into
5 groups (e.g., motion blur, Gaussian noise, fog, JPEG
compression, etc.), mimicking real-world distortions that
a model might encounter.

Illustrations of samples sourced from ImageNet-1K, -A, -R,
and -C, along with their corresponding edges extracted by
the Canny edge detector, are presented in Fig. 2.

Different Scales of EdgeNet
As we introduce an interval hyper-parameter, we manipu-
late its value to adjust the scale of EdgeNet. We present the
performance of EdgeNet across different scales on the afore-
mentioned benchmarks, alongside reporting metrics such as
the count of floating-point operations (FLOPs), the number
of parameters, and the inference throughput (measured in
images per second). We assess the throughput using a sin-
gle NVIDIA RTX4090 GPU with 24GB of memory. As we
maintain the backbone blocks in a frozen state and solely
optimize our newly introduced blocks while fine-tuning the
classification head, we establish a baseline by including the
ViT-B/16 backbone. In this baseline, no new blocks are
added, but the classification head is fine-tuned. The results
are reported in Table 1.

When incorporating a total of 12 new blocks into the
model, a substantial increase in computational overhead is
observed. Additionally, the convergence of the model be-
comes challenging under these circumstances. While the in-
clusion of a larger number of new blocks results in improved
performance compared to inserting only 2 new blocks, it
falls short in performance when compared to the outcome
of inserting 4 new blocks. In contrast, introducing 4 new
blocks emerges as the most optimal configuration for Ed-
geNet, yielding its peak performance. This configuration
does exhibit a slightly elevated computational overhead, yet
it retains a commendable throughput, albeit slightly lower
than the setup with only 2 new blocks (approximately 58.24
images/second lower). When incorporating a mere 2 new
blocks, the achieved enhancement is not as pronounced as
what is observed when inserting 12 or 4 new blocks. How-
ever, this configuration still outperforms the scenario of fine-
tuning the classification head in isolation.

Taking into account both classification performance and
computational considerations, we identify the configuration
with # Intervals = 3 as the optimal setting. In this configu-
ration, EdgeNet achieves significantly improved clean accu-
racy and robustness compared to the baseline, albeit at the
expense of approximately 14.5% reduction in throughput.
It strikes a balanced compromise between classification per-
formance, computational requirements, and robustness. This
configuration demonstrates substantial gains in clean accu-
racy and robustness over the baseline while maintaining a
reasonable trade-off in terms of computational efficiency.

Comparison to SOTA Methods
Table 2 presents a comprehensive comparison between our
proposed EdgeNet and 5 distinct categories of state-of-the-
art (SOTA) methods. These categories encompass naturally
trained and robust CNNs, naturally trained and robust ViTs,
along with robust fine-tuned ViTs, evaluated across various
benchmarks. The reported metrics include accuracy under
adversarial attacks (FGSM and PGD), on ImageNet-A, and
on ImageNet-R. Additionally, the mean Corruption Error
(mCE) is reported for ImageNet-C, with lower values indi-
cating better performace. As can be seen, our method show-
cases superior performance when subjected to both FGSM
and PGD attacks. Meanwhile, our approach attains similar
levels of performance on the clean ImageNet-1K dataset and
its variants when compared to SOTA methods from previous
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Categories Models Clean Attacks ImageNet Variants
FGSM PGD A R C (↓)

CNNs

ResNet-50 (He et al. 2016) 76.1 12.2 0.9 0.0 36.1 76.7
ResNeXt50-32x4d (Xie et al. 2017) 79.8 34.7 13.5 10.7 41.5 64.7
EfficientNet-B4 (Tan and Le 2019) 83.0 44.6 18.5 26.3 47.1 71.1
ConvNeXt-B (Liu et al. 2022) 83.8 - - 36.7 51.3 46.8

Robust
CNNs

ANT (Rusak et al. 2020) 76.1 17.8 3.1 1.1 39.0 63.0
AugMix (Hendrycks et al. 2019) 77.5 20.2 3.8 3.8 41.0 65.3
Debiased CNN (Li et al. 2020) 76.9 20.4 5.5 3.5 40.8 67.5
DeepAugment (Hendrycks et al. 2021a) 75.8 27.1 9.5 3.9 46.7 53.6
Anti-Aliased CNN (Zhang 2019) 79.3 32.9 13.5 8.2 41.1 68.1

