
Block Image Compressive Sensing with Local and Global Information Interaction

Xiaoyu Kong1, Yongyong Chen1∗, Feng Zheng2, Zhenyu He1*

1 Harbin Institute of Technology (Shenzhen)
2 Southern University of Science and Technology

{xiaoykong15,YongyongChen.cn, zfeng02}@gmail.com, zhenyuhe@hit.edu.cn

Abstract

Block image compressive sensing methods, which divide a
single image into small blocks for efficient sampling and
reconstruction, have achieved significant success. However,
these methods process each block locally and thus disregard
the global communication among different blocks in the re-
construction step. Existing methods have attempted to ad-
dress this issue with local filters or by directly reconstruct-
ing the entire image, but they have only achieved insufficient
communication among adjacent pixels or bypassed the prob-
lem. To directly confront the communication problem among
blocks and effectively resolve it, we propose a novel approach
called Block Reconstruction with Blocks’ Communication
Network (BRBCN). BRBCN focuses on both local and global
information, while further taking their interactions into ac-
count. Specifically, BRBCN comprises dual CNN and Trans-
former architectures, in which CNN is used to reconstruct
each block for powerful local processing and Transformer
is used to calculate the global communication among all
the blocks. Moreover, we propose a global-to-local module
(G2L) and a local-to-global module (L2G) to effectively in-
tegrate the representations of CNN and Transformer, with
which our BRBCN network realizes the bidirectional interac-
tion between local and global information. Extensive experi-
ments show our BRBCN method outperforms existing state-
of-the-art methods by a large margin. The code is available at
https://github.com/XYkong-CS/BRBCN

Introduction
Compressive Sensing (CS) (Donoho 2006) is a signal pro-
cessing technique capable of recovering high-dimensional
signals from limited measurements with high probabil-
ity. Demonstrating the potential for enhancing sampling
speed and reducing storage and transmission costs, CS has
aroused significant interest in various applications like med-
ical imaging (Michailovich, Rathi, and Dolui 2011), single-
pixel imaging (Duarte et al. 2008), image encryption (Li,
Zhang, and Xie 2019), and snapshot compressive imag-
ing (Meng et al. 2021; Wu, Zhang, and Mou 2021).

To handle arbitrary image resolution with fast processing,
block compressive sensing imaging (CSI) divides the im-
age into small non-overlapping blocks and samples and re-
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Figure 1: The procedure of block CSI. The whole image is
split into non-overlapping blocks and is reconstructed with
different strategies. (a): Block-based reconstruction with-
out interaction among blocks. (b): Block-based reconstruc-
tion with local filtering operations, lacking sufficient blocks
communication. (c): Image-based reconstruction with global
concern, lacking inner-block concern. (d): Block-based re-
construction with local and global interaction.

constructs each block independently (Gan 2007) as shown
in Fig. 1. Traditional CSI methods (Dong et al. 2014; Gao
et al. 2015) imported different priors and reconstructed
the original image by non-linear iterative algorithms (Boyd
et al. 2011; Donoho, Maleki, and Montanari 2009). More-
over, some researchers extended these traditional methods
into deep learning, referred to deep unfolding networks
(DUNs) (Fan, Lian, and Quan 2022; Yang et al. 2018; Zhang
and Ghanem 2018; Zhang, Zhao, and Gao 2020). However,
as depicted in Fig. 1(a), these algorithms reconstruct each
block separately, thereby only focusing on local information.

To involve global information, there are two popular so-
lutions: block-based methods with post-processing of local
filters and image-based methods. The former added a lo-
cal filter acting on the whole image after block reconstruc-
tion (Gan 2007; Zhang et al. 2020) as shown in Fig. 1(b).
Meanwhile, image-based methods (Shi et al. 2019; Song,
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Chen, and Zhang 2021) reconstruct the image on a global
level as shown in Fig. 1(c). Although they successfully re-
lieved the blocking artifacts, local filters brought insufficient
global information and the image-based methods ignored
the local information, thus causing a decline in reconstruc-
tion quality. Ideally, an effective approach would incorpo-
rate both local pattern representations inner each block as
well as the global information inter blocks, yet current re-
search tends to focus on only one or the other. Moreover,
appropriately integrating these types of information remains
a challenging and unexplored area of study.

