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Abstract

Directly predicting human epidermal growth factor receptor 2
(HER2) status from widely available hematoxylin and eosin
(HE)-stained whole slide images (WSIs) can reduce techni-
cal costs and expedite treatment selection. Accurately pre-
dicting HER2 requires large collections of multi-site WSIs.
Federated learning enables collaborative training of these
WSIs without gigabyte-size WSIs transportation and data
privacy concerns. However, federated learning encounters
challenges in addressing label imbalance in multi-site WSIs
from the real world. Moreover, existing WSI classification
methods cannot simultaneously exploit local context infor-
mation and long-range dependencies in the site-end feature
representation of federated learning. To address these is-
sues, we present a point transformer with federated learn-
ing for multi-site HER2 status prediction from HE-stained
WSIs. Our approach incorporates two novel designs. We pro-
pose a dynamic label distribution strategy and an auxiliary
classifier, which helps to establish a well-initialized model
and mitigate label distribution variations across sites. Ad-
ditionally, we propose a farthest cosine sampling based on
cosine distance. It can sample the most distinctive features
and capture the long-range dependencies. Extensive experi-
ments and analysis show that our method achieves state-of-
the-art performance at four sites with a total of 2687 WSIs.
Furthermore, we demonstrate that our model can general-
ize to two unseen sites with 229 WSIs. Code is available at:
https://github.com/boyden/PointTransformerFL

Introduction
Hematoxylin and eosin (HE)-stained whole slide images
(WSIs) are now being used beyond visible tasks by apply-
ing deep learning methods (Lu et al. 2021; Shao et al. 2021;
Li et al. 2022). These images contain subtle molecular char-
acteristics that can be inferred using deep learning (Kather
et al. 2020; Farahmand et al. 2022; Lu et al. 2022c). In breast
cancer, accurately predicting human epidermal growth fac-
tor receptor 2 (HER2) status is crucial for guiding anti-
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Figure 1: Local context information and long-range depen-
dencies are both essential for WSI analysis

HER2 treatment decisions (Oh and Bang 2019). Routinely,
pathologists rely on HE-stained WSIs for breast cancer diag-
nosis, followed by specialized immunohistochemistry (IHC)
and/or costly in-situ hybridization (ISH) techniques (Wolff
et al. 2018) to determine HER2 status. By utilizing deep
learning, we can predict HER2 status from broadly acces-
sible HE-stained WSIs without requiring IHC and/or ISH.

Achieving better WSI-level prediction requires large
amounts of WSIs. Federated learning (FL) (McMahan et al.
2017) has already exhibited promising progress in WSI anal-
ysis (Lu et al. 2022b; Jiang, Wang, and Dou 2022; Ogier du
Terrail et al. 2023). It can incorporate a large amount of
multi-site WSIs without actual transportation of gigabyte-
size WSIs and reduce the risk of data leakage. However,
real-world WSIs exist non-independent and identically dis-
tributed (non-i.i.d.) scenarios. For HER2 classification, la-
beling imbalance and varying histological specimen prepa-
ration at different sites can adversely affect the overall per-
formance. Although many studies have addressed the non-
i.i.d. challenges (Hu et al. 2022; Guan and Liu 2023; Zhuang
and Lyu 2023) in natural scenes, these methods remain a ma-
jor gap in real-world WSIs compared to centralized learning.

In the site-end feature representation, WSIs are cut into
patches, and these patches’ local context information and
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long-range dependencies (as shown in Figure 1) are essential
for WSI-level prediction, such as HER2 prediction (Kather
et al. 2020; Lu et al. 2022c) and survival analysis (Chen et al.
2021b; Shen et al. 2022; Shao et al. 2023). For HER2 pre-
diction, HER2-positive patches may cluster in many sepa-
rate regions of WSIs. Existing deep learning methods either
treat these patches as instances using multi-instance learn-
ing (MIL) methods (Lu et al. 2021; Shao et al. 2021, 2023),
or structure the patches into a graph using graph neural net-
works (GNNs) (Chen et al. 2021a; Lu et al. 2022c; Hou et al.
2022). However, the MIL-based methods lack the ability
to model the local contextual information while the graph-
based methods may struggle to capture long-distance depen-
dence (Xu et al. 2018) and need extra edge representation.
Alternatively, the point neural network (Qi et al. 2017a,b)
can treat each patch as a point with inherent position infor-
mation in the Euclidean space, and hence effectively model
the local context by considering the position information.
Moreover, it is permutation invariant and has demonstrated
proficiency in aggregating features and representing long-
range dependencies (Guo et al. 2021; Lu et al. 2022a), mak-
ing it well-suited for WSI analysis.

