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Abstract

The goal of this paper is to alleviate the training cost for
few-shot semantic segmentation (FSS) models. Despite that
FSS in nature improves model generalization to new concepts
using only a handful of test exemplars, it relies on strong
supervision from a considerable amount of labeled train-
ing data for base classes. However, collecting pixel-level an-
notations is notoriously expensive and time-consuming, and
small-scale training datasets convey low information density
that limits test-time generalization. To resolve the issue, we
take a pioneering step towards label-efficient training of FSS
models from fully unlabeled training data, or additionally a
few labeled samples to enhance the performance. This mo-
tivates an approach based on a novel unsupervised meta-
training paradigm. In particular, the approach first distills pre-
trained unsupervised pixel embedding into compact seman-
tic clusters from which a massive number of pseudo meta-
tasks is constructed. To mitigate the noise in the pseudo meta-
tasks, we further advocate a robust Transformer-based FSS
model with a novel prototype-based cross-attention design.
Extensive experiments have been conducted on two standard
benchmarks, i.e., PASCAL-5i and COCO-20i, and the results
show that our method produces impressive performance with-
out any annotations, and is comparable to fully supervised
competitors even using only 20% of the annotations. Our
code is available at: https://github.com/SSSKYue/UMTFSS.

Introduction
This paper is concerned with the problem of few-shot learn-
ing (FSL) for image semantic segmentation (Shaban et al.
2017; Wang et al. 2021; Zhou et al. 2022b), i.e., learning
to segment objects of unseen classes where each class has
only a few exemplars. Though we knew decades ago that, the
crux of FSL is to align with human and animal learning ca-
pability of transferring past knowledge or experience to un-
derstand new concepts (Fei-Fei, Fergus, and Perona 2006),
not until the recent endeavors in deep learning (Sun et al.
2019; Dhillon et al. 2019; Wang et al. 2022b; Zhou et al.
2022a), had we yet reached a consensus on transferring vi-
sual knowledge in a DNN pre-trained over a large dataset.
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Following the standard setting of FSL, we organize data
into two sets: Dtrain as a labeled training dataset (e.g., Im-
ageNet (Russakovsky et al. 2015)) of base (seen) classes,
and Dtest={S,Q} comprising of a small-sized support set S
and a query set Q. All categories in Dtest are new to Dtrain.
From the view of pre-trained knowledge transferring, FSL is
solved either by fine-tuning a Dtrain-pretrained model over S
and then testing the model on Q (Chen et al. 2019; Boudiaf
et al. 2021), or by meta-learning (Vilalta and Drissi 2002;
Finn, Abbeel, and Levine 2017) to distill the knowledge of
multiple learning episodes sampled from Dtrain and then us-
ing the knowledge to improve learning performance on Dtest.

Despite their popularity, existing paradigms suffer two
major limitations when evolving from image- to pixel-wise
classification. First, it is hard to directly generalize the
knowledge discovered from ImageNet (Russakovsky et al.
2015) to solve semantic segmentation due to the inherent
gap between semantic concepts and pixel regions. To tackle
this, Dtrain is commonly provided with pixel-wise annota-
tions, yielding a fully supervised scheme that is adopted by
almost all current approaches (Boudiaf et al. 2021; Nguyen
and Todorovic 2019; Tian et al. 2020; Boudiaf et al. 2021;
Min, Kang, and Cho 2021; Zhang et al. 2021; Lang et al.
2022; Dong and Xing 2018; Wang et al. 2019; Yang et al.
2020; Zhang et al. 2019b; Liu et al. 2020; Lu et al. 2021;
Wang et al. 2020; Zhang et al. 2020; Xie et al. 2021b,a).
However, these annotations are particularly onerous to col-
lect, especially for the tasks where expertise knowledge
counts like medical imaging segmentation. Second, for the
de-facto meta-learning paradigm, the diversity of training
episodes – covering a distribution of related tasks – is critical
but tends to be inadequate due to i) the smaller scale of Dtrain
in segmentation (e.g., PASCAL VOC (Everingham et al.
2010)) against classification (e.g., ImageNet (Russakovsky
et al. 2015)), and ii) the single level of semantic abstraction
revealed in most segmentation datasets (e.g., only object-
level annotations are provided for VOC). This limits model
to learn from various scenarios in the real worlds (e.g., part-
level semantics like head or background semantics like sky).
These issues lead to an open question: can we use cheaper
and larger-scale unlabeled data to meta-learn FSS models?