In this paper, we propose a Block Reconstruction with
Blocks’ Communication Network (BRBCN). Our BRBCN
is in DUN framework, as shown in Fig. 2, and it facilitates
simultaneous local reconstruction and global communica-
tion in each stage. The reconstruction component comprises
two branches: a CNN to process each block locally, and a
Transformer for computing global communication between
all blocks. Moreover, how block representation is fused with
blocks’ communication needs to design carefully, as a well-
executed fusion can result in a mutually beneficial outcome,
while an ill-conceived approach might impede progress. To
address this, we implement the CNN and Transformer in
parallel and propose a global-to-local (G2L) module and
a local-to-global (L2G) module, realizing an effective bi-
directional interaction. As shown in Fig. 1(d), our BRBCN
concurrently considers both local and global information,
enabling detailed and global image reconstruction. Our main
contributions are summarized as follows:

• We propose BRBCN for block-based compressive sens-
ing, leveraging full interaction between local and global
information to enhance block reconstruction quality.

• We propose local-to-global and global-to-local modules
to establish bi-directional interaction between local block
representation and global communication information.

• Extensive experiments demonstrate that our approach
surpasses existing state-of-the-art networks in quantita-
tive evaluation and visual comparison, particularly in the
low sampling ratio which has practical values.

Related Work
Block-based Block Compressive Sensing
Block CSI (Gan 2007; Mousavi, Patel, and Baraniuk 2015)
was proposed to address the slow sampling and reconstruc-
tion stemming from the large measurement matrix of high-
resolution images. It divided the image into small non-
overlapping blocks and samples them independently. Some
traditional methods (Li et al. 2013; Zhang, Zhao, and Gao
2014) introduced extra regularizers and some deep meth-
ods (Kulkarni et al. 2016; Mousavi and Baraniuk 2017) used
DNN to improve the block reconstruction quality. Moreover,
some researches (Gregor and LeCun 2010; Metzler, Maleki,
and Baraniuk 2016) handled the CS problem from the per-
spective of denoising. To further improve the reconstruc-
tion quality, some methods combined deep learning with
traditional non-linear iterative algorithms such as ISTA-
Net (Zhang and Ghanem 2018) and ADMM-CSNet (Yang

et al. 2018). The above schemes with theoretical conver-
gence guarantee and local concern, however, ignored the in-
formation contained among blocks. To mitigate this issue,
AMP-Net (Zhang et al. 2020) designed a block denoising
procedure followed by some CNN layers on the whole im-
age. However, these solutions only focus on realizing the
interaction at the boundary between the adjacent blocks.

Image-based Block Compressive Sensing
The image-based methods utilized deep networks to map the
corrupted image into a clean one. Unlike the traditional op-
timization algorithms on which block-based methods rely,
deep networks offered greater flexibility. This means that
block-wise measurements don’t necessarily need to be re-
covered block by block. CSNet (Shi et al. 2019) initialized
the entire image from the block measurements and then fed
it into a CNN to directly obtain the whole image recon-
struction result. OPINE-Net (Zhang, Zhao, and Gao 2020)
and MADUN (Song, Chen, and Zhang 2021) used deep net-
works as deep prior, enabling their models to be trained and
tested on both blocks and images. Although these methods
avoided the problem of block isolation, they put little atten-
tion on specific inner-block information.

Fusion of CNN and Transformer
CNNs (Krizhevsky, Sutskever, and Hinton 2012) have se-
cured a dominant position in computer vision owing to their
powerful local representation ability. Meanwhile, driven by
the success of the Transformer (Vaswani et al. 2017) in nat-
ural language processing, Vision Transformer (ViT) (Doso-
vitskiy et al. 2020) has shown the effectiveness of atten-
tion mechanism for image processing. Recent works (Chen
et al. 2022a,b; Mehta and Rastegari 2021; Wu et al. 2021)
have shown the benefits of combining CNNs with ViT.
BoTNet (Srinivas et al. 2021) used self-attention blocks in
ResNet (He et al. 2016), enhancing both object detection
and segmentation performance. Mobile-Former (Chen et al.
2022a) and MobileViT (Mehta and Rastegari 2021) success-
fully devised lightweight models for image processing back-
bones. These recent models have highlighted the potential
of utilizing CNNs for local processing and Transformers for
encoding global interactions. This inspiration led us to in-
corporate them into block CSI, enabling simultaneous pro-
cessing of inner-block patterns and inter-block communi-
cation. However, existing CNN and Transformer combina-
tion methods were typically intended for the entire image.
The effective fusion of block representations obtained by
CNNs and the global information acquired by Transformers
remains unexplored and presents a challenging aspect.