In this paper, we introduce a PointTransformerDDA+ to
represent both the local context and the long-range depen-
dencies. Through the point transformer block, it can capture
and aggregate the local information by employing attention
mechanisms enriched with position information. We also
propose a novel Farthest Cosine Sampling (FCS) to capture
the long-range dependencies and gather the most distinctive
features based on their cosine distance. To mitigate feder-
ated learning’s label-imbalance of multi-site, we present a
dynamic distribution adjustment (DDA) method for a well-
initialized model. It includes a distribution adjustment strat-
egy and an auxiliary classifier. The DDA allows the resam-
pling of labels to the same imbalance ratio initially and then
dynamically adjust to the real imbalance ratio for each site
without degrading the feature representation.

Our main contributions can be summarized as follows:
• Unlike MIL models or graph models, we pioneer the use

of point transformer for WSI analysis, which effectively
captures both local context and long-range dependencies.

• Our proposed FCS can capture the long-range dependen-
cies, leading to the most distinct feature aggregation.

• The proposed DDA mitigates the multi-site class imbal-
ance issue, thereby enhancing model generalization.

• Extensive experiments on the largest WSI dataset to date
for HER2 prediction in breast cancer demonstrate that
our method achieves state-of-the-art performance in four
sites (2687 WSIs) and two unseen sites (229 WSIs).

Related Work
In this section, we briefly review relevant works on WSI
classification and federated learning in WSI analysis.

Whole Slide Image Classification
Recent works have used either MIL-based or graph-
based methods for WSI classification, including molecu-
lar biomarkers such as HER2 status prediction (Farahmand

et al. 2022; Lu et al. 2022c). The MIL-based methods com-
monly leverage attention mechanisms (Ilse, Tomczak, and
Welling 2018; Chen et al. 2020; Lu et al. 2021) or trans-
formers (Shao et al. 2021; Shen et al. 2022) to capture the
long-distance dependence among instances. Regarding the
local spatial relationship, DSMIL (Li, Li, and Eliceiri 2020)
simply extracts feature from different scales and concatenate
them among scales, which do not consider the local informa-
tion in a specific scale. TransMIL (Shao et al. 2021) mod-
els the spatial relationship among patches via transformers
with conditional position encoding; however, the positions
used are not based on the actual Euclidean space. Graph-
based models (Hamilton, Ying, and Leskovec 2017; Xu et al.
2019; Lee et al. 2022) are intrinsically designed to cap-
ture local information by a graph structure. In WSI analysis,
Patch-GCN (Chen et al. 2021a) regards patches as 2D point
clouds while still employing GNN to analyze WSIs. Slide-
Graph+ (Lu et al. 2022c) also constructs a graph based on
position information and uses edge convolution (Wang et al.
2019) to model local neighbor features, leading to a SOTA
HER2 prediction performance. However, the long-term de-
pendency may limit the further improvement of GNNs in
WSI analysis. While the permutation-invariant point neural
network (Qi et al. 2017b; Zhao et al. 2021; Lu et al. 2022a)
can capture both the local context and long-range dependen-
cies, few studies have focused on WSI classification.

