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Abstract

We introduce a language-grounded visual prompting method
to adapt the visual encoder of vision-language models for
downstream tasks. By capitalizing on language integration,
we devise a parameter-efficient strategy to adjust the input of
the visual encoder, eliminating the need to modify or add to
the model’s parameters. Due to this design choice, our algo-
rithm can operate even in black-box scenarios, showcasing
adaptability in situations where access to the model’s param-
eters is constrained. We will empirically demonstrate that,
compared to prior art, grounding visual prompts with lan-
guage enhances both the accuracy and speed of adaptation.
Moreover, our algorithm excels in base-to-novel class gen-
eralization, overcoming limitations of visual prompting and
exhibiting the capacity to generalize beyond seen classes. We
thoroughly assess and evaluate our method across a variety of
image recognition datasets, such as EuroSAT, UCF101, DTD,
and CLEVR, spanning different learning situations, including
few-shot adaptation, base-to-novel class generalization, and
transfer learning.

1 Introduction
Large-scale pretrained models (PTMs) (Brown et al. 2020a;
Dosovitskiy et al. 2020; Radford et al. 2021; Touvron et al.
2023; Kirillov et al. 2023) are trained with massive amounts
of data and intricate optimization algorithms. This makes
designing and developing high-performing PTMs a labori-
ous and costly process. While these models showcase gen-
eralization prowess, achieving optimal performance on new
tasks necessitates careful finetuning. Nonetheless, the fine-
tuning of PTMs carries inherent challenges, notably the risk
of catastrophic knowledge forgetting and vulnerability to
overfitting on the downstream tasks (Kumar et al. 2021;
Wortsman et al. 2022).

In response to the challenges mentioned earlier, a fresh
paradigm called Model Reprogramming (MR) has been pro-
posed as a method in the context of transfer learning. The
core idea behind MR is to repurpose and harness a high-
quality pretrained model, facilitating seamless cross-domain
learning without the need for finetuning the model. MR in-
troduces a learnable transformation function at the input of
the model, along with an output mapping function to achieve
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Figure 1: Our key idea is to reprogram the visual encoder
of CLIP (Radford et al. 2021) through the generation of
language-grounded visual prompts.

this objective. The pioneering work of (Tsai, Chen, and Ho
2020) has demonstrated that through MR, even a CNN ini-
tially trained on ImageNet can be swiftly adapted to ex-
cel in classifying medical images, interestingly, even out-
performing the traditional finetuning approach. Subsequent
research efforts have extended the idea of MR into vari-
ous domains, achieving successful adaption without finetu-
ing (Vinod, Chen, and Das 2020; Yen et al. 2021; Yang, Tsai,
and Chen 2021; Neekhara et al. 2022; Chen et al. 2023).

The input transformation acquired through MR is com-
monly conceptualized as a perturbation pattern, which is
either added to or concatenated with the input images. By
learning the perturbation pattern, also called Visual Prompts
(VPs) in vision tasks, the PTM effectively embeds the down-
stream task samples into a distinct subset of its latent space.
As such, MR allows to adeptly repurpose the PTM’s capa-
bilities, all while preserving the integrity of the latent space.
Despite the promise and rapid progress, several questions
remain unanswered in MR;

• Unimodality in learning VPs. To the best of our knowl-
edge, in the previous studies focusing on VPs, class se-
mantic information and visual encoding are typically
treated separately in many cases, despite human per-
ception being multimodal (e.g., (Gibson 1969; Meltzoff
and Borton 1979; Quiroga et al. 2005). This multimodal
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framework of our cognitive system helps us to learn new
concepts with a few examples. This, in AI, will raise a
simple question, if a Vision-Language model is at hand,
does language help in designing VPs for MR? If yes, what
are the design questions to answer?

• Efficient Training. In practice, learning VPs requires a
large number of iterations to achieve quality results. For
example, adapting a PTM to classify 10 classes of satel-
lite images in EuroSAT (Helber et al. 2019), requires
1000 training epochs. This is because, adapting the vi-
sual encoder is challenging due to the complexity of
high-dimensional visual input and the asymmetric nature
of V-L encoders, compared to its text counterpart. One
may wonder whether language can overcome this con-
straint.