ViTs

ViT-B/16 (Dosovitskiy et al. 2020) 72.8 - - 8.0 27.1 74.8
ViT-B/16 + CutMix (Dosovitskiy et al. 2020) 75.5 - - 14.8 28.5 64.1
ViT-B/16 + MixUp (Dosovitskiy et al. 2020) 77.8 - - 12.2 34.9 61.8
ViT-B/16 + AugReg (Steiner et al. 2021) 79.9 - - 17.5 38.2 52.5
ViT-B/16-384 + AugReg (Steiner et al. 2021) 81.4 - - 26.2 38.2 58.2
PVT-Large (Wang et al. 2021) 81.7 33.1 7.3 26.6 42.7 59.8
ConViT-B (d’Ascoli et al. 2021) 82.4 45.4 20.8 29.0 48.4 46.9
DeiT-B/16 (Touvron et al. 2021) 82.0 46.4 21.3 27.4 44.9 48.5
T2T-ViT t-24 (Yuan et al. 2021) 82.6 46.7 17.5 28.9 47.9 48.0
Swin-B (Liu et al. 2021) 83.4 49.2 21.3 35.8 46.6 54.4
PiT-B (Heo et al. 2021) 82.4 49.3 23.7 33.9 43.7 48.2

Robust
ViTs

PyramidAT (Herrmann et al. 2022) 81.7 - - 23.0 47.7 45.0
PyramidAT-384 (Herrmann et al. 2022) 83.3 - - 36.4 46.7 47.8
RVT-B (Mao et al. 2022) 82.5 52.3 27.4 27.7 48.2 47.3
RVT-B* (Mao et al. 2022) 82.7 53.0 29.9 28.5 48.7 46.8
MAE-ViT-B (He et al. 2022) 83.6 - - 35.9 48.3 51.7
FAN-L-ViT (Zhou et al. 2022) 83.9 - - 34.2 53.1 43.3

Robust
Fine-tuning

TORA-ViT-B/16 (λ = 0.1) (Li and Xu 2023) 84.1 48.4 23.3 46.5 57.6 31.7
TORA-ViT-B/16 (λ = 0.5) (Li and Xu 2023) 83.7 54.7 38.0 39.2 56.3 34.4
TORA-ViT-B/16 (λ = 0.9) (Li and Xu 2023) 80.3 74.2 57.5 22.2 53.7 41.6
EdgeNet-ViT-B/16 (Ours) 83.7 69.8 48.8 39.6 56.9 34.4

Table 2: Evaluation of SOTA methods on ImageNet-1K and its variants (A, R and C). The top-1 accuracy is used to assess
performance on clean ImageNet-1K, under adversarial attacks (FGSM and PGD), on ImageNet-A, and -R. In the case of
ImageNet-C, the focus is on the mean Corruption Error (mCE), where lower values indicate better performance (marked by ↓).
“ViT-B/16-384 + AugReg” and “PyramidAT-384” employ input dimensions of 384 × 384 inputs, while the remaining models
utilize input dimensions of 224× 224.

research.
We commence by comparing our EdgeNet with the ro-

bust fine-tuning method. When compared to the most bal-
anced setting of TORA-ViT-B/16, indicated by λ = 0.5,
we observe remarkable enhancements in accuracy under
FGSM and PGD attacks, registering improvements of 15.1%
and 10.8%, respectively. This performance augmentation is
achieved while maintaining the same level of clean accuracy
(83.7%). Furthermore, when considering ImageNet variants,
our EdgeNet exhibits accuracy gains of 0.4% for ImageNet-
A and 0.6% for ImageNet-R, while consistently preserv-
ing the identical mCE for ImageNet-C. When compared to
TORA-ViT-B/16 with λ = 0.1, we have slightly lower clean
accuracy (0.4%). This is because this model is fine-tuned
for better performance on natural images. Therefore, our im-
provements in terms of adversarial robustness is even larger.
We improve accuracy under FGSM and PGD attacks by
21.4% and 25.5%. We also have slightly lower performance
on ImageNet variants, this is because they find their perfor-
mance on ImageNet variants is correlated to clean accuracy

instead of adversarial robustness.
In comparison to TORA-ViT-B/16 employing λ = 0.1,

our clean accuracy exhibits a minor decrease of 0.4%. This
diminishment can be attributed to the fact that this version
of TORA has been fine-tuned for optimized performance
on natural images. Consequently, our pronounced advance-
ments in terms of adversarial robustness are even more no-
table. Under FGSM and PGD attacks, our approach displays
substantial improvements, improving accuracy by 21.4%
and 25.5%, respectively. Additionally, our performance is
slightly lower than theirs when assessed on ImageNet vari-
ants. This can be attributed to the observation that their per-
formance on ImageNet variants is closely associated with
clean accuracy rather than adversarial robustness.