Federated Learning in WSI Analysis
Federated learning (McMahan et al. 2017; Guan and Liu
2023) can facilitate the training of data-driven models us-
ing multi-site WSIs. HistFL (Lu et al. 2022b) collaborates
multi-sites WSI with attention MIL model and differential
privacy for cancer subtype and survival prediction. Also,
TNBC-FL (Ogier du Terrail et al. 2023) employs federated
learning for predicting treatment outcomes in the rare sub-
type of breast cancer. However, general non-i.i.d. issues like
skewed label distribution impedes the performance of feder-
ated learning. In natural scenes, several works replace batch
normalization with group normalization (Hsieh et al. 2020),
layer normalization (Du et al. 2022) or even remove the nor-
malization layer (Zhuang and Lyu 2023) to address the prob-
lems by reducing the external covariate shift. FedProx (Li
et al. 2020) introduces a regularization function to guaran-
tee robust convergence of model in non-i.i.d. data. Addition-
ally, FedMGDA (Hu et al. 2022) regards multi-site federated
learning as a multi-objective optimization problem, aiming
to converge to Pareto stationary solutions. With gradient nor-
malization named FedMGDA+ (Hu et al. 2022), it can in-
crease the model’s robustness. Despite the progress made in
federated learning, there still remains a gap between feder-
ated learning and centralized learning in real WSIs and fur-
ther improvements are still needed.

Methodology
In this section, we start by introducing the problem defi-
nition of HER2 status prediction using a point transformer
with federated learning. Then we describe the main compo-
nents of the framework, including point feature extraction,

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

3001



Figure 2: Overview of the point transformer for predicting HER2 status from whole slide images in a federated learning
framework. 4× represents that the corresponding blocks are repeated 4 times. In the ith block, the output shape of point
features is (N/4i, 32 × 2i) and N represents the total point numbers and is set to 1024. FPN: feature pyramid network, GAP:
global average pooling, MLP: multilayer perceptron.

point transformer block, point abstraction block, and feder-
ated learning with dynamic distribution adjustment. Figure 2
illustrates the overall pipeline of our proposed framework.

Preliminaries

Suppose that we have M sites for HER2 status prediction,
our goal is to accurately determine whether a given Whole
Slide Image (WSI) is HER2-positive (HER2+) or HER2-
negative (HER2-). For the ith site, it contains a labeled
point dataset Pi = {(Xn, yn) | n ∈ (1, ..., |Pi|)}, where
yn ∈ {0, 1} is the corresponding HER2- and HER2+ sta-
tus. Within this dataset, Xn = {xn,1, xn,2, ..., xn,|Xn|} rep-
resents a point set in the nth whole slide images, where a
point xn,k ∈ R3+d is a feature vector with 3-dim coordi-
nates and d-dim point features. To determine HER2+ status
from a point set X while considering data privacy, we em-
ploy federated learning to minimize the global cost over all
sites:

argmin
W

L(W) =
M∑
i=1

|Pi|
|P|
Li(Pi;W), (1)

where |P| =
∑M

i=1 |Pi| is the total number of WSIs across
all sites. For the ith site, the cost can be calculated by:

Li(Pi;W) =
1

|Pi|
∑

(Xk,yk)∈Pi

ℓ(fc(fh(Xk)), yk;W), (2)

where ℓ is the loss function, fh : X 7→ Rd is a point
set embedding function, and fc : Rd 7→ R is the fi-
nal classifier function. WSIs from real sites have a general
non-independent and identically distributed (non-i.i.d. ) sce-
nario where each site has different HER2 status distribu-
tions. For the ith site, we denote the class imbalance ratio
as γi =

|P−
i |

|P+
i | , where |P−

i | and |P+
i | represent to the number

of HER2- and HER2+ WSIs within the ith site.

Point Feature Extraction
To extract point features from a WSI, we follow the
CLAM (Lu et al. 2021) to preprocess and patch the WSIs
with details in Appendix A. Each patch is treated as a point.
The corresponding coordinates for each patch are also traced
and represented as a tuple(px, py, 1), where 1 represents
all WSIs having the same z-coordinate. Then we input the
patches into a nuclei segmentation network that is pretrained
using Swin-Transformer (Liu et al. 2021) with FPN (Lin
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et al. 2017) with four levels, represented by P2, P3, P4, P5

in Figure 2. The channel of FPN is set to 64 and the out-
puts from all four layers of FPN are averaged and concate-
nated with the point coordinates as the patch-level feature
xn ∈ R3+d, where 3 represents the coordinates and d = 256
represents the point feature. Thus for a WSI with a label y,
we can obtain a point set X = x1, x2, ..., x|X |, where |X | is
the number of patches in a WSI. 1024 patches or points are
randomly selected with uniform distribution to reduce the
memory usage and improve computational efficiency.