• Generalizing beyond seen classes. MR is, by nature, a
form of transfer learning. As such, it does not endow an
explicit mechanism to generalize beyond what it has seen
during adaptation. Recent studies have shown that Vision
Language Models (VLMs) have great zero-shot learning
capabilities. This would suggest whether one can expect
or design an MR algorithm that can benefit from lan-
guage to generalize beyond its seen classes during adap-
tation.

• Adaptation without accessing model parameters Our
method maintains the original foundation model, thus en-
abling adaptation via APIs and cases where for ethical
constraints, accessing the structure and weights of the
foundation model is not possible. Furthermore, preserv-
ing the foundation model translates into maintaining its
generalization capabilities, a virtue, that algorithms such
as MaPLe (Khattak et al. 2023) cannot ensure.

Our work takes a stride toward addressing the afore-
mentioned questions. In particular, we propose Language-
Grounded Visual Prompting (LaViP)1 , which enables
pixel-space input-aware prompting by leveraging the lan-
guage integration to adapt downstream tasks (Figure 1). In
LaViP, we opt for a low-rank solution to generate language
grounded visual prompt. This substantially reduces the num-
ber of parameters to be learned, a quality particularly advan-
tageous in the context of black-box settings. Furthermore,
we develop a mechanism to incorporate novel class knowl-
edge without needing to retrain the VPs, enabling our solu-
tion to generalize to novel and unseen classes seamlessly. To
contrast and compare our algorithm against previous art, we
have performed a thorough set of experiments, ranging over
transfer learning, few-shot learning, and generalization be-
yond seen classes over 12 recognition datasets. Our empiri-
cal study shows that our algorithm consistently outperforms
state-of-the-art algorithms by a tangible margin by harness-
ing the multimodal signals in visual prompts.

To summarize, we have made the following contributions
to this work. Firstly, to the best of our knowledge, we are
pioneering a language-grounded MR solution to adapt a vi-
sual encoder to downstream tasks. Secondly, we propose
a mechanism effectively extending visual prompts beyond

1https://github.com/NilakshanKunananthaseelan/LaViP

seen classes, a feat largely confined to text prompt adapta-
tion. We extensively evaluate and assess our algorithm on
three learning paradigms: few-shot learning, generalization
beyond seen classes, and transfer learning.

2 LaViP
Throughout the paper, we denote scalars as x, vectors as x,
matrices as X , and equality by definition as ≜. The Kro-
necker product between matrix X ∈ Rm×n and Y ∈ Rp×q ,
denoted by X ⊗ Y ∈ Rmp×nq is defined as

X ⊗ Y =

x11Y · · · x1nY
...

. . .
...

xm1Y · · · xmnY

 , (1)

where aij represents the element in the i-th row and j-th col-
umn of X . Below, we describe LaViP, our input-dependent
visual prompting approach guided by language semantics.
In § 2.1, we provide a detailed exposition of the underly-
ing rationale of our algorithm and its design. § 2.2 illustrates
how LaViP can be transitioned to base-to-novel generaliza-
tion tasks.

Problem Statement. Given a training dataset S =
{(xi,yi)

m
i=1} drawn i.i.d. from distribution D, we seek to

learn a model to effectively assign input vectors x to their
corresponding class labels y, based on the patterns and re-
lationships. We assume xi ∈ RH×W×C is an image and
yi ∈ ∆K−1 is its associated label, with ∆K−1 denoting the
K-simplex. Furthermore, we assume a pretrained VLM with
a visual encoder Φvis : RH×W×C → Rd Φlan : X → Rd is at
our disposal. Here, X ⊆ Rdt denotes the input space of the
language encoder, in the case of CLIP, a subset of integers
defined by its tokenizer.

To achieve this goal, our objective is to generate padding-
style visual prompts with a total of 2pC(H+ W− 2p) pa-
rameters, where C represents channels, H and W denote
height and width, and p is the padding size. Unlike previous
visual prompting methods such as VP (Bahng et al. 2022),
LaViP employs a method where it acquires input-specific
prompts that are grounded in language.

2.1 Language Grounded Visual Prompts
Visual Prompts manipulate the pixel space via learnable pa-
rameters and steer the PTMS in any desired direction. While
VP made the first contribution to this concept in the context
of the pretrained vision model and VLMs, they overlooked
1) the multimodal nature of VLMs, and 2) the semantic di-
versity of images. To address these gaps, we propose LaViP,
a novel approach that capitalizes on these two important ob-
servations. Figure 2 provides an overview of our method.
LaViP synergizes complex semantics in visual inputs and
context knowledge, generating visual prompts, that facilitate
enhanced modality alignment.