In the final setting of TORA-ViT-B/16, denoted by λ =
0.9, which is their most robust setting. Although their ac-
curacy against FGSM and PGD attacks sees an increase of
4.4% and 8.7% respectively, this progress comes at the ex-
pense of a 3.4% reduction in clean accuracy. Additionally,
in comparison to our approach, their performance on Ima-
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Source
Model

Defense
Model

Valid Acc. (%)
FGSM PGD

ViT-B/16 ViT-B/16 35.03 14.26
ViT-B/16 EdgeNet-ViT-B/16 74.41 70.32

ViT-S/16 ViT-B/16 74.09 75.59
ViT-S/16 EdgeNet-ViT-B/16 79.34 80.09

ViT-L/16 ViT-B/16 78.31 77.29
ViT-L/16 EdgeNet-ViT-B/16 80.62 80.18

Swin-B ViT-B/16 82.94 82.40
Swin-B EdgeNet-ViT-B/16 83.24 82.96

Table 3: The validation accuracy under black-box attacks on
ImageNet-1K. Using ViT-B/16 as both source model and de-
fense model is equivalent to a white-box attack, included
here solely for the purpose of comparison.

geNet variants experiences relative drops of 17.4%, 3.2%,
and 7.2%. Finally, we would like to emphasize once again
that TORA controls a trade-off by introducing a specialized
module into the backbone network to control the balance
between robust features and predictive features. In contrast,
our method aims to enhance robustness by introducing edge
information without altering the backbone network itself.
Therefore, in a fair comparison against their most balanced
setting (λ = 0.5), our improvements are even more signif-
icant. However, even when compared to their favorably bi-
ased models, it is evident that our performance gap in their
advantageous metrics is minimal, while our enhancements
are more pronounced in their weaker aspects. In summary,
our approach represents a more comprehensive, unbiased,
and balanced model.

In addition to the robust fine-tuning, our EdgeNet out-
performs all the other previous approaches under adversar-
ial attacks and on the ImageNet variants. In terms of clean
performance, our performance is only slightly lower than
ConvNext-B4 and FAN-L-ViT for 0.1% and 0.2%, respec-
tively. These differences are very marginal. Furthermore, our
clean performance surpasses that of other previous methods.

Black-box Attacks
In the previous experiments, white-box attacks are investi-
gated, involving scenarios where the attacker possesses ac-
cess to the parameters of target models. In Table 3, we ex-
tend our analysis to a more realistic black-box attack sce-
nario, where the assumption is made that the attacker lacks
access to the parameters of the target models. We consider
various models as the source model for generating adver-
sarial perturbations. These models encompass the backbone
ViT-B/16, as well as two of its size variants, namely ViT-
S/16 (a smaller version) and ViT-L/16 (a larger version).
Furthermore, we include another Vision Transformer archi-
tecture known as Swin-B in our considerations.

Initially, we consider attacks using ViT-B/16, the back-
bone itself, as the source model. The results show that when
EdgeNet is incorporated as an additional component, attacks
originating from the backbone no longer successfully com-
promise our model, increasing the classification accuracy

Input Clean Attacks ImageNet Variants
FGSM PGD A R C (↓)

Image 82.7 64.4 47.0 32.2 56.1 37.2
Edge 83.7 69.8 48.8 39.6 56.9 34.4

Table 4: The performance of integrating image or edge in-
formation into the backbone.

from 35.03% to 74.41% under FGSM and from 14.26% to
70.32% under PGD respectively.

When utilizing other models as the source model, it be-
comes evident that our EdgeNet demonstrates effective de-
fense against these attacks, showcasing stronger robustness
compared to the ViT-B/16 backbone itself. Furthermore, it
is noteworthy that even when employing the Swin-B with
a different architecture as the source model, both the ViT-
B/16 backbone and our method exhibit substantial robust-
ness. However, even in this scenario, our approach manages
to further enhance the backbone’s robustness.

Integrating Image or Edge Information

In order to illustrate the effectiveness of incorporating edge
information, we conduct an experiment by replacing the in-
puts to EdgeNet with images. For this configuration, we
maintain the exact same architecture and hyper-parameters
for the new blocks, opting for the optimal # Intervals = 3
setting. As shown in Table 4, both the integration of im-
ages and edge information yield performance improvements
compared to the classification head fine-tuning method pre-
sented in Table 1. Furthermore, it is noteworthy that the in-
tegration of edge information consistently outperforms the
integration of image information. This is because integrating
image information again may have redundancy in relation to
the image features already present within the backbone.