Methods
Preliminary
The goal of CSI is to recover the original image from its lin-
ear measurements. Mathematically, given a linear measure-
ment Y , the original image X can be recovered by solving
the following optimization problem:

argmin
X

1

2
∥ΦX − Y ∥22 + λG(X), (1)
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Figure 2: The pipeline of our proposed BRBCN. BRBCN takes the block measurements as input and outputs the recovery
image by concatenating the reconstructed blocks. The reconstruction includes K stages and the block reconstruction with
blocks communication happens within each stage.

where Φ is the measurement matrix and G(X) is the reg-
ularization term with a weight λ. To solve this optimiza-
tion problem, DUNs (Yang et al. 2018; Zhang and Ghanem
2018) unroll the network with a gradient descent (GD) :
Rk = Xk−1 − ρΦT (ΦXk−1 − Y ) and a proximal mapping
: Xk = Prox(Rk).

For efficient sample and reconstruction, block CSI splits
the image into non-overlapping blocks to sample and recon-
struct independently. However, the block-wise strategy ig-
nores the communication among different blocks. In this pa-
per, we propose BRBCN, which focuses on improving the
block reconstruction quality with the help of interaction be-
tween local and global information.

Overview of BRBCN

The overall architecture of our BRBCN is shown in Fig. 2.
BRBCN takes the block measurements {yi}ni=1 ∈ Rm of
image blocks {xi}ni=1 ∈ RB×B as input and outputs the
recovery X , where m is the length of the measurements,
B ×B is the block size, and m

B×B is the sampling ratio.
Before the reconstruction step, an initialization step con-

verts 1D measurements into 2D images. For easy implemen-
tation, the initialized blocks {x0

i }ni=1 are obtained via the
transposed sampling matrix ΦT . Meanwhile, for the input
of the following Transformer architecture, tokens {t0i }ni=1 ∈
RCT are initialized from the flattened block initialization
with a fully connected layer projector, where CT is the to-
kens dimension. The number of blocks and tokens is the
same, which means they are in one-to-one correspondence.

As shown in Fig. 2, the reconstruction part follows the
general DUN framework with several repeated stages whose
inputs are {x0

i }ni=1. At the beginning of each stage k, since
the GD step is the trivial solution for the fidelity term in
Eq. (1), we keep the use of it and set the step size ρ as a

stage-wise trainable parameter, which can be written as:

rki = xk−1
i − ρkΦT (Φxk−1

i − yi), (2)

whose input {xk−1
i }ni=1 is the output of the last (k − 1)-

th stage. Instead of processing each block separately in the
Prox operator, BRBCN utilizes the communication among
all the blocks to help reconstruct each block.

Reconstruction with Information Interaction
The key points of this section can be divided into four parts:
reconstruct each block’s pattern locally, make full global
communication among blocks, use the global information
to help block reconstruction, and make the local represen-
tation feedback to the global communication. Specifically,
given the outputs {rki }ni=1 from GD, the reconstruction is
conducted within the following two steps:

xk
i = IBR(rki , G2L(rki , t

k−1
i )), (3)

tki = IBC(tk−1, L2G(tk−1
i , xk

i )), (4)

where the inner-block reconstruction (IBR) module, the
inter-block communication (IBC) module, the global-to-
local (G2L) module, and the local-to-global (L2G) mod-
ule correspond to the four parts mentioned above. The four
parts are closely linked together and, for a better understand-
ing, we will first introduce the IBR and IBC because both
G2L and L2G involve their intermediate products.