As suggested earlier, the visual prompt for a sample x ∈
RH×W×C is defined as ν ∈ R2C(H+W−2p)p, which is padded
around a resized version of x. We mathematically and with
a bit of abuse of notation show this process by:

x̃ = x⊕ ν . (2)
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Figure 2: Overview of our proposed Language-Grounded Visual Prompting (LaViP) for VLMs: LaViP utilizes language-
grounded input-specific visual programs to reprogram the frozen visual encoder of the CLIP model. LaViP scales and shifts
local image encoding and projects global text encoding. The subsequent matrix multiplication of these localized and global
projections fosters a mutual synergy between the two modalities, resulting in the generation of adaptive visual prompts.

For a VLM such as CLIP, typical values of H = W = 224,
and p = 28, which results in generating 2C(H+ W− 2p)p
parameters for VPs.

We aim to facilitate the generation of input-specific vi-
sual prompts by formulating the process through low-rank
matrix decomposition. Specifically, we derive two matrices
A ∈ Ra×r, B ∈ Rr×b and M ∈ RK×r. Here, A acts as
a projection and captures the class semantics of the prob-
lem via the language encoder. Furthermore and as we will
show shortly, A is obtained from the textual description of
all K classes. This implies that after training, our algorithm
can only store A and does not need a language encoder to
operate in its nominal form.

On the other hand, the B component of the visual prompts
is tailored to each image, enabling our method, LaViP, to
dynamically adjust its prompts based on the input image it
receives. This image dependency aligns with the idea that
customized guidance can enhance model performance, as
previously discussed. We argue that, despite sharing identi-
cal class labels, images often exhibit distinct semantic varia-
tions. Relying on universal visual prompts limits the model’s
capacity to adapt effectively to these variations, especially
when extending to unseen classes. The hyper-parameter r
controls the rank of A and B, and can be considered as a
prior in generating visual prompts. Consequently, we repre-
sent the visual prompts as ν = Vec(AB). Here, the notation
Vec(·) denotes the process of reshaping a matrix into a vec-
tor. By adopting this formulation, we reduce the complexity
of requiring ν from the initially required 2C(H+ W− 2p)p
parameters to merely r(a+ b) parameters for each instance.
Learning low-rank decomposition of learnable parameters
has proven more effective and efficient than finetuning all
parameters (Hu et al. 2021). Below, we provide a detailed
explanation of how A and B are generated.

Language Grounded Encoding Following common
practice (Radford et al. 2021; Bahng et al. 2022), for all K

classes of a downstream, we craft textual descriptions by a
template in the form: “a photo of a ⟨class⟩”. Then,
we obtain the language encoding of the text encoder for all
K prompts as Tenc ∈ RK×d using:

Tenc = VLMTextEncoder(prompts) . (3)

To enrich the representation, we define A ≜ MAbase.
Here, Abase is obtained from the semantics Tenc (see
Eq.(3)) as Abase = f(Tenc). The matrix M is learnable,
helping the model to gauge the semantics to be incorporated
as a part of visual prompts.

Image Dependent Encoding Similar in concept, we for-
mulate the image-dependent part of the visual prompts as a
matrix decomposition, albeit with some touch-ups. In par-
ticular, we propose the following form for constructing B:

B ≜ Bscale ⊙Bbase +Bshift , (4)

where Bscale,Bshift ∈ Rr, Bbase ∈ Rb×r and ⊙ indi-
cates scaling function. In Eq.(4), Bbase is a matrix encoding
the visual aspects of the input image and is obtained as:

Bbase = B1 ×B2 , (5)
where B1 and B2 are low-rank decomposition of Bbase

with rank rB . We modulate Bbase with Bscale and Bshift,
which are light-way matrices obtained through simple linear
layers. We opt for light-design choices to accelerate image-
wise transformation in Eq.(4) without introducing signifi-
cant computational overhead and provide a convenient way
to introduce non-linearity in the process.

Algorithm 1 summarizes the steps involved in our
method.