Conclusion
In this work, we have uncovered a significant pathway to
enhance the robustness of Deep Neural Networks, specif-
ically Vision Transformers, against adversarial attacks. By
leveraging edge information extracted from images, we de-
veloped EdgeNet, a lightweight and seamlessly integrable
module that brings about improved adversarial robustness.
The efficiency of EdgeNet, demonstrated through minimal
additional computational overhead and wide applicability
across various robust benchmarks, makes it a compelling
advancement in the field. The experiment results, including
superior performance against different types of adversarial
attacks and maintained accuracy on clean images, underline
the potential of edge information as a robust and relevant
feature in vision classification tasks. Notably, the robustness
of EdgeNet extends beyond adversarial attacks to scenar-
ios involving natural adversarial examples (ImageNet-A),
out-of-distribution data (ImageNet-R), and common corrup-
tions (ImageNet-C). This broader application underlines Ed-
geNet’s versatility and its potential as a comprehensive so-
lution for diverse challenges in vision classification tasks.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

3258



Acknowledgements
This work was supported in part by the Australian Research
Council under Projects DP210101859 and FT230100549.

References
Bhojanapalli, S.; Chakrabarti, A.; Glasner, D.; Li, D.; Un-
terthiner, T.; and Veit, A. 2021. Understanding robustness
of transformers for image classification. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, 10231–10241.
Canny, J. 1986. A computational approach to edge detec-
tion. IEEE Transactions on pattern analysis and machine
intelligence, 679–698.
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; et al. 2020. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929.
d’Ascoli, S.; Touvron, H.; Leavitt, M. L.; Morcos, A. S.;
Biroli, G.; and Sagun, L. 2021. Convit: Improving vision
transformers with soft convolutional inductive biases. In In-
ternational Conference on Machine Learning, 2286–2296.
PMLR.
Geirhos, R.; Rubisch, P.; Michaelis, C.; Bethge, M.; Wich-
mann, F. A.; and Brendel, W. 2018. ImageNet-trained CNNs
are biased towards texture; increasing shape bias improves
accuracy and robustness. arXiv preprint arXiv:1811.12231.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2014. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572.
He, K.; Chen, X.; Xie, S.; Li, Y.; Dollár, P.; and Girshick,
R. 2022. Masked autoencoders are scalable vision learners.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 16000–16009.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
Hendrycks, D.; Basart, S.; Mu, N.; Kadavath, S.; Wang, F.;
Dorundo, E.; Desai, R.; Zhu, T.; Parajuli, S.; Guo, M.; et al.
2021a. The many faces of robustness: A critical analysis
of out-of-distribution generalization. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
8340–8349.
Hendrycks, D.; and Dietterich, T. 2019. Benchmarking Neu-
ral Network Robustness to Common Corruptions and Per-
turbations. Proceedings of the International Conference on
Learning Representations.
Hendrycks, D.; Mu, N.; Cubuk, E. D.; Zoph, B.; Gilmer, J.;
and Lakshminarayanan, B. 2019. Augmix: A simple data
processing method to improve robustness and uncertainty.
arXiv preprint arXiv:1912.02781.
Hendrycks, D.; Zhao, K.; Basart, S.; Steinhardt, J.; and
Song, D. 2021b. Natural Adversarial Examples. CVPR.