Point Transformer Block
In our approach, we adopt the original point transformer
block (Zhao et al. 2021) to capture and aggregate the local
context information of each point with an effective attention
mechanism. For the ith point with its corresponding point
feature xi, position pi. We represent its k-nearest neighbor-
hood points (k=16) as a subsetX (i) ⊂ X . Then we compute
the attention score between point xi and point subset X (i)
by the attention score function α:

α(xi, xj) = Wq(Wixi −Wjxj) + PE(pi, pj), (3)

where xj ∈ X (i) and PE is a relative position encoding
function defined as:

PE(pi, pj) = MLP (pi − pj). (4)

MLP in the formula represents two linear layers with a
ReLU activation function.

Afterward, we aggregate the localized feature around of
point xi and obtain the aggregated feature zi with a softmax
function S. Then the output yi is computed by applying a
residual connection between xi and zi:

zi =
∑

xj∈X (i)

S(α(xi, xj)) · (Wvxj + PE(pi, pj)), (5)

yi = xi +Wzzi. (6)

Point Abstraction Block
To effectively reduce the cardinality of a point set and cap-
ture the long-range dependencies without missing important
points, we propose a novel sampling strategy named farthest
cosine sampling (FCS), as an alternative to the farthest point
sampling (FPS) (Qi et al. 2017b).

In scenarios where a WSI exhibits a majority of negative
patches with only a few positive patches clustered together
in a specific region, FPS may miss these positive patches,
as depicted in Figure 3. Consequently, it can lead to false
negative predictions of HER2 status. Contrary to FPS, we
perform sampling in the feature space, not in the position
space. For a point set X1 = {x1, x2, ..., xM} with M points,
we define the cosine distance as the distance metric between
two points xi, xj ∈ X1:

Dist(xi, xj) = 1− xi · xj

max(||xi||2 · ||xj ||2, 1e− 8)
. (7)

Using this distance metric, we iteratively select the M/4
farthest points based on Algorithm 1. Consequently, the FCS
can effectively cover the most requisite patches and capture

Algorithm 1: Farthest cosine sampling
Input: M points with feature X1 = {x1, x2, ..., xM}.
Output: Sampled M/4 pointsX2.

1: initialize an empty sampling point set X2 = {};
2: xs,1 = RandomChoiceOne(X1);
3: X1 ← X1 \ {xs,1};X2 ← {xs,1};
4: while |X2| < M/4 do
5: // Using cosine similarity for distance metric
6: Dist(i, j) = 1− xi·xs,j

max(||xi||2·||xs,j ||2,1e−8) ;
7: D = {Dist(i, j);xi ∈ X1, xs,j ∈ X2};
8: xs ← argmaxxi∈X1

(D);
9: X1 ← X1 \ {xs};X2 ← X2 ∪ {xs};

10: end while
11: return X2

Figure 3: Difference between farthest point sampling and
farthest cosine sampling. Light red: HER2+ points, light
green: HER2- points.

the long-range dependencies in the feature space for better
prediction of HER2 status.

After FCS, we obtain a sampled point subset X2 =
{xs,1, xs,2, ..., xs,M/4}. For each sampled point xi ∈ X2,
we define its k-nearest neighborhood points (k=16) on X1

as a point subset: X2(i) ⊂ X1. Subsequently, we group the
feature from X1 onto X2 as yi for each point xi ∈ X2 using
the following equation:

yi = MaxPoolingxj∈X2(i)(MLP (xj)). (8)

The MLP has two layers with each layer containing a lin-
ear transformation, batch normalization, and a ReLU acti-
vate function.