2.2 Generalization from Base to Novel Classes
In the base-to-novel generalization task, the goal is to eval-
uate the generalizability of the model to unseen classes by
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Algorithm 1: LaViP algorithm
Input: Target dataset: D with K classes and X images,
Pretrained model: F ,
Prompt learner : P with trainable parameters.
Parameters:B1,B2,M , Fproj , ScaleB, ShiftB
Output: Visual prompt:ΦW for the target task.

1: Initialize Parameters: B1,B2 and M
2: Create Visual Projection Matrix: Bbase = B1 ×B2

3: Construct K textual prompts: prompts =
{ a photo of a {i}}Ki=1}

4: Encode the image and text prompt:
Tenc, Ienc = F (x, prompts), x ∈ X

5: Project text encoding : Abase = Fproj(Tenc)
6: Control the text knowledge: A = M ×Abase

7: Scaling and shifting of image encoding:
Bscale = ScaleB(Ienc)
Bshift = ShiftB(Ienc)

8: Feature-wise modulation:
B ≜ Bscale ⊙Bbase +Bshift

9: Combine the multimodal knowledge: ΦW = A×B

training on base classes while evaluating on the base and
novel classes separately (Zhou et al. 2022a).

CoOp (Zhou et al. 2022b) learns text prompts neglecting
input differences, therefore failing to generalize well beyond
classes in training data. To alleviate such drawbacks, Co-
CoOp (Zhou et al. 2022a) proposes image-conditioned text
prompts to impute novel class knowledge into prompts, and
MaPLe (Khattak et al. 2023) injects tokens in both the vi-
sion and language branches which efficiently transition the
novel class knowledge into prompts. In contrast to these ap-
proaches, visual prompt-based techniques lack an efficient
means to integrate novel class knowledge.

We address this limitation by embedding novel-class
knowledge into the visual prompts on the fly and without
the need for retraining.The Kronecker product encapsulates
information, eliminating the necessity for additional learn-
ing (Gao, Wang, and Ji 2020; Schwartz, Haley, and Tyers
2022; Demir, Lienen, and Ngonga Ngomo 2022; Jin, Kolda,
and Ward 2021). The underlying idea is to employ the sim-
ilarity between novel classes and base classes to refine A.
Recall that A = MAbase. This can be understood as A
being a linear combination of the semantic information cap-
tured in Abase. In the presence of novel classes, we first en-
code a notion of similarity between base and novel classes
by

TKnovel
enc ⊗A =

 t11A · · · t1dA
...

. . .
...

tKnovel1A · · · tKnoveldA

 , (6)

where ⊗ denotes the Kronecker product. The resulting prod-
uct will exist in R(aKnovel)×(rd), representing the projection
of each novel class on all the base classes. To obtain a com-
pact and coherent embedding representation between base
and novel classes, we transform this class-wise projection
into Ra×Knovel×r×d. Subsequently, we compute the mean

along VLM features(d) and the number of novel classes
(Knovel). The averaging operation serves to align the base
classes with a more unified representation of novel classes.

3 Related Works
In this section, first, we will introduce VLMs and their con-
straints for adapting to new tasks, then we will discuss ex-
isting prompt learning methods, and finally, we will explore
how MR is used in repurposing PTMs for diverse domains
tasks.

3.1 Pretrained Vision-Language Models
VLMs such as CLIP (Radford et al. 2021), ALIGN (Jia et al.
2021), Flamingo(Alayrac et al. 2022), Flava (Singh et al.
2022) and LiT (Zhai et al. 2022) have demonstrated ex-
ceptional performance on a variety of tasks, including few-
shot and zero-shot image recognition. These models learn
to align the vision-language representations on a web-scale
training dataset. Although pretrained models offer a strong
foundation for a wide range of tasks, efficiently adapting
them to downstream tasks is still a challenging research
problem. The difficulty is exacerbated when the downstream
task requires specialized context, interpretable representa-
tions, or access to the model is forbidden (Mokady, Hertz,
and Bermano 2021; Jiang, Liu, and Zheng 2022; Shu et al.
2023; Maus et al. 2023). Furthermore, Kumar et al. showed
finetuning overparameterized models can yield detrimen-
tal results compared to linear probing (i.e., tuning the head
while keeping lower layers frozen) when addressing out-of-
distribution downstream tasks (Kumar et al. 2021).