To answer this, we challenge the status quo by present-
ing a pioneering study of unsupervised meta-training for
FSS, i.e., meta-learning from a variety of training episodes
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that is acquired in a fully unsupervised manner. Instead of
starting from building a set of meta-training tasks from la-
beled Dtrain, our approach constructs pseudo tasks automat-
ically from a set of images Utrain without any form of an-
notation. Here, Utrain can be an arbitrary image set, poten-
tially allowing the approach to discover more transferable
knowledge from larger-scale datasets. A key step to achieve
this is that we leverage unsupervised pixel embeddings of
Utrain generated from self-supervised representation learn-
ing frameworks (e.g., MoCo (He et al. 2020)), and distill
them into compact semantic clusters, with each cluster en-
compassing pixels from a potential meta semantic. Subse-
quently, we propose pseudo tasks from clustering results by
simply sampling support-query pairs belonging to a same
cluster. These pseudo tasks can support training of any ex-
isting meta-learners in FSS to empower strong segmentation
capability. Furthermore, we show that the algorithm is par-
ticularly effective as pre-training for human-specified down-
stream tasks (probably provided with a few labeled data).

The proposed unsupervised paradigm is flexible, i.e., it
can be seamlessly incorporated into any existing meta-
learning based FSS models without any changes to base
models. However, noises in pseudo tasks can potentially lead
to severe degradation of the models. To tackle this, we de-
vise a robust FSS model based on Transformer architectures.
At the core of the model is a novel prototype-aware cross-
attention layer, which, instead of computing the attention for
every pixel in support images, groups support regions into
a set of prototypes and computes cross-attention between
query and support images solely for support prototypes. As
highly abstracted representations, prototypes are less sensi-
tive to noises in pseudo support masks, eventually yielding a
robust FSS model. Overall, our contributions are three-fold:
• We present a pioneering study of revealing the possibility

to learn FSS models only from unlabeled data and demon-
strate its effectiveness along with existing FSS models.

• To make the proposed training paradigm more effective in
practice, we develop a Transformer-based model and of-
fer a prototype-aware cross-attention layer to acquire more
robust query-support matching.

• Our training paradigm and model are supported by exten-
sive ablations and experiments on standard benchmarks
(i.e., PASCAL-5i and COCO-20i). Notably, some results
are approaching the performance of fully supervised mod-
els trained with fully specified training task distributions.

Related Work
Supervised FSS. FSS is a natural application of FSL that
learns to segment unseen classes using limited exemplars
(Shaban et al. 2017; Xie et al. 2021a,b). Typically, FSS mod-
els are trained on base classes with supervision and gen-
eralize to novel classes in test dataset with only a few la-
beled samples. Most current FSS methods align support in-
formation to query image for pixel-level dense prediction
during episodic training, following the meta-learning frame-
work (Vinyals et al. 2016). The pioneering work of (Shaban
et al. 2017) proposes a two-branch network which learns to
generate parameters of the classifier from predictions of sup-

port branches. A main group of follow-up efforts focus on
the prototype-based matching, for example, obtaining sin-
gle support prototype from mask-averaged pooling (MAP)
((Zhang et al. 2020; Wang et al. 2019; Zhang et al. 2019b;
Tian et al. 2020)). To enhance the representation power, (Liu
et al. 2020; Yang et al. 2020; Zhang, Xiao, and Qin 2021) all
propose to represent a class with multiple prototypes. More
recently, researchers started to exploit pixel-level informa-
tion for FSS, to better utilize support information and align
with the dense nature of the task. PGNet (Zhang et al. 2019a)
and DAN (Wang et al. 2020) build connections between
query and support images with graph attention. HSNet (Min,
Kang, and Cho 2021) utilizes 4D convolutions to model
fine-grained association patterns of multi-level semantic fea-
tures. Though impressive, all of the above methods are fully-
supervised and rely heavily on abundant and accurate pixel-
wise annotations for support and query samples, leading to
expensive training cost. In contrast, we make a pioneering
effort to alleviate this by proposing a novel unsupervised
meta-training paradigm, which can achieves strong gener-
alization performance with no or only a few annotated data.
Self-supervised FSS. The key to implementing unsuper-
vised FSS is to create learnable tasks from unlabeled
datasets. Recent works (Hsu, Levine, and Finn 2018; Kho-
dadadeh, Boloni, and Shah 2019) in few-shot classification
domain have explored self-supervised meta-learning meth-
ods based on image clustering and augmentation. It is more
challenging to build tasks with high-resolution masks for
FSS. (Ouyang et al. 2020) first addressed self-supervised
FSS for medical imaging. They use superpixels to generate
pseudo-semantic labels and conduct intensity and geomet-
ric transformations on a single image to construct support
and query image pairs in a meta task. The recently proposed
MaskSplit (Amac et al. 2022) extends the self-supervised
FSS to general scenarios by using unsupervised saliency
prediction to obtain the pseudo-mask of an image. It builds
the training task with different splits and augmentations of
the pseudo-mask and achieves promising results on the one-
shot self-supervised FSS. However, both methods above are
dedicated to building meta tasks from single images, which
limit the diversity of the training set. In contrast, we turn to
exploit and build meta learning tasks from a large image cor-
pora, by unsupervised clustering of all pixels in images. This
facilitates us to build more meaningful meta-learning tasks.
Transformer for FSS. With the compelling achievement of
Transformer in computer vision (Vaswani et al. 2017; Doso-
vitskiy et al. 2020; Wang et al. 2022a; Zhang et al. 2023),
several recent researches based on Transformer architectures
are explored for FSS. (Lu et al. 2021) proposes the Classi-
fier Weight Transformer to dynamically adapt the classifier’s
weights for each query image. Moreover, to fully utilize fine-
grained support information, CyCTR (Zhang et al. 2021) ag-
gregates pixel-wise support features into the query image,
through a cycle-consistent cross attention mechanism, mak-
ing use of both foreground and background support infor-
mation. (Zhang et al. 2022) further investigates a hierarchi-
cal architecture to aggregate the context and affinity together
from query-support pairs. Motivated by these advances, we
propose a novel FSS model based on Transformer architec-
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Figure 1: Illustration of automatic meta task construction. Starting from an unlabeled dataset Utrain, we perform unsupervised
pixel clustering to group pixels into semantic clusters, and create meta tasks by treating these clusters as classes.