Point Classifier Block
After performing 4× attention and abstraction operations,
we obtain 4 abstract points with a grouped feature represen-
tation denoted as Fg ∈ R4×512. By averaging the grouped
feature, we derive the final WSI-level feature represented as
Fh ∈ R64:

Fh = MLP (GAP (Fg)) = fh(X ), (9)

where MLP has two layers with each layer containing a lin-
ear transformation and a ReLU activation function. Follow-
ing the MLP, a linear layer with a softmax function named
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Figure 4: Dynamic distribution adjustment and auxiliary
classifier for federated learning.

fc outputs the final HER2 status probabilities p. The loss is
calculated using cross entropy (CE) loss function, which is
formulated as:

ℓ(p, y) = − 1

|P|

|P|∑
i

1∑
c=0

yic log(p
i
c). (10)

Federated Learning with Dynamic Distribution
Adjustment
The WSIs from real sites exhibit a general non-independent
and identically distributed (non-i.i.d.) scenario in which
each site has a different label distribution, which can im-
pact the performance of federated learning (Guan and Liu
2023). To mitigate this issue, we introduce a novel dynamic
distribution adjustment strategy. It subsamples the majority
of HER2- WSIs to the same label distribution in the initial
training stage of federated learning. Then the balanced label
distribution dynamically adjusts to the real distribution after
progressive training. Specifically, we keep all the HER2+
WSIs and generated a 0/1 mask M(k) for the HER2- WSIs.
This mask is created using a Bernoulli distribution B with a
probability of bk at kth epoch.

Mi(k) = B(bki ), (11)

bki =
1

γi
+ (1− 1

γi
) · e

k/K − 1

e− 1
∈ [

1

γi
, 1], (12)

where γi is the ith site’s imbalanced ratio and K is the total
optimization steps. The loss function can be formulated as:

Lcls = M · ℓ(fc(Fh), y) (13)

= − 1

|Pi|
[

|P−
i |∑
i

Mi(k) log(p
i
0) +

|P+
i |∑
i

log(pi1)], (14)

where |P−
i |, |P

+
i | represent the number of HER2- and

HER2+ WSIs.
In every epoch k, we note bki γi as the imbalance ratio in-

volved in loss computation. Figure 4 shows that at epoch
k = 0, all sites have bki γi = 1 indicating that they share the
same label distribution with an equal ratio between HER2-
and HER2+. As the training progresses, the distribution
gradually shifts towards each site’s real distribution γi. By

this strategy, the models are initially trained within a simi-
lar distribution, leading to a well-initialized model for accu-
rately predicting HER2 status.

The above subsampling may arise a potential information
loss problem, leading to insufficient feature representation.
To address this concern, we add an auxiliary classifier that
incorporates each site’s real label distribution:

Laux(p, y) = −
1

|Pi|
[

|P−
i |∑
i

log(pi0) +

|P+
i |∑
i

log(pi1)], (15)

Ltotal = Lcls + Laux. (16)

This auxiliary classifier does not involved in the weights
synchronization with the server model during the training of
federated learning. Instead, it serves to guarantee the qual-
ity of feature representation as previous studies have demon-
strated that models trained on imbalanced data can still learn
high-quality feature representations (Kang et al. 2020; Lee,
Shin, and Kim 2021). Detailed pseudo codes are shown in
algorithm 2.

Experiments
Dataset and Experimental Settings
We evaluate our point transformer model for breast cancer
HER2 status prediction using the largest WSI from six sites
with a total of 2,916 WSIs. The sites are denoted as fol-
lows: Site A (TCGA-BRCA) (Network 2012), Sites B and
C (internal hospitals with ethics committee approval), Site
D (Conde-Sousa et al. 2022), and Sites E and F (Farahmand
et al. 2022; Qaiser et al. 2017). Four sites participate in fed-
erated learning, while the remaining two sites serve as un-
seen data for external tests. Sites A, B, C, and D are split
into training, validation, and test sets with a ratio of 6:1:3,
as shown in Table 1. The splits are repeated five times, and
the best model is selected based on the validation set in each
split. The mean area under the ROC curve (AUC) is reported
for the test set.