3.2 Prompt Learning in VLMs
Standard finetuning and linear probing are common ap-
proaches to adapting VLMs to downstream tasks. However,
such finetuning causes adverse effects due to the loss of em-
bedded knowledge and poor adaptation techniques (Worts-
man et al. 2022). There is a significant body of work in
natural language processing (NLP) that focuses on learn-
ing effective prompts to adapt a large language model to
downstream tasks (Sanh et al. 2021; Houlsby et al. 2019;
Brown et al. 2020b; Chen et al. 2022). Inspired by the suc-
cess of prompt learning in NLP, several recent studies ex-
plored prompt learning methods in the context of large-
scale VLMs. Visual Prompt Tuning (VPT) learns the pre-
fix prompts in encoder layers or embedding layer (Jia et al.
2022), while (Khattak et al. 2023) proposes injection of
learnable tokens in both vision and text encoder layers and
couples them with a learnable function. Visual Prompting
(VP) investigated input pixel space prompt tuning for pre-
trained vision and VLMs (Bahng et al. 2022). VP learns a
fixed input agnostic perturbation and attaches it to the origi-
nal images, hence adapting a pretrained model to new tasks
without modifying the model parameters. Bar et al. uses the
inpainting method as visual prompting. Context Optimiza-
tion (CoOp) (Zhou et al. 2022b) optimizes a set of context
vectors for the text encoder of CLIP, while Conditional Con-
text Optimization (CoCoOp) (Zhou et al. 2022a) generalizes
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Method Caltech Pets Cars Flowers Food Aircraft SUN DTD EuroSAT RESISC CLEVR UCF Avg. Win

CLIP 89.3 88.9 65.6 70.4 89.2 27.1 65.2 46.0 54.1 65.5 23.4 69.8 62.75 1
VP 94.2 90.2 66.9 86.9 81.8 31.8 67.1 61.9 90.8 81.4 40.8 74.2 71.26 1

LaViP (Ours) 95.0 91.2 77.8 96.3 82.5 43.2 71.1 68.8 86.1 85.6 46.5 81.3 74.59 10

Table 1: Comparison with visual prompting method on few-shot transfer learning. LaViP learns language-driven input-aware
visual prompts and exhibits robust performance on 10 in 12 recognition datasets with training accelerated by more than 3×.
Win indicates how many cases LaViP outperforms previous methods.

CoOp to unseen classes by conditioning the text prompt op-
timization on image instances. (Lin et al. 2023) suggests
cross-modal adaptation by repurposing class names as one-
shot training examples, (Lu et al. 2022) proposes an en-
semble of learnable prompts. (Menon and Vondrick 2023;
Zhang et al. 2023; Dunlap et al. 2022) showcase how lan-
guage can be effectively employed to strengthen the adapta-
tion of pretrained vision models to novel domains.

We argue that generating input-agnostic prompts with
unimodal knowledge is a suboptimal approach. Consider-
ing the large-scale pretraining of VLMs, prompting meth-
ods should adeptly utilize the embedded multimodal knowl-
edge to efficiently address new tasks. Further, we under-
score the importance of prompting methods being agnostic
to the underlying architecture of PTMs. For instance, VPT
and MaPLe have successfully adapted ViT encoders through
prefix learning. However, these methods lack comprehensive
evidence of how their solutions perform across diverse back-
bone architectures.

3.3 Model Reprogramming

By deriving motivation from adversarial attacks Elsayed,
Goodfellow, and Sohl-Dickstein (2018) proposed Adversar-
ial Reprogramming(AR) to repurpose a pretrained model
to perform on a new domain. This led to a new learning
paradigm called model reprogramming (MR) for transfer
learning. We provide some notable examples below. Vinod,
Chen, and Das (2020) repurposed a language model to pre-
dict biochemical sequences; Tsai, Chen, and Ho (2020) pro-
posed BAR to reprogram an ImageNet model for complex
bio-medical under a black-box setting; Yen et al. (2021)
used an attention-based RNN speech model for low-resource
spoken command recognition; Yang, Tsai, and Chen (2021)
reprogrammed a speech model for time-series prediction and
Neekhara et al. (2022) reprogrammed a vision model to clas-
sify text sentences and DNA sequences. (Oh et al. 2023)
extended BAR by generating input-aware visual prompts
through an external encoder-decoder model for limited data
recognition. To the best of our knowledge, we are pioneering
to design of language-grounded visual prompts to reprogram
the visual encoder of a VLM. In contrast to previous MR
methods that primarily focused on repurposing PTMs using
unimodality, our contribution lies in harnessing the power of
multimodality to enhance context knowledge during adapta-
tion.