tures. Our model is distinct from existing solutions in that a
novel prototype-aware cross-attention is developed to estab-
lish robust query-support matching in cases that noises exist
in pseudo meta-learning tasks.

Methodology
We approach FSS from a meta-learning perspective, fram-
ing the problem as the acquisition, from unlabeled data, of
a label-efficient learning procedure that is transferable to
downstream segmentation tasks.

Preliminaries
Supervised FSS. In the common setup of supervised FSS,
the dataset is split into two subsets Dtrain and Dtest with dis-
joint categories. An FSS model aims to learn knowledge on
Dtrain with sufficient labeled image samples and generalize to
novel categories in Dtest with only a few annotated images.
Meta-learning for FSS. Meta-learning is one of the most
popular paradigms for FSS, which is based on an episodic
training strategy (Vinyals et al. 2016). Concretely, both Dtrain
and Dtest are partitioned into episodes, and each episode is
K-shot, that is, it consists of a support set with K image-
mask pairs S = {(Is

k,M
s
k )}Kk=1 and a query set with

one image-mask pair Q = {(Iq,M q)}, where Is, Iq ∈
RH×W×3 are images and M s,M q∈{0, 1}H×W are corre-
sponding binary masks. During training, the model is trained
to predict the segmentation mask of the query image Iq fol-
lowing guidance of the support set S , and are iteratively
optimized over each episode with M q’s supervision. Once
finished, the trained model will be meta-tested on episodes
randomly sampled from Dtest, where only the groundtruth
M ss are supported as guidance to segment unseen cate-
gories without further optimization. Notably, the training
procedure is only possible with labeled data (each M s

k , M q

are manually labeled); in the next section, we discuss how
we can build episodes directly from unlabeled data.
Transformer. In general, a Transformer block has two es-
sential layers, i.e., multi-head attention (MHA) to aggre-
gate global contexts and multi-layer perceptron (MLP) to
facilitate embedding updating (Vaswani et al. 2017). Denote
X ∈RN×d as an input token sequence and Y ∈RM×d as a
contextualized token sequence. Here N and M are numbers

of tokens in X and Y , and d refers to the channel number
of feature. A single-head attention layer can be written as:

FSHA(X,Y )=softmax
(
(XW q)(Y W k)>√

d

)
(Y W v), (1)

where W q,W k,W v ∈ Rd×d are learnable linear projec-
tion layers. The attention layer is often called either 1) a
self-attention layer when X and Y are same or 2) a cross-
attention layer if they are different. The self-attention layer
captures contextual information within the same token se-
quence, while the cross-attention layer encourages interac-
tions between the input and other relevant token sequences.

Combing several single-head attentions in parallel, we
derive a multi-head attention. After the attention block, an
MLP is applied to each token separately. In summary, a
transformer block takes the input X and turns it to X̂ as:

X ′ = LayerNorm(X + FMHA(X,Y )),

X̂ = LayerNorm(X ′ + FMLP(X
′)),

(2)

where residual connection and layernorm are applied.

Unsupervised Meta-Training for FSS
Our paradigm includes two major stages: 1) automatic meta-
learning task construction over an unlabeled dataset Utrain
and 2) meta-training an FSS model on noisy meta tasks.