We refer to the point transformer with FCS as PointTrans-
former+, the variant with DDA as PointTransformerDDA,
and the combined variant as PointTransformerDDA+.

WSIs Federated Sites Unseen Sites
Site A Site B Site C Site D Total Site E Site F

HER2− 669 672 332 306 1979 98 26
HER2+ 118 214 172 204 708 93 12

Total 787 886 504 510 2687 191 38
γ 5.7 3.1 1.9 1.5 2.8 1.1 2.2

Train 472 532 302 306 1612 - -
Val 79 88 50 51 268 - -
Test 236 266 152 153 807 191 38

Table 1: WSIs and their HER2 status number in each site.
γi =

|P−
i |

|P+
i | represents the imbalance ratio. WSIs are split

into training (60%), validation (10%), and test (30%) set.
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Experiments Methods Average Site A Site B Site C Site D

Ours
PointTransformerDDA+ 0.816 ± 0.019 0.766 ± 0.025 0.866 ± 0.021 0.837 ± 0.036 0.760 ± 0.046
PointTransformerDDA 0.793 ± 0.013 0.730 ± 0.029 0.855 ± 0.013 0.804 ± 0.024 0.758 ± 0.022

PointTransformer+ 0.806 ± 0.015 0.752 ± 0.018 0.844 ± 0.008 0.823 ± 0.024 0.757 ± 0.043

Point-based PointTransformer [1] 0.771 ± 0.012 0.717 ± 0.037 0.834 ± 0.026 0.776 ± 0.037 0.721 ± 0.035
PointNet++ [2] 0.763 ± 0.017 0.696 ± 0.039 0.830 ± 0.033 0.746 ± 0.045 0.730 ± 0.042

MIL-based

CLAM-SB [3] 0.767 ± 0.032 0.712 ± 0.044 0.793 ± 0.037 0.766 ± 0.072 0.748 ± 0.022
DSMIL [4] 0.693 ± 0.096 0.647 ± 0.065 0.738 ± 0.103 0.706 ± 0.080 0.675 ± 0.111

TransMIL [5] 0.790 ± 0.019 0.739 ± 0.038 0.824 ± 0.021 0.805 ± 0.036 0.759 ± 0.040
HistoFL [6] 0.757 ± 0.039 0.729 ± 0.048 0.776 ± 0.050 0.759 ± 0.076 0.733 ± 0.012

Graph-based
GraphSAGE [7] 0.711 ± 0.026 0.656 ± 0.053 0.735 ± 0.027 0.692 ± 0.044 0.685 ± 0.021
Patch-GCN [8] 0.750 ± 0.037 0.700 ± 0.035 0.768 ± 0.062 0.766 ± 0.030 0.727 ± 0.047
SlideGraph+ [9] 0.783 ± 0.019 0.736 ± 0.029 0.828 ± 0.012 0.804 ± 0.037 0.785 ± 0.013

Table 2: Comparison of our model with other point, multi-instance, and graph-based models. [1] (Zhao et al. 2021), [2] (Qi
et al. 2017b), [3] (Lu et al. 2021), [4] (Li, Li, and Eliceiri 2020), [5] (Shao et al. 2021), [6] (Lu et al. 2022b), [7] (Hamilton,
Ying, and Leskovec 2017), [8] (Chen et al. 2021a), [9] (Lu et al. 2022c).

Implementation Details
Our models are implemented using PyTorch 1.12.0 on a
workstation with an RTX 3090 GPU. The models are trained
for 200 epochs with a learning rate of 1e-3 and L2 regular-
ization of 1e-5. Point data augmentation is used with details
in Appendix B. The learning rate warm-up is tuned for the
first 10 epochs, followed by a cosine decay scheduler. Adam
optimizer is adopted for weight updates.