4 Results
We first provide the experimental setup in § 4.1. Next, § 4.2
presents the comparison between LaViP and previous meth-
ods. § 4.3 provides the result for the base-to-novel general-
ization task and § 4.4 provides the results for whole-dataset
training.

4.1 Experimental Setup
We extensively evaluate LaViP capability on 12 benchmark
datasets (refer Appendix B.32) under three distinct scenar-
ios. First, its transferability in limited data settings is as-
sessed through few-shot learning, where it learns from 16-
shots for training and 4-shots for validation. Next, its gen-
eralizability is examined by evaluating its ability to learn
from base classes and apply that knowledge to unseen novel
classes. Finally, we use the full dataset for training, testing
and validation. In this paper, we use CLIP ViT-B/16 (Rad-
ford et al. 2021) for few-shot learning and base-to-novel
generalization, and CLIP ViT-B/32 for transfer learning as
the pretrained VL model due to its strong zero-shot gener-
alization capability. More details are provided in Appendix
B2.

4.2 Few-Shot Learning
Table 1 presents the performance of LaViP in a few-shot
transfer setting across 12 recognition datasets. We compare
our results against CLIP Zero-shot (ZS), and the previous
pixel-space reprogramming method. LaViP outperforms ZS
on 11 datasets, exhibiting a substantial gain of 11.84%. Ad-
ditionally, when comparing to VP (Bahng et al. 2022) on
11 datasets, achieving a gain of 3.3% in performance and
more than a 3× faster convergence. Furthermore, Table 1
shows that when the domain shifts from generic to rare con-
cepts, LaViP consistently demonstrates higher performance
in comparison to CLIP. This highlights the effectiveness
of incorporating language guidance in enhancing modality
alignment, particularly in cases where concepts can be ex-
plicitly described.

4.3 Base-to-Novel Generalization
Table 2 presents the performance of LaViP in the base-to-
novel generalization setting, evaluated across 10 recognition
datasets. We compare LaViP against a lineup of benchmarks,
including CLIP Zero-shot(ZS), CoOP, CoCoOp and MaPLe.
Relative to CoCoOp, LaViP exhibits a stronger performance

2Appendices available at: https://arxiv.org/abs/2312.10945
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CLIP CoOp CoCoOp LaViP

Dataset Base Novel HM Base Novel HM Base Novel HM Base Novel HM

Caltech101 96.84 94.00 95.40 98.00 89.81 93.73 97.96 93.81 95.84 97.63 93.45 95.49
DTD 53.24 59.90 56.37 79.44 41.18 54.24 77.01 56.00 64.85 80.05 58.01 67.27
EuroSAT 56.48 64.05 60.03 92.19 54.74 68.69 87.49 60.04 71.21 92.53 82.31 87.12
FGVCAircraft 27.19 36.29 31.09 40.44 22.30 28.75 33.41 23.71 27.74 37.25 34.03 35.57
Food101 90.10 91.22 90.66 88.33 82.26 85.19 90.70 91.29 90.99 86.19 91.28 88.66
OxfordPets 91.17 97.26 94.12 93.67 95.29 94.47 95.20 97.69 96.43 92.45 97.22 94.78
SUN397 69.36 75.35 72.23 80.60 65.89 72.51 79.74 76.86 78.27 76.47 73.25 74.82
Flowers102 72.08 77.80 74.83 97.60 59.67 74.06 94.87 71.75 81.71 96.96 76.34 85.25
UCF101 70.53 77.50 73.85 84.69 56.05 67.46 82.33 73.45 77.64 83.83 76.46 79.97
StanfordCars 63.37 74.89 68.65 78.12 60.40 68.13 70.49 73.59 72.01 73.63 74.63 74.13

Average 69.04 74.83 71.72 83.31 62.76 70.72 80.92 71.82 75.67 81.7 75.70 78.31

Table 2: Performance of LaViP on base-to-novel generalization across 10 recognition datasets. LaViP demonstrates competitive
generalization performance over CoOp and CoCoOp with an absolute gain of 2.64%. HM: The harmonic mean of base class
acc. and novel class acc.

Method Pets Flowers Food SUN DTD EuroSAT RESISC CLEVR UCF Avg.