Automatic Meta-learning Task Construction Auto-
matic meta-learning task construction is the key to our ap-
proach. In the supervised setup, each episode is generated
based on the partition of support S and query Q sets, which
is induced by task-specified labels. Concretely, all masks in
S ({M s

k}Kk=1) and inQ (M q) correspond to a same seman-
tic category (e.g., aeroplane, dining table in PAS-
CAL VOC). While it is hard to make the partitions in our
unsupervised setup due to the lack of semantic labels, we
show that it is possible to discover semantically meaningful
categories within image corpora as principled alternatives
to human labels. Once this is achieved, task construction is
natural and simple. As shown in Fig. 1, our method has two
steps: unsupervised pixel clustering and task reconstructing.
Unsupervised Pixel Clustering. This step is largely in-
spired by the observation that current self-supervised repre-
sentation learning frameworks can yield semantically con-
sistent dense features, both within each single image and

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

3111



Backbone

Support  !!
C

Support mask "!

CBackbone SHA N MLP N

clustering

+ +
Cross-attention

Query !"

MAP

Self-attention

Self-attention

Classifier

#$#$!

#$%$!

%#$

%%$

&"!
% = [%#$, %%$]

#$!

#$"

Figure 2: Architecture of proposed FSS model, which enables robust meta-training from automatically created noisy meta tasks.

across image collections (Van Gansbeke, Vandenhende, and
Van Gool 2022; Li et al. 2022). As a result, we propose to
group pre-trained unsupervised visual features into seman-
tic clusters, with the expectation of each cluster matching
with one particular semantic. Each image I ∈ Utrain is fed
into a self-supervised model (e.g., MoCo (He et al. 2020))
to obtain the feature representation. For each pixel i in I ,
denote i ∈ RC as its feature embedding, and ai ∈ {0, 1}N
as its one-hot assignment vector to N cluster centroids C=
{c1, . . . , cN}C×N where cn ∈ RC is the centroid of the
n-th cluster. Then, clustering of all pixels in Utrain can be
realized by solving an optimization problem:

min
{cn}n,{ai}i

∑
I∈Utrain

∑
i∈I

‖i−Cai‖, s.t. ai ∈ {0, 1}N ,1>ai = 1.(3)

This problem can be solved by k-means in an Expectation-
Maximization (EM) fashion. However, one practical chal-
lenge to optimize Eq. 3, especially for a large-scale Utrain, is
the highly expensive computational cost. To deal with this,
we solve Eq. 3 only over a random subset U′train ⊆ Utrain; af-
ter obtaining the cluster centroids, we assign each pixel i in
remaining images to its nearest neighbor cluster as follows:

ai = argminn∈{1,...,N} ‖i− cn‖2. (4)

In this manner, each pixel i in Utrain is labeled as the ‘class’
of the cluster that it is assigned to the one marked by ai.
Task Constructing. Based on the semantic labels discov-
ered by clustering, we can easily build meta-learning tasks
as done in the supervised setting: in each episode, we ob-
tain a partition of support Ŝ and query Q̂ sets as Ŝ =

{(Is
k,M̂

s
k )}Kk=1, Q̂ = {(Iq,M̂ q)}, where M̂∗ is a pseudo

semantic mask, and {M̂ s
k}Kk=1 and M̂ q mark pixels from

one arbitrary cluster. In practice, to obtain more realistic
episodes, we adopt a heuristic support set selection scheme:
after determining the query set Q̂, we compute the cosine
similarities between the masked average feature of Iq and
the features of all regions with the same cluster assignment;
only top 50 percent nearest regions are used for randomly
K-shot support set Ŝ selection.