Local inner-block reconstruction module. Compared
with the whole image reconstruction, the reconstruction of
each block is also important since the block reconstructions
are related to corresponding block measurements. There-
fore, instead of directly recovering the concatenated image,
IBR module follows the block-wise strategy with CNN ar-
chitecture which has a good ability for local processing.
IBR begins with a CNN projector P to project the single-
channel {rki }ni=1 into multi-channel feature map Fi enc 0. In
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the end, an inverse-projector G is used to project the fea-
ture map back into a single-channel image. Between them,
an UNet architecture is adopted to extract and reconstruct
the block representation, with representing encoder features
as {Fi enc 1, Fi enc 2}, middle feature as Fi dec 0, and de-
coder features as {Fi dec 1, Fi dec 2} as shown in Fig. 2. Sim-
ilar to many UNet-based structures (Lin et al. 2021; Mou,
Wang, and Zhang 2022), multiple bypasses are added to
avoid information loss due to the downsampling operation.
The multi-scale IBR can effectively extract the representa-
tion of each block as much as possible because the block
size B is always small, for example, 32.

Global inter-block communication module. We argue
that global information among different blocks is another
important factor in block CSI. Compared with the limited re-
ceptive field of CNN, Transformer has full global sense and
is therefore more suitable for global information modelling.
Thus, IBC builds the communication among all blocks
with Transformer for global communication encoding. No-
tice that we initialize a group of tokens in the initialization
step, IBC updates these tokens within each stage with three
standard ViT blocks (Dosovitskiy et al. 2020) which con-
tain a multi-head self-attention operation and FFN opera-
tion, representing as {T k

i 1, T
k
i 2, T

k
i 3} and tki = T k

i 3.

Global-to-local module. To utilize the inter-block com-
munication information to help the inner-block reconstruc-
tion, multiple G2L modules are inserted into the encoder
of IBR as shown in Fig. 2. Unlike recent works of CNN-
Transformer fusion methods (Chen et al. 2022a,b) in which
both CNN and Transformer representations come from the
whole image, BRBCN focuses on passing the global infor-
mation into each block. Given the token tk−1

i ∈ RCT for the
i-th block, it is first repeated into the same resolution as the
block encoder feature {Fi enc n}2n=0 ∈ RCenc×W×H and
then concatenated together to form the feature fusion maps
∈ R(Cenc+CT )×W×H . Then, we use convolution layers with
ReLU activation to extract the fused features. In this man-
ner, each pixel of the block feature maps can have a sense
of the entire global information brought by the token. Mean-
while, with multi-scale interaction, the information passing
from global to local can be more sufficient.

Local-to-global module. Although the Transformer-
based IBC module can update each token with global com-
munication, it lacks local attention and image inductive bias.
To relieve these problems, L2G passes the local information
extracted by CNN to strengthen the representation of tokens.
As shown in Fig. 2, the L2G module contains two 1 × 1
convolution layers with a global average pooling to fuse the
decoder feature {Fi dec n}2n=0 with the i-th token. In this
way, the latest pattern activation contained in each block
can be always passed to each token timely. Moreover, the
tki contains the multi-scale information before the inverse-
projection G which may cause serve information loss due
to the channel reduction. This information is then provided
to the (k + 1)-th stage the with G2L module, which means
the L2G module also works as a cross-stage connection to
compensate for the information loss within iterations.

Loss Function
Given the training data {Xj}Nd

j=1, BRBCN takes image Xj

as input and outputs the reconstructed result with a trainable
sampling matrix Φ. Our network is trained in an end-to-end
way with the commonly used L2 loss function as:

Lrec =
1

Nd

Nd∑
j=1

∥X∗
j −Xj∥22, (5)

where X∗
j = Cat(xK

1 , xK
2 , ..., xK

n ) is the recovered image
with the concatenation operation Cat() and K denotes the
number of iterations.

Enhanced version of BRBCN: BRBCN+

Although BRBCN greatly strengthens the interaction be-
tween local and global representations, the global repre-
sentation obtained by Transformer only focuses on the tex-
ture information but has a weak sense of the position in-
formation. However, the relation between one block and its
all adjacent blocks is also important, without which would
lead to blocking artifacts. To this end, the enhanced version
BRBCN+ is proposed by adding an image-level IBR to
process the whole image which is concatenated with the re-
covered blocks {xK

i }ni=1. Notice that the extra IBR is in-
serted only once to the end of BRBCN, instead of being
added in each stage which may greatly smooth the fine-
grained details in the block reconstruction.