ZS 88.3 67.4 85.2 62.6 44.4 42.2 56.6 25.8 65.2 59.75
CLIP + LP 89.2 96.9 84.6 75.0 74.6 95.3 92.3 66.0 83.3 84.13
VP 85.0 70.3 78.9 60.6 57.1 96.4 84.5 81.4 66.1 75.72

LaViP (Ours) 89.6 96.7 83.2 71.5 72.9 96.3 91.0 67.0 81.9 80.99

Table 3: Performance across 9 recognition dataset using CLIP Zero-shot(ZS), Linear Probe(LP), Visual Prompting(VP) and
LaViP with ViT-B/32 backbone.

across both base and novel concepts, yielding absolute gains
of 0.78% and 3.88% respectively. With the context-aware
knowledge diffused through Kronecker product, LaViP as
a strong competitor surpasses CoCoOp in 6/10 datasets and
slightly trails in two datasets. When taking into account both
base and novel classes, LaViP shows an absolute average
gain of with gain of 2.64% compared to CoOp and CoCoOp.

MaPLe (Khattak et al. 2023), the current SOTA has
outperformed in many studied datasets. However, unlike
MaPLe, other algorithms maintain the original structure of
the foundational model, thus enabling adaptation via APIs
and cases where for ethical constraints, accessing the struc-
ture and weights of the foundation model is not possible.
Without any structural adaptation of the pretrained model,
LaViP trailed MaPLe by only 0.44% in HM, showcasing a
competitive performance. It even marginally outperformed
in classifying novel classes. In comparison with CLIP on
novel classes, CoCoOp improves 3/10 classes, leading to
a decrease in the average novel accuracy from 74.83% to
71.82%. LaViP only improves accuracy in 2 out of 10
datasets compared to CLIP for new classes. However, it
positively impacts the average accuracy, elevating it from
74.83% to 75.70%. This sustains its position as a robust
competitor. CoOp exhibits limited generalization capability
to novel classes, a deficiency that CoCoOp strives to ad-
dress by contextualizing text prompts based on image in-
stances. It shows substantial improvement in novel class

recognition. However, it manages to outperform 2/10 base
classes with a decrease in average performance of 2.39%.
LaViP’s language integration exhibits competitive perfor-
mance in the base class, with only a 1.4% decrease in av-
erage performance. Despite marginal improvements com-
pared to CoCoOp, it is important to differentiate between
high-dimensional, complex image data and structured tex-
tual data. This divergence affects learning speed and ef-
fectiveness, especially with limited data. Given the com-
plexities inherent in the visual domain, an approach must
be parameter-efficient and context-aware. This dual require-
ment aligns with the fundamental characteristic of LaViP.

Moreover, from Table 2 we can conclude that as the do-
main shift increases from the pretraining dataset, LaViP ex-
hibits increasing performance compared to CLIP, CoOp and
CoCoOp. This emphasizes the impact of language context
in designing visual prompts.

4.4 Transfer Learning
The summarized findings of transfer learning are presented
in Table 3. To provide a comprehensive evaluation, we draw
comparisons between our results and those of CLIP Zero-
shot (ZS), CLIP Linear Probe (LP), and VP, all using the
ViT-B/32 CLIP model with the same hyperparameters as
those used in few-shot learning. It indicates that LaViP con-
sistently outperforms VP by a notably wider margin across
7/9 recognition datasets. This substantial improvement is
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Method Caltech Pets Cars Flowers Food Aircraft DTD RESISC UCF SUN Avg.

ZS(CLIP) 89.3 88.9 65.6 70.4 89.2 27.1 46.0 65.5 69.8 62.6 67.44
VP w/SPSA-GC 89.4 87.1 56.6 67.0 80.4 23.8 44.5 61.3 64.6 61.2 63.59
BAR 93.8 88.6 63.0 71.2 84.5 24.5 47.0 65.3 64.2 62.4 66.45
BlackVIP 93.7 89.7 65.6 70.6 86.6 25.0 45.2 64.5 69.1 64.7 67.47

BlackLaViP (Ours) 92.3 89.3 63.3 68.8 84.6 23.9 46.1 61.8 65.6 62.2 65.77
% 98.5 99.6 96.5 97.5 97.7 95.6 101.2 95.8 95.1 96.1 97.49

Table 4: Comparison with state-of-the-art methods on few-shot transfer learning in a black-box setting. % indicates percentage
of BlackVIP score achieved with more than 15× faster optimization.

coupled with an optimization process that is three times
more efficient. In contrast with the results obtained from
CLIP Linear Probe, VP shows enhancement in 2 out of 9
datasets, albeit accompanied by an average accuracy de-
crease of 8.91%. Comparatively, while LaViP only enhances
performance in 1 out of 9 datasets, it achieves an average
accuracy drop of 3.14%. These observations highlight the
modality alignment enhanced by the LaViP.