Meta-training FSS from Noisy Meta Tasks The auto-
matic constructed meta-learning tasks in nature can facil-
itate the training of FSS models, alleviating their reliance
to costly annotations. However, in practice, the noises in
pseudo segmentation masks may cause severe degradation
of models. To mitigate this, we further devise a more robust
Transformer-based architecture for FSS, as shown in Fig. 2.
Feature Extraction. Following prior efforts (Liu et al. 2022;
Tian et al. 2020; Zhang et al. 2021), the query and sup-
port images are fed into a shared backbone network (e.g.,
ResNet (He et al. 2016)) to extract multi-scale feature rep-
resentations. We concatenate the outputs of the third and
fourth blocks together to obtain middle-level query and sup-
port features, respectively. Like (Tian et al. 2020; Wang
et al. 2019; Zhang et al. 2019b), we acquire global support
information by masked average pooling of support infor-
mation and concatenate it to both query and support fea-
tures. We also calculate the similarity between the high-
level query and support features at the fifth encoder block
to produce a prior mask that is appended to the middle-
level query features like (Tian et al. 2020). Here we de-
note the query feature as Xq ∈ RH×W×d and support fea-
ture as Xs ∈ RH×W×d, which are flattened into 1D se-
quences (∈ RHW×d) as inputs for the following multi-head
self-attention blocks to aggregate global context information
within images as in Eq. 2, and yield X̂s and X̂q as self-
enriched feature representations.
Prototype-Aware Cross-Attention. Subsequently, we
gather informative and relevant support features into query
ones to aid segmentation using a prototype-aware cross-
attention layer. In particular, instead of treating all pixels in
X̂s as tokens for attention computation (Eq. 1), we obtain
prototype tokens by grouping pixels X̂s into foreground
and background prototypes. These prototypes are abstracted
as representative features of X̂s, which can preserve useful
support information and suppress noises in dense features.
To generate prototypes, we first split all features in X̂s into
foreground features X̂s

fg ∈RNfg×d and background features
X̂s

bg ∈RNbg×d, where Nfg and Nbg are numbers of features,
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and Nfg+Nbg=HW . Then, X̂s
fg and X̂s

bg are grouped into
prototypes Pfg∈RKfg×d and Pbg∈RKbg×d as follows:

Pfg = S>
fgX

s
fg, Pbg = S>

bgX
s
bg, (5)

where Sfg ∈ {0, 1}Nfg×Kfg (Sbg ∈ {0, 1}Nbg×Kbg ) denote
feature-to-prototype assignments, such that Sij

fg = 1 (Sij
bg =

1) if the i-th feature is associated with the j-th prototype, and
0 otherwise. Kfg and Kbg indicate numbers of foreground
and background prototypes, respectively. Then, we concate-
nate foreground and background prototypes together, yield-
ing a set of prototypes P = [Pfg,Pbg] ∈ R(Kfg+Kbg)×d as
support features. Now we can compute the prototype-aware
single-head attention as:

FProtoSHA(X̂
q,P )=softmax

(
(X̂qW q)(PW k)>√

d

)
(PW v). (6)

In addition to the higher robustness, the proposed prototype-
aware attention is computationally more efficient than
the vanilla attention in Eq. 1. Concretely, Eq. 6 has
2(HW )(Kfg +Kbg)d multiplication operations, while Eq. 1
needs 2H2W 2d. Since (Kfg +Kbg)� HW in general, our
attention layer is much more efficient than Eq. 1.

Feature-to-Prototype Assignment. Above we show the
proposed prototype-aware cross-attention layer, but one
thing left to discussion is how to compute the feature-to-
prototype assignment, i.e., Sfg and Sbg. This can be simply
achieved via k-means clustering, however, it is expensive
since for Nfg (Nbg) pixels one iteration of Lloyd’s algorithm
(Slonim, Aharoni, and Crammer 2013) for the k-means
optimization has an asymptotic complexity O(NfgKfgd)
(O(NbgKbgd)). To alleviate this, we do locality-sensitive
hashing (Datar et al. 2004) on support features first and then
run k-means in Hamming space. Specifically, we employ
the sign of random projections (Shrivastava and Li 2014)
to hash the support features followed by k-means cluster-
ing with hamming distance as the metric. This results in
an asymptotic complexity, e.g., for foreground clustering, of
O(NfgKfgr + Kfgbr + Nfgdb), where r is the number of
Lloyd iterations and b is the bit number used for hashing.
Mask Prediction. Denote Oq as the output query feature
of multi-head prototype-aware attention block. It is fed into
a small FCN to obtain the final mask prediction: Z =
FFCN(O

q). In our implementation, FFCN consists of a 3×3
convolution, a ReLU layer and a 1×1 convolution.

Supervised Meta-Training on Specified Tasks

Through unsupervised meta-training paradigm, we can ob-
tain a promising FSS model that is fully unsupervised and
can generalize well to human-specified segmentation tasks.
Optionally, we can finetune the unsupervised-trained model
using a few task-specific annotated data in Dtrain to further
improve performance. In the experiments, we show that our
model can achieve comparable performance as supervised
methods, using only 20% of the annotations.

Experiment
Experimental Setup
Dataset. Our approach relies on an unlabeled image set
Utrain for unsupervised meta-training, and a dataset Dtest
for testing. Optionally, it requires a labeled training dataset
Dtrain for application-specified, supervised meta-training.