Experiments
Implementation Details
Since Transformer is data-hungry, We use ImageNet to train
BRBCN and all images are converted to gray-scale and re-
sized into 256× 256. The training epochs and batch size are
three and eight, respectively. The Adam optimization strat-
egy is applied, with a learning rate of 10−4 for the early two
epochs and then reduced to 10−5 for the last epoch. Five
sampling ratios are investigated, including low ratios 0.01
and 0.04, middle ratios 0.1 and 0.25, and a higher ratio 0.5.
The default iteration time K and block size B are set to be
8 and 32. The tokens dimension CT is set as 128.

Two gray-scale datasets including Set14 (14 im-
ages) (Zeyde, Elad, and Protter 2010) and BSD68 (68 im-
ages) (Sapiro 2008) and one color dataset Waterloo (4744
images) (Ma et al. 2016) are used. The CS reconstruction
accuracies on all the datasets are evaluated with peak signal-
to-noise ratio (PSNR) and structure similarity index measure
(SSIM). In general, the reconstructed images with higher
PSNR and SSIM values denote better reconstruction perfor-
mance. We implement the model using PyTorch, and train
and test it on Nvidia RTX 3090 GPU.

Comparison with State-of-the-arts Methods
We compare the proposed BRBCN with six state-
of-the-art CSI methods, including ISTA-Net+(Zhang
and Ghanem 2018), CSNet+(Shi et al. 2019), AMP-
Net(Zhang et al. 2020), OPINE-Net+(Zhang, Zhao, and
Gao 2020), MADUN(Song, Chen, and Zhang 2021), and
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Sampling ratioDatasets Methods 0.01 0.04 0.10 0.25 0.5 avg

Set14

ISTA-Net+ 18.26/0.4000 22.07/0.5687 25.92/0.7268 30.50/0.8688 35.87/0.9481 26.52/0.7025
OPINE-Net+ 21.39/0.5243 25.47/0.7110 28.67/0.8279 32.98/0.9186 37.98/0.9661 29.39/0.7896

CSNet+ 21.36/0.5189 24.81/0.6930 27.62/0.8152 31.74/0.9112 36.53/0.9625 28.41/0.7802
AMP-Net 21.66/0.5412 25.44/0.6990 28.68/0.8168 33.10/0.9134 38.14/0.9649 29.40/0.7871
MADUN 21.49/0.5376 25.45/0.7235 28.85/0.8424 33.15/0.9265 36.95/0.9625 29.18/0.7985
DGUNet+ 21.87/0.5411 25.87/0.7249 29.35/0.8455 33.70/0.9294 38.83/0.9709 29.92/0.8024
BRBCN 21.87/0.5332 26.17/0.7317 29.51/0.8460 34.28/0.9328 39.56/0.9732 30.28/0.8034

BRBCN+ 22.39/0.5606 26.43/0.7395 29.57/0.8486 34.35/0.9335 39.44/0.9731 30.44/0.8111

BSD68

ISTA-Net+ 19.18/0.4201 22.34/0.5573 25.30/0.7001 29.31/0.8507 34.01/0.9421 26.03/0.6941
OPINE-Net+ 21.88/0.5162 25.16/0.6841 27.81/0.8040 31.50/0.9062 36.32/0.9658 28.53/0.7753

CSNet+ 22.05/0.5180 24.91/0.6783 27.16/0.7990 30.53/0.9046 34.89/0.9637 27.91/0.7727
AMP-Net 22.28/0.5376 25.20/0.6764 27.86/0.7929 31.72/0.9047 36.81/0.9679 28.77/0.7759
MADUN 22.20/0.5306 25.22/0.6973 27.92/0.8200 31.74/0.9186 35.22/0.9633 28.46/0.7860
DGUNet+ 22.13/0.5215 25.45/0.6986 28.13/0.8165 31.97/0.9158 37.04/0.9718 28.94/0.7848
BRBCN 22.54/0.5267 25.59/0.7000 28.22/0.8178 32.16/0.9182 37.24/0.9724 29.15/0.7870

BRBCN+ 22.81/0.5431 25.74/0.7066 28.29/0.8206 32.23/0.9193 37.19/0.9724 29.25/0.7924

Waterloo

ISTA-Net+ 18.94/0.4780 23.05/0.6351 27.17/0.7832 32.30/0.9044 37.80/0.9647 27.85/0.7531
OPINE-Net+ 22.28/0.6065 26.60/0.7766 30.26/0.8756 34.87/0.9439 40.20/0.9790 30.84/0.8362