5 Ablation Studies
5.1 Learning in Gradient-Free Environment
We adapt our algorithm in a gradient-free environment to
understand the effectiveness of language integration. We
proceed to evaluate BlackLaViP, the gradient-free vari-
ant of LaViP, by employing the SPSA algorithm (Spall
1992, 2000). Table 4 displays the average performance of
BlackLaViP on 10 recognition datasets, using a few-shot
approach. BlackVIP (Oh et al. 2023), the current SOTA
uses SPSA with an external model to generate input-aware
prompts. Though BlackLaViP doesn’t outperform Black-
VIP, an intriguing observation emerges from our experiment.
Remarkably, BlackLaViP attains 95% of the performance of
BlackVIP with a convergence rate that is over 15× faster
(Appendix C2).

5.2 Impact of Hyperparameters (a, b, r)
VP requires generating a padding of size θ =
2pC(H+ W− 2p) as the visual prompt. We propose a
low-rank formulation to generate the prompt, which effi-
ciently reduces the generator size by a factor of 4 when
r = 32, 2 when r = 64, and 1.2 when r = 96. The
parameter r (rank of matrices in generating the prompt) can
be understood as an inductive bias, regularizing the design.
Empirically, we observed that LaViP performed robustly
if r was chosen within a reasonable range (not too small,
e.g. r ∈ [16, 96]). Furthermore, LaVIP robustly performs
for varying (a, b) which creates padding of size p = 20 to
p = 50. Additional results are provided in Appendix D2.

6 Discussion
LaViP, a novel approach to visual prompting, harnesses the
power of language to enhance pretrained models without
the need for invasive finetuning. By merging textual knowl-
edge into input prompts, LaViP steers models towards de-

sired tasks, surpassing the limitations of previous methods
in both accuracy and optimization. The few-shot capabil-
ity is a direct result of preserving the foundation model. By
aligning image and text via visual prompting and without
altering the latent space of the foundation model, we capi-
talize on the generalization capability of the model. Its ver-
satility shines across diverse tasks, requiring no individual
finetuning efforts, and its privacy-preserving nature makes
it ideal for interacting with APIs and proprietary software.
The reprogramming methodology studied in this can work
to provide increased user control over bias and fairness is-
sues in pretraining. However, low-resolution images and
highly diverse datasets present challenges. We hypothesize
that the observed characteristic is due to context tokens fail-
ing to grasp semantic content or capture the full spectrum
of classes. LaViP’s performance is inherently influenced by
the context tokens present in the prompt template. This nat-
urally raises the question: What advantages does learning
text prompts offer compared to employing manually crafted
templates in LaViP?. Future research could delve into the
direction of learning multimodal prompts with mutual syn-
ergy.

7 Conclusion
Adaptating large-scale VLMs(e.g. CLIP (Radford et al.
2021)) for new tasks is a challenging research problem due
to a large number of tunable parameters. Despite stemming
from distinct motivation, prompt learning and model re-
programming provide an efficient and scalable approach to
drive VLMs to downstream tasks. To this end, existing visual
prompting approaches learn input-agnostic prompts through
unimodal knowledge. The perceptual diversity of the im-
age domain makes a difficult to repurpose visual encoders
in VLMs compared to text encoders, and these approaches
require an external world model to provide context or a
large number of iterations. Our work counters these assump-
tions by leveraging embedded multimodal knowledge within
VLMs. Our approach seamlessly integrates these multi-
modal representations to generate adaptable visual prompts,
thereby enhancing performance without compromising. Fur-
ther, we propose an efficient strategy for generalizing visual
prompting methods to unseen classes. Our method improves
the few-shot transfer learning, generalization towards novel
concepts and full-set transfer learning with varying domain
shifts compared to the pretraining dataset.
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