For Dtrain and Dtest, we follow conventions to run FSS
testing on two datasets, i.e., PASCAL-5i (Shaban et al.
2017) and COCO-20i (Lin et al. 2014) for few-shot seg-
mentation. PASCAL-5i is built from PASCAL VOC 2012
(Everingham et al. 2010) and SDS (Hariharan et al. 2014). It
contains 20 semantic categories that are evenly divided into
4 folds (each fold contains 5 classes). For fair comparison,
we follow (Tian et al. 2020; Zhang et al. 2021) to randomly
sample 1,000 query-support pairs in each test. COCO-20i is
built from MS COCO (Lin et al. 2014). Following the par-
tition strategy in (Nguyen and Todorovic 2019; Tian et al.
2020), we split the 80 classes evenly into 4 folds, with 20 in
each fold. As (Zhang et al. 2021), 5,000 query-support pairs
are randomly sampled for each test.

For Utrain, we use all training images in COCO-20i (Lin
et al. 2014), including 82,010 images in total. Note that for
ablation study, we use all images in PASCAL-5i instead
which has 5,953 images and thus makes it easier to run a
large number of ablative experiments.
Metric. As conventions (Shaban et al. 2017; Wang et al.
2019; Zhang et al. 2021), we use mIoU as the metric.
Implementation details. For meta-training, we follow con-
ventions (Zhang et al. 2021; Tian et al. 2020) to set the train-
ing hyper-parameters. For fairness, we use ImageNet (Rus-
sakovsky et al. 2015)-pretrained ResNet (He et al. 2016) as
the backbone network and its parameters (including Batch-
Norms) are frozen. For the parameters except those in Trans-
former layers, we use SGD as the optimizer with base learn-
ing rate 1e-2, momentum 0.9, weight decay 1e-4. The learn-
ing rate is scheduled by the polynomial annealing policy
(Chen et al. 2017). For the Transformer block, we set the
number of heads for MHA to 8 and d to 256, and use
Dropout with the probability 0.1. For protoSHA, we set the
Kfg to 50 and Kbg to 100. All layers in Transformer block
are repeated for 2 times and the parameters are optimized
with AdamW (Loshchilov and Hutter 2017) with learning
rate 1e-4 and weight decay 1e-2. For data augmentation, we
use random rotation from −10◦ to 10◦. We train 20 epochs
on COCO-20i as Utrain with a batch size of 32 and crop size
473 × 473. For automatic task construction, we set the
number of cluster centroids N to 50 for COCO-20i. For su-
pervised meta-training on specified tasks, we finetune our
unsupervised-trained model for 100 epochs on PASCAL-5i
dataset and 50 epochs on COCO-20i with batch size of 4
and 16, initial learning rate of 1e-4 and 2.5e-3, respectively.

Ablative Experiment
Unsupervised meta-training leads to unsupervised FSS
models. We first examine the effect of unsupervised meta-
training paradigm in delivering fully unsupervised FSS
models. In Table 1, we compare model performance with su-
pervised (‘sup’) or unsupervised (‘unsup’) meta-training on
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Figure 3: Qualitative results on COCO-20i and PASCAL-5i in the one-shot setting. For ‘Query’, the ground-truth masks (in
green color) are shown for reference. ‘Ours-r%’ refers to our model fine-tuned using r% of all supervised data in Dtrain.

Variant PFENet CyCTR Ours
sup 60.9 62.9 63.1

unsup 44.0 48.5 54.1

Table 1: Unsupervised meta-training on PASCAL-5i.

ratio of labeled data usedModel w/ unsup.
meta-train 5% 10% 20% 100%

PFENet 7 50.5 53.8 57.4 60.9
3 60.7↑10.2 60.5↑3.0 61.9↑2.1 62.6↑1.7

CyCTR 7 57.4 59.3 61.3 62.8
3 60.0↑2.6 60.3↑1.0 62.7↑1.4 63.0↑0.2

Ours 7 57.5 59.1 61.4 63.1
3 63.2↑5.7 63.1↑4.0 64.3↑2.9 64.1↑1.0

Table 2: Finetuning performance with varied number of la-
beled data on PASCAL-5i.

PASCAL-5i. We see that 1) the unsupervised meta-training
paradigm is flexible to work with various existing FSS mod-
els (e.g., PFENet (Tian et al. 2020), CyCTR (Zhang et al.
2021)); 2) unsupervised meta-training yields promising per-
formance; however, 3) the performance still lags behind su-
pervised training scheme, and we will show later that the gap
can be closed by finetuning our model with a few annotated
training data; 4) our model surpasses all the competitors.
Unsupervised meta-training as an effective pre-training
scheme. Our unsupervised meta-training can serve as a pre-
training step, and model fine-tuning on specified tasks can be
applied afterwards to improve the performance. In Table 2,
we investigate how FSS model will evolve as the number
of training samples increases, with or without unsupervised
meta-training. We see that with unsupervised meta-training,
FSS models can consistently suppress the counterparts in all
settings, demonstrating the efficacy of unsupervised meta-
training as pre-training. In addition, we see that our model,
with only 20% of all annotated data, already outperforms
PFENet and CyCTR trained using all labeled samples.
Prototype-aware attention layer. We next verify the effi-
cacy of the prototype-aware attention layer on COCO-20i,
with all training images from four folds. For comparison,