CSNet+ 22.09/0.5853 25.87/0.7519 28.85/0.8605 32.65/0.9303 36.82/0.9668 29.26/0.8190
AMP-Net 22.69/0.6196 26.64/0.7806 30.09/0.8775 34.79/0.9473 40.10/0.9807 30.86/0.8411
MADUN 22.45/0.6184 26.54/0.7886 30.21/0.8870 34.96/0.9518 38.80/0.9769 30.49/0.8445
DGUNet+ 22.58/0.6127 26.90/0.7878 30.67/0.8862 35.20/0.9499 40.70/0.9821 31.21/0.8437
BRBCN 22.88/0.6180 27.35/0.7975 30.97/0.8911 35.93/0.9549 41.63/0.9844 31.75/0.8492

BRBCN+ 23.40/0.6433 27.47/0.8016 31.09/0.8933 35.93/0.9548 41.42/0.9840 31.86/0.8552

Table 1: Comparison of average PSNR/SSIM results on gray-scale datasets Set14 and BSD68 and color dataset Waterloo. The
best results are in bold while the second best results are marked with underline.

DGUNet+(Mou, Wang, and Zhang 2022). The implemen-
tation codes are downloaded from the author’s websites and
run with the defaulting settings.

Quantitative analysis. Tab. 1 reports the comparison re-
sults on two gray-scale datasets. The results show that BR-
BCN and BRBCN+ outperform all methods at each sam-
pling ratio and gain both highest average PSNR and SSIM
values. Our BRBCN performs best in every sampling ratio
and is 0.36dB and 0.21dB higher than the second method as
to the average PSNR value on grey-scale datasets Set14 and
BSD68, respectively. Although BRBCN is block-based as
ISTA-Net+, the information of blocks’ communication im-
proves the quality of block reconstruction and successfully
beats image-based methods including CSNet+, MADUN+,
and MR-CCSNet+. Although AMP-Net imported image-
level filters as well, the mere local relation without global
information can not provide sufficient blocks’ communi-
cation, hence falling behind BRBCN. Moreover, BRBCN
also performs best on the color dataset Waterloo, achiev-
ing 0.19dB, 0.45dB, 0.30dB, 0.73dB, and 0.93dB improve-
ment over the second-best method at each sampling ratio
with respect to the PSNR value. Furthermore, focusing on
global communication while paying additional attention to
the relation among adjacent blocks, BRBCN+ achieves bet-
ter performance especially at 0.01 sampling ratio, for ex-
ample, 0.52dB, 0.53dB and 0.71dB higher PSNR values
on Set14, BSD68 and Waterloo, respectively. An interest-
ing finding is that BRBCN+ performs weaker than BRBCN

at 0.5 sampling ratio. This is because the additional IBR
pursues the harmony among adjacent blocks and would hurt
the fine-grained inner block details. That is the reason why
we choose to conduct the block-based reconstruction, rather
than choosing the image-based way to bypass the communi-
cation problem at the cost of losing fine-grained reconstruc-
tion within blocks.

Quality analysis. Figs. 3 shows the visualization results
of our methods and state-of-the-art CSI methods on gray im-
ages and color images. As can be observed from Figs. 3,
when the sapling ratio is low, ISTA-Net+ suffers from block-
ing artifacts due to the lack of blocks’ communication. Al-
though BRBCN is a block-based method without local fil-
tering like ISTA-Net+, the blocks’ communication helps re-
lieve the block artifacts problem. Meanwhile, the image-
based methods, like CSNet+ and OPINE-Net+, fail to re-
construct the fine details (e.g., words) without careful local
concern. On the other hand, our BRBCN can well ha Be-
sides, with the help of extra IBR, the interaction between
adjacent blocks is further strengthened and BRBCN+ has
better performance, especially at low sampling ratios.