Comparison with WSI Classification Methods
We include PointNet++ (Qi et al. 2017b), MIL-based mod-
els: CLAM-SB (Lu et al. 2021), DSMIL (Li, Li, and Eli-
ceiri 2020), TransMIL (Shao et al. 2021), HistFL(Lu et al.
2022b), and graph-based models: GraphSAGE (Hamilton,
Ying, and Leskovec 2017), Patch-GCN (Chen et al. 2021a),
SlideGraph+ (Lu et al. 2022c) for comprehensive model
comparison. All of the compared models are implemented
with federated average settings.

Table 2 shows that point-based models offer a competi-
tive performance compared to MIL-based and graph-based
methods. The point-based models possess a unique advan-
tage by effectively integrating both the local neighborhood
features, similar to graph-based methods, and capturing the
long-range dependencies, similar to MIL-based models. By
introducing the novel FCS or/and DDA strategy, the point
transformer achieves better performance compared to other
models and PointTransformerDDA+ achieves the start-of-
the-art AUC in the test set and three federated sites. Of note
that TransMIL (Shao et al. 2021) also offers a high AUC
compared to other related models. TransMIL also incorpo-
rates position encoding in the model, indicating that point
position contributes to improved performance in predicting
HER2 status. Further analysis of position information can be
found in Appendix C.

Comparison with Federated Learning Methods
We also represent the point transformer’s performance with
different federated learning methods. Table 3 shows that
our proposed PointTransformerDDA+ achieves the best to-
tal AUC among other methods and is the closest to the cen-
tralized training. Among the two proposed strategies FCS

Federated Settings Average Site A Site B Site C Site D
Centralization 0.823 0.722 0.839 0.824 0.819
PointTransformerDDA+ 0.816 0.766 0.866 0.837 0.760
PointTransformerDDA 0.793 0.730 0.855 0.804 0.758
PointTransformer+ 0.806 0.752 0.844 0.823 0.757
FedAVG [1] 0.771 0.717 0.834 0.776 0.721
FedGroupNorm [2] 0.783 0.733 0.832 0.775 0.768
FedProx [3] 0.788 0.759 0.836 0.800 0.719
FedMGDA [4] 0.773 0.723 0.818 0.773 0.741
FedMGDA+ [4] 0.780 0.734 0.813 0.804 0.738
FedWon [5] 0.774 0.716 0.824 0.777 0.728

Table 3: Comparison of different federated learning settings.
[1] (McMahan et al. 2017), [2] (Hsieh et al. 2020), [3] (Li
et al. 2020), [4] (Hu et al. 2022), [5] (Zhuang and Lyu 2023).

Unseen Sites Site E Site F
PointTransformerDDA+ 0.793 0.791
PointTransformerDDA 0.795 0.802
PointTransformer+ 0.800 0.806

Table 4: Performance of the point transformer in the unseen
sites.

and DDA, FCS can capture the most discriminative features
and DDA can mitigate the issue of non-i.i.d scenario; both
of them can lead to a better federated learning performance.
While GroupNorm (Hsieh et al. 2020) reaches higher perfor-
mance at Site D, we observe that GroupNorm is sensitive to
our data and relies on careful fine-grained group number se-
lection with details in Appendix D. Moreover, although our
models are not specifically designed for unseen scenarios,
they still achieve commendable performance (AUC > 0.79)
for two unseen sites, as shown in Table 4.

Ablation Studies
Farthest cosine sampling We first evaluate the effective-
ness of FCS in the DDA and base federated average settings.
We also assess FCS’s impact at each site by training locally
rather than employing a federated learning scheme. Table 5
shows that FCS can consistently improves performance in
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Algorithm 2: Point transformer with federated learning
Input: M participating sites with point set Pm = (Xm, ym)
and label imbalanced ratio γm where m ∈ {1, ...,M}. Op-
timization epochs: K, communication pace: E.
Output: Model’s weights Ws.