PASCAL-5i

Variant fold-0 fold-1 fold-2 fold-3 mean
vanilla cross-att. 28.8 31.9 28.5 28.3 29.4

prototype cross-att. 29.2↑0.4 33.2↑1.3 30.9↑2.4 30.7↑2.4 31.0↑1.6

Table 3: Efficacy of prototype-aware cross-attention against
vanilla cross-attention on COCO-20i in the 1-shot setting.

Kbg

Kfg 1 10 20 50 100

1 41.9 56.2 57.6 56.8 55.1
10 43.0 58.3 59.1 59.2 58.2
20 43.1 59.6 59.8 59.1 57.8
50 44.5 59.7 59.8 60.2 59.0

100 44.8 59.8 59.9 60.2 59.8

Table 4: Analysis of Kfg/Kbg on PASCAL-5i under the 1-
shot setting.

we build a baseline model with vanilla cross-attention layer.
The results in Table 3 suggest that our prototype-aware at-
tention layer leads to a notable performance improvement
over the baseline, i.e., 1.6% gains in mIoU on average.
Impacts of Kfg and Kbg. Table 4 studies the impacts of Kfg

and Kbg on PASCAL-5i. In order to conduct a large set of
experiments, unsupervised meta-training is achieved based
on PASCAL-5i rather than the default COCO-20i. We ob-
serve that the performance improves as Kfg increases from 1
to 10, reaching saturation at Kfg =50. For Kbg, larger value
tends to benefit the performance. Hence, we set Kfg = 50
and Kbg=100 by default to obtain a better tradeoff between
model accuracy and computational efficiency.

Comparison With Unsupervised FSS Models
Table 5 compares our approach with existing unsupervised
FSS method MaskSplit (Amac et al. 2022) on PASCAL-5i
and COCO-20i. Following MaskSplit, we consider two un-
supervised meta-training settings: ‘fold’ refers to the stan-
dard fold-wise setting, and ‘all’ refers to training models
by combining training images of all folds together. For fair
comparison, we set Utrain to PASCAL-5i and COCO-20i
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PASCAL-5i COCO-20i

Setting Model fold-0 fold-1 fold-2 fold-3 mean fold-0 fold-1 fold-2 fold-3 mean

fold MaskSplit 51.5 55.2 52.5 44.4 50.9 - - - - -
Ours 58.3↑7.2 63.1↑7.9 59.7↑7.2 48.7↑4.3 57.5↑6.6 28.9 32.3 31.4 31.0 30.9

all MaskSplit 54.1 57.1 54.8 46.1 53.0 22.3 26.1 20.6 24.3 23.3
Ours 60.7↑6.6 64.1↑7.0 66.2↑11.4 49.6↑3.5 60.2↑7.2 29.2↑6.9 33.2↑7.1 30.9↑10.3 30.7↑6.4 31.0↑7.7

Table 5: Quantitative comparisons with MaskSplit for 1-shot segmentation on PASCAL-5i and COCO-20i.

PASCAL-5i COCO-20i

1-shot 5-shot 1-shot 5-shotModel Ratio
fold-0fold-1fold-2fold-3mean fold-0fold-1fold-2fold-3mean fold-0fold-1fold-2fold-3mean fold-0fold-1fold-2fold-3mean

PPNet

100%

48.6 60.6 55.7 46.5 52.8 58.9 68.3 66.8 58.0 63.0 28.1 30.8 29.5 27.7 29.0 39.0 40.8 37.0 37.3 38.5
PFENet 61.7 69.5 55.4 56.3 60.8 63.1 70.7 55.8 57.9 61.9 36.5 38.6 34.5 33.8 25.8 36.5 43.3 37.8 38.4 39.0
RePRI 59.8 68.3 62.1 48.5 59.7 64.6 71.4 71.1 59.3 66.6 32.0 38.7 32.7 33.1 34.1 39.3 45.4 39.7 41.8 41.6
HSNet 64.3 70.7 60.3 60.5 64.0 70.3 73.2 67.4 67.1 69.5 36.3 43.1 38.7 38.7 39.2 43.3 51.3 48.2 45.0 46.9
CyCTR 67.8 72.8 58.0 58.0 64.2 71.1 73.2 60.5 57.5 65.6 38.9 43.0 39.6 39.8 40.3 41.1 48.9 45.2 47.0 45.6
CATrans 67.6 73.2 61.3 63.2 66.3 75.1 78.5 75.1 72.5 75.3 46.5 49.3 45.6 45.1 46.6 56.3 60.7 59.2 56.3 58.2
ASNet 68.9 71.7 61.1 62.7 66.1 72.6 74.3 65.3 67.1 70.8 41.5 44.1 42.8 40.6 42.2 47.6 50.1 47.7 46.4 47.9
BAM 69.0 73.6 67.6 61.1 67.8 70.6 75.0 70.8 67.2 70.9 43.4 50.6 47.5 43.4 46.2 49.3 54.2 51.6 49.5 51.2