Ablation Study
In this section, we verify the validation of blocks’ commu-
nication, the way of fusion, and the proposed modules, and
discuss the hyperparameter setting and the inference time.
To avoid the image-level IBR affecting the comparison, we
conduct all the ablation experiments based on BRBCN.
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ISTA-Net!(24.47dB) OPINE-Net!(27.70dB) CSNet!(25.36dB) AMP-Net(29.82dB)

DGUNet!(30.80dB)MADUN(30.36dB) BRBCN(33.34dB) BRBC𝐍!(33.02dB)Ground Truth(PSNR)

Ground Truth(PSNR)

ISTA-Net!(30.74dB) OPINE-Net!(34.09dB) CSNet!(31.07dB) AMP-Net(33.69dB)

DGUNet!(34.44dB)MADUN(34.25dB) BRBCN(35.25dB) BRBC𝐍!(35.32dB)

Figure 3: Visualization comparison on reconstructing images at 0.1 sampling ratio: “PPT3” image from Set14 dataset (upper)
and an image from Waterloo dataset (lower) .

Global Set14 BSD68
Info. 0.01 0.1 0.01 0.1
w/o 20.67/0.4726 29.31/0.8414 21.46/0.4728 28.07/0.8137
w/ 21.87/0.5332 29.51/0.8460 22.54/0.5267 28.22/0.8178

Table 2: Comparison of w/o and w/ global information. Av-
erage PSNR/SSIM at ratio=0.01,0.1 on Set14 and BSD68.
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Figure 4: The visualization of different ways of fusion.

Blocks’ communication. Our BRBCN introduces the
global information of to help the reconstruction of each
block. To analyze the influence of the global information, we
compare two reconstruction strategies: 1. The blocks are fed
into the network one by one, with only one block in the net
and no blocks’ communication; 2. All the blocks are directly
fed into the network, with blocks’ communication happen-
ing. Tab. 2 shows that the reconstruction quality with global
information is always better than without it. Especially when
the very limited block measurements, like 0.01 sampling ra-
tio, are not sufficient for block reconstruction, the more sig-
nificant the improvement the communication brings.

Way of fusion. We argue that the way to fuse differ-
ent representations is the key point of whether the local

Fusion Set14 BSD68
0.01 0.1 0.01 0.1

1⃝ 21.42/0.5073 28.66/0.8303 22.04/0.5104 27.70/0.8046
2⃝ 20.45/0.4563 22.71/0.6559 21.00/0.4697 22.63/0.6367
3⃝ 21.56/0.5143 28.13/0.8234 22.23/0.5122 27.47/0.8026
4⃝ 20.23/0.4435 26.51/0.8060 21.82/0.4833 26.80/0.7864
5⃝ 21.87/0.5332 29.51/0.8460 22.54/0.5267 28.22/0.8178

Table 3: The comparison of different fusion ways. 1⃝ fusion-
free; 2⃝ serial; 3⃝ parallel; 4⃝ Mobile-Former; 5⃝ BR-
BCN. Average PSNR/SSIM at ratio=0.01, 0.1 on Set14 and
BSD68 datasets. The results better than fusion-free (CNN-
only) are in bold.

and global interaction is helpful. As shown in Fig. 4, we
compare our proposed method with three different fusion
ways, including two direct ways, in serial and in parallel,
and Mobile-Former (Chen et al. 2022b) which is designed
for the image-level fusion. As illustrated in Tab. 3, BRBCN
performs best on all datasets. Simple as fusion in serial, it
performs even worse than without fusion, since the repre-
sentations of CNN and Transformer are in different feature
spaces. Although Mobile-Former adds local and global in-
teraction between two modules, it is originally designed to
process the whole image with two architectures and hence
fails to fuse the block representation with global represen-
tation. The improper fusion way would not do a favor but
become a hindrance, that is the reason why Mobile-Former
even performs worse than simply combining in parallel. On
the other hand, the L2G and G2L modules in BRBCN suc-
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Figure 5: Average PSNR on Set14 at 0.1 sampling ratio. Up-
per: iteration time K. Lower: tokens dimension CT .

Case G2L L2G Set14 BSD68
0.01 0.1 0.01 0.1

- - 21.42 28.66 22.04 27.70
✓ - 21.54 28.65 22.28 27.74

BRBCN ✓ ✓ 21.87 29.51 22.54 28.22

Table 4: Ablation study of the G2L and L2G modules. Av-
erage PSNR at ratio=0.01, 0.1 on Set14 and BSD68 datasets.

cessfully strengthen the interaction of two representations
and improve the quality of reconstruction.