1: initialize the point transformer’s function for each site:
fm
h , fm

c , fm
aux;

2: initialize the same weights for the server and sites:
W 0

s ,W
0
s,1, ...,W

0
s,M ;

3: for k = 0 to K − 1 do
4: for m = 1 to M do
5: Fm

h = fm
h (Xm);

6: // Dynamic distribution adjustment
7: Mm = B( 1

γm
+ (1− 1

γm
) · e

k/K−1
e−1 );

8: Lm = Mm · ℓ(fm
c (Fm

h ), ym) + ℓ(fm
aux(F

m
h ), ym);

9: // Local site update
10: W k+1

s,m ←W k
s,m − lr · ∇Wk

s,m
Lm;

11: end for
12: if (k + 1) mod E = 0 then
13: // Server site update
14: for each layer l in point transformer do
15: if l is not the auxiliary classifier’s layer then
16: W k+1,l

s ←
∑M

m=1
|Pi|
|P| W

k+1,l
s,m ;

17: W k+1,l
s,m ←W k+1,l

s ;
18: end if
19: end for
20: end if
21: end for
22: return Ws

Methods FCS Average Site A Site B Site C Site D

DDA × 0.793 0.730 0.855 0.804 0.758
✓ 0.816 0.766 0.866 0.837 0.760

Base × 0.771 0.717 0.834 0.776 0.721
✓ 0.806 0.752 0.844 0.823 0.757

NoFed × - 0.639 0.799 0.687 0.728
✓ - 0.659 0.831 0.711 0.729

Table 5: Ablation experiments of farthest cosine sampling
(FCS). NoFed: the model is trained at each site locally.

IHC Score 2+ Average Site A Site B Site D
PointTransformerDDA+ 0.712 0.688 0.733 0.723
PointTransformerDDA 0.703 0.668 0.710 0.735
PointTransformer+ 0.747 0.726 0.748 0.730

Table 6: The AUC of our model in the IHC score 2+ subset.
Site C is excluded due to no IHC 2+ WSIs .

all settings, including local training without federated learn-
ing. FCS can capture more discriminative features, leading
to better performance. Of note, FCS only brings little ben-
efit for HER2 status in Site D. This could be attributed to
the fact that Site D primarily consists of biopsy WSIs with a
lower number of total points compared to other sites. Conse-
quently, the use of FPS sampling is sufficient to cover almost

Figure 5: Performance compassion with different percent-
ages of training WSIs.

all the patches in Site D.

Percentage of training WSIs Our model contains the
largest number of WSIs to date for predicting HER2 status.
However, real-world scenarios may lack sufficient WSIs.
Therefore, we evaluate our model’s performance by re-
ducing the training WSIs to 75% (1209 WSIs), 50% (806
WSIs), 25% (403 WSIs). We exclude the use of 10% of
the training WSIs as it results in less than 10 positive WSIs
at each site, making it unsuitable for this experiment. Fig-
ure 5 shows that our model outperforms the base PointTrans-
former in all settings. The PointTransformerDDA+ with
50% of training WSIs achieve an AUC that is merely 0.008
lower than the PointTransformer model (0.763 vs 0.771)
trained with 100% of the training WSIs. Moreover, with
only 25% of training WSIs, the performance of PointTrans-
formerDDA+ still outperforms DSMIL (Li, Li, and Eliceiri
2020) (0.708 vs 0.693).

IHC2+ Subset Analysis In real clinical scenarios IHC
score 2+, pathologists cannot assess the HER2 status from
IHC and require further expensive ISH tests. However, Ta-
ble 6 shows that our model still achieves impressive perfor-
mance with an average AUC > 0.7 in the test set. It can bring
us an opportunity to reduce the reliance on ISH tests, thereby
offering cost savings and faster HER2 status assessment.

Conclusion
Unlike MIL-based or graph-based methods, we regard a
WSI as a point cloud with position information to derive the
HER2 status from HE-stained WSIs, highlighting the effec-
tiveness of point neural networks for WSI analysis. Specif-
ically, a farthest cosine sampling is proposed to capture the
long-range dependencies and aggregate most discriminative
point features. Additionally, when utilizing federated learn-
ing, we proposed a dynamic distribution adjustment to miti-
gate the non-i.i.d. scenario of label imbalance in real-world
WSIs. Extensive experiments have demonstrated the effi-
cacy of our two components. Our models further achieve
impressive performance in both unseen sites and IHC score
2+ subsets.
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