Heo, B.; Yun, S.; Han, D.; Chun, S.; Choe, J.; and Oh, S. J.
2021. Rethinking spatial dimensions of vision transformers.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, 11936–11945.
Herrmann, C.; Sargent, K.; Jiang, L.; Zabih, R.; Chang, H.;
Liu, C.; Krishnan, D.; and Sun, D. 2022. Pyramid adver-
sarial training improves vit performance. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 13419–13429.
Houlsby, N.; Giurgiu, A.; Jastrzebski, S.; Morrone, B.;
De Laroussilhe, Q.; Gesmundo, A.; Attariyan, M.; and
Gelly, S. 2019. Parameter-efficient transfer learning for
NLP. In International Conference on Machine Learning,
2790–2799. PMLR.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
agenet classification with deep convolutional neural net-
works. Advances in neural information processing systems,
25: 1097–1105.
LeCun, Y.; Boser, B.; Denker, J. S.; Henderson, D.; Howard,
R. E.; Hubbard, W.; and Jackel, L. D. 1989. Backpropaga-
tion applied to handwritten zip code recognition. Neural
computation, 1(4): 541–551.
LeCun, Y.; Jackel, L.; Bottou, L.; Cortes, C.; Denker, J. S.;
Drucker, H.; Guyon, I.; Muller, U. A.; Sackinger, E.; Simard,
P.; et al. 1995. Learning algorithms for classification: A
comparison on handwritten digit recognition. Neural net-
works: the statistical mechanics perspective, 261: 276.
Li, Y.; and Xu, C. 2023. Trade-Off Between Robustness
and Accuracy of Vision Transformers. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 7558–7568.
Li, Y.; Yang, Z.; Wang, Y.; and Xu, C. 2021. Neural architec-
ture dilation for adversarial robustness. Advances in Neural
Information Processing Systems, 34: 29578–29589.
Li, Y.; Yu, Q.; Tan, M.; Mei, J.; Tang, P.; Shen, W.; Yuille,
A.; and Xie, C. 2020. Shape-texture debiased neural network
training. arXiv preprint arXiv:2010.05981.
Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin,
S.; and Guo, B. 2021. Swin transformer: Hierarchical vi-
sion transformer using shifted windows. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, 10012–10022.
Liu, Z.; Mao, H.; Wu, C.-Y.; Feichtenhofer, C.; Darrell, T.;
and Xie, S. 2022. A convnet for the 2020s. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 11976–11986.
Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and
Vladu, A. 2017. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083.
Mahmood, K.; Mahmood, R.; and Van Dijk, M. 2021. On
the robustness of vision transformers to adversarial exam-
ples. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, 7838–7847.
Mao, X.; Qi, G.; Chen, Y.; Li, X.; Duan, R.; Ye, S.; He, Y.;
and Xue, H. 2022. Towards robust vision transformer. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, 12042–12051.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

3259



Paul, S.; and Chen, P.-Y. 2022. Vision transformers are ro-
bust learners. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, 2071–2081.
Rusak, E.; Schott, L.; Zimmermann, R. S.; Bitterwolf, J.;
Bringmann, O.; Bethge, M.; and Brendel, W. 2020. A simple
way to make neural networks robust against diverse image
corruptions. In European Conference on Computer Vision,
53–69. Springer.
Steiner, A.; Kolesnikov, A.; Zhai, X.; Wightman, R.; Uszko-
reit, J.; and Beyer, L. 2021. How to train your vit? data, aug-
mentation, and regularization in vision transformers. arXiv
preprint arXiv:2106.10270.
Tan, M.; and Le, Q. 2019. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
conference on machine learning, 6105–6114. PMLR.
Touvron, H.; Cord, M.; Douze, M.; Massa, F.; Sablayrolles,
A.; and Jégou, H. 2021. Training data-efficient image trans-
formers & distillation through attention. In International
Conference on Machine Learning, 10347–10357. PMLR.
Tsipras, D.; Santurkar, S.; Engstrom, L.; Turner, A.; and
Madry, A. 2018. Robustness may be at odds with accuracy.
arXiv preprint arXiv:1805.12152.
Wang, W.; Xie, E.; Li, X.; Fan, D.-P.; Song, K.; Liang, D.;
Lu, T.; Luo, P.; and Shao, L. 2021. Pyramid vision trans-
former: A versatile backbone for dense prediction without
convolutions. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, 568–578.
Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; and He, K. 2017. Ag-
gregated residual transformations for deep neural networks.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, 1492–1500.
Yuan, L.; Chen, Y.; Wang, T.; Yu, W.; Shi, Y.; Jiang, Z.-H.;
Tay, F. E.; Feng, J.; and Yan, S. 2021. Tokens-to-token vit:
Training vision transformers from scratch on imagenet. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, 558–567.
Zagoruyko, S.; and Komodakis, N. 2016. Wide residual net-
works. arXiv preprint arXiv:1605.07146.
Zhang, L.; and Agrawala, M. 2023. Adding conditional
control to text-to-image diffusion models. arXiv preprint
arXiv:2302.05543.
Zhang, R. 2019. Making convolutional networks shift-
invariant again. In International conference on machine
learning, 7324–7334. PMLR.
Zhou, D.; Yu, Z.; Xie, E.; Xiao, C.; Anandkumar, A.; Feng,
J.; and Alvarez, J. M. 2022. Understanding the robustness
in vision transformers. In International Conference on Ma-
chine Learning, 27378–27394. PMLR.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

3260