Hyperparameters analysis. Here we discuss the hyper-
parameters setting in BRBCN. The iteration time K is re-
lated to the reconstruction quality and inference time. As
shown in Fig. 5, when K ≥ 8, the reconstruction quality
does not increase as the run speed increases. Thus, consider-
ing the tradeoff between model complexity and reconstruc-
tion, we set iteration time K = 8. Meanwhile, the token
dimension CT is related to the adequacy of inter-block com-
munication. As shown in Fig. 5, the communication is in-
sufficient when CT is small and the loss curve is almost flat
when CT ≥ 128, which means that CT = 128 is sufficient
for global communication.

Modules ablation. We conduct ablation studies on differ-
ent modules to verify their effectiveness. Since our method
focuses on introducing blocks’ communication into block
reconstruction, we regard the block-based reconstruction
module IBR as the baseline and further verify L2G and
G2L while IBC is involved in the interaction. As shown
in Tab. 4, the one-way information passing from global to-
kens to local blocks with G2L has finite improvement even
side effects since the sole global communication, lacking
inductive bias and pattern activation, is sufficient. As for
the two-way interaction between local and global with G2L
and L2G, the local representation and global communica-
tion calculation are iteratively updated in a mutually promo-
tional way.

Model complexity In this section, we compare the model
size and inference time of different methods. The testing was
implemented on an Nvidia RTX 3090 GPU at 0.01 sam-
pling ratio. As shown in Tab. 5, although ISTA-Net+ and
CSNet+ have the fastest running time and small model size,
they perform worst due to the lack of blocks’ communica-

Methods Parameters PSNR (dB)/Running time (s)
(M) BSD68 Waterloo

ISTA-Net 0.32 19.18/0.009 18.94/0.025
OPINE-Net 0.49 21.88/0.014 22.28/0.026

CSNet 0.41 22.05/0.010 22.09/0.075
AMP-Net 0.35 22.28/0.033 22.69/0.105
MADUN 2.89 22.20/0.102 22.45/0.472
DGUNet 6.51 22.13/0.041 22.58/0.260

BRBCN 32 5.34 22.45/0.056 22.76/0.220
BRBCN 64 8.11 22.52/0.064 22.82/0.407
BRBCN 256 43.35 22.54/0.159 22.88/0.736
BRBCN+ 32 7.95 22.80/0.060 23.25/0.249
BRBCN+ 64 10.72 22.81/0.065 23.27/0.252
BRBCN+ 256 45.96 22.81/0.161 23.40/0.747

Table 5: The comparison of different ways on parameter
numbers (M), inference time (s) and PSNR (dB)

tion or inner-block concern. Meanwhile, the local filter op-
eration in MADUN and AMP-Net slows down the inference
speed but improves the performance less than our method
because it does not realize sufficient global communication.
On the contrary, our BRBCN performs well with the help
of sufficient interaction between local and global informa-
tion at the cost of a small decrease in speed. The key fac-
tor influencing our model complexity is the maximum chan-
nel setting in IBR. Our model has high computational costs
due to the big maximum channel setting. Using similar sizes
as DGUNet+, BRBCN 32 still achieves 0.32dB and 0.18db
improvements on BSD68 and Waterloo respectively, which
means it is the block-communication works not the parame-
ter increment. When computing resources are rich, a bigger
model BRBCN 256 could achieve better performance

Conclusion
In this paper, we proposed BRBCN for block image CS
which leverages the information interaction between lo-
cal and global information to help the blocks reconstruc-
tion. BRBCN maximized the benefits of CNN’s aptitude
for local processing to reconstruct the blocks and harnessed
the power of the Transformer’s global relationship mod-
eling to compute blocks’ communication through a dual
CNN-Transformer architecture design. Moreover, the pro-
posed L2G and G2L modules successfully established a
bi-directional interaction between local representation and
global communication. In the experiments, we demonstrated
how blocks’ communication contributes to block reconstruc-
tion and we showcased the advantages of BRBCN via abla-
tion experiments, particularly in scenarios with extremely
low sampling ratios. In future work, the robustness against
noisy inputs, as well as the generalization ability for multi-
scale sampling and practicability for other applications like
medical images need to be strengthened.
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