0% 59.1 54.9 56.1 46.4 54.1 57.0 52.4 52.7 46.9 52.3 29.2 33.2 30.9 30.7 31.0 29.6 35.6 34.0 32.1 32.8
5% 65.5 68.4 60.8 57.9 63.2 66.3 70.7 62.1 62.3 65.4 40.7 43.2 43.0 40.1 41.8 43.1 51.2 50.5 47.3 48.0

Ours 10% 64.9 68.9 61.8 56.7 63.1 68.5 71.4 64.5 63.8 67.1 39.5 43.6 45.2 40.8 42.3 43.5 52.2 51.4 47.3 48.6
20% 65.9 69.8 60.6 60.9 64.3 68.1 71.6 65.1 68.1 68.2 40.0 45.7 45.4 41.7 43.2 43.2 52.6 52.9 48.7 49.4

100% 68.3 71.3 60.0 60.7 65.1 71.5 74.5 61.5 68.4 68.9 40.1 46.8 47.5 41.8 44.1 45.6 53.6 54.8 58.4 53.1

Table 6: Quantitative results for 1-shot and 5-shot segmentation on PASCAL-5i and COCO-20i, respectively, in terms of mIoU
(%). All results are reported with ResNet50 as the backbone. ‘Ratio’: proportion of annotated data used for training.

for experiments on two datasets, respectively. As seen, our
method outperforms MaskSplit by a notable margin of 6.6%
mIoU on average in ‘fold’ setting on PASCAL-5i. When
considering ‘all’, our results are more remarkable, surpass-
ing the competitor by 7.2% on PASCAL-5i and 7.7% on
COCO-20i, respectively.

Comparison With Supervised FSS Models
Table 6 reports performance comparison of our model
against eight fully-supervised FSS models for 1-shot and
5-shot segmentation on PASCAL-5i and COCO-20i. For
PASCAL-5i, Table 6 shows that our unsupervised model
obtains promising results (e.g., 54.1% mIoU for 1-shot seg-
mentation which outperforms PPNet in 2020). In addition,
our model further improves the performance when it is fine-
tuned with only 5% (297) of annotated data (63.2% for 1-
shot segmentation and 65.4% for 5-shot segmentation). On
the scale of 20% (1190), our model yields mIoU of 64.3%
(1-shot) and 68.2% (5-shot), which are comparable to and
even surpass the counterparts with 100% supervision (e.g.,
CyCTR by 0.1% and 2.6% respectively). For COCO-20i,
our 1-shot and 5-shot results on COCO-20i are also compet-
itive. Specifically, our results on 20% scale outperform most
of fully-supervised methods, i.e., PPNet, PFENet, RePRI,
HSNet, CyCTR, ASNet, by solid margins.

Qualitative Analysis
Fig. 3 depicts representative visual results of our unsuper-
vised meta-trained model on three datasets, i.e., PASCAL-

5i and COCO-20i. As seen, our unsupervised model (‘Ours-
0%’) yields impressive results and is robust to scenarios with
occlusions, small objects. By finetuning the model with task-
specific annotated data, we observe progressively improved
performance as more data are provided.

Conclusion

In this paper, we propose a novel unsupervised meta-training
paradigm for few-shot semantic segmentation (FSS), which
is capable of exploiting rich semantic information in large-
scale unlabeled data. Through pixel clustering based on
pre-trained unsupervised dense features, our paradigm au-
tomatically constructs diverse meta-learning tasks and is
experimentally proven to work for a variety of meta-
learners. By the prototype-aware attention layer, more im-
pressive and more robust performance can be achieved.
Our fully-unsupervised model generates promising results
and presents great potential to down-streamed applications.
Moreover, we show the efficacy of our paradigm as pre-
training for two standard datasets, leading to comparable
performance to fully-supervised methods even using only
20% of the annotations. We wish this work to pave the way
for future research on label-efficient few-shot segmentation.
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