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Abstract

The goal of this work is to reconstruct high quality speech
from lip motions alone, a task also known as lip-to-speech.
A key challenge of lip-to-speech systems is the one-to-many
mapping caused by (1) the existence of homophenes and
(2) multiple speech variations, resulting in a mispronounced
and over-smoothed speech. In this paper, we propose a novel
lip-to-speech system that significantly improves the genera-
tion quality by alleviating the one-to-many mapping problem
from multiple perspectives. Specifically, we incorporate (1)
self-supervised speech representations to disambiguate ho-
mophenes, and (2) acoustic variance information to model
diverse speech styles. Additionally, to better solve the afore-
mentioned problem, we employ a flow based post-net which
captures and refines the details of the generated speech. We
perform extensive experiments on two datasets, and demon-
strate that our method achieves the generation quality close to
that of real human utterance, outperforming existing methods
in terms of speech naturalness and intelligibility by a large
margin. Synthesised samples are available at our demo page:
https://mm.kaist.ac.kr/projects/LTBS.

Introduction
Have you ever wondered what Charlie Chaplin’s movies
would sound like if they weren’t silent? Indeed, there have
been many discussions about what is said in archival silent
movies (Smith 1987; Midgley 2006). The ability to recon-
struct speech from silent videos opens up interesting appli-
cations, such as redubbing silent movies, simulating natu-
ral utterance for those who suffer from aphonia, and under-
standing conversations at a distance.

As a result, the research in lip-to-speech has attracted an
increasing amount of attention in recent years (Kumar et al.
2019; Mira et al. 2022; Kim, Hong, and Ro 2023). This line
of research has also benefited from the advances in deep
learning methods, and in particular, self-supervised learn-
ing, since the training leverages natural occurrence of audio
and video as a mode of supervision.

A lip-to-speech (LTS) system aims to learn a mapping
from silent lip movements to the corresponding speech.
This is a challenging one-to-many mapping caused by the
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two major obstacles. One is the existence of homophenes,
words that have almost identical lip movements but dis-
tinct phonemes (e.g. ‘bit’ and ‘pit’). The ambiguity of ho-
mophenes brings the one-to-many relationship between lip
motions and phonemes (Chung et al. 2017; Kim, Yeo, and
Ro 2022). Another obstacle is the multiple variations in
speech; same phonemes can be mapped to diverse speech
styles based on individual characteristics such as timbre, in-
tonation, and accents (Elias et al. 2021; Kim et al. 2022).

Numerous attempts have been made to improve the qual-
ity of LTS systems. Existing works (Le Cornu and Milner
2015, 2017) utilise hand-crafted visual features. However,
deep-learning based approaches employ end-to-end meth-
ods that generate auditory features directly from silent lip
motions. Early deep-learning based methods (Ephrat and Pe-
leg 2017; Kumar et al. 2019) estimate linear predictive cod-
ing (LPC) features within a short video clip. Recently, many
works (Prajwal et al. 2020; Kim, Hong, and Ro 2021; Yadav
et al. 2021; He et al. 2022; Mira et al. 2022; Kim, Hong,
and Ro 2023) adopt mel-spectrogram as a regression tar-
get because it contains more sufficient acoustic information
than LPC. Despite the advances, the previous methods do
not fully address the one-to-many mapping issue, suffering
from a mispronounced and over-smoothed synthetic speech.

In this paper, we propose a novel LTS system that highly
improves the synthetic quality by alleviating the intrin-
sic one-to-many mapping problem. To disambiguate ho-
mophenes, we employ self-supervised speech representa-
tions as a condition for linguistic information. Previous stud-
ies (Baevski et al. 2020; Hsu et al. 2021) have proved that
self-supervised learning (SSL) speech models can acquire
rich speech representations without manually labeled text.
In particular, it has been demonstrated that the representa-
tions from specific layers of the SSL model contain elabo-
rate linguistic information independent of paralinguistic fea-
tures (wen Yang et al. 2021; Chang, Yang, and Lee 2022).
Motivated by this, we explore the intermediate layers of SSL
model and utilise the hidden representations to produce ac-
curate content without using text labels.

Moreover, we adopt acoustic variance information such
as pitch and energy in order to model diverse speech vari-
ations. With the help of the acoustic variations, the model
can not only ease the one-to-many mapping but also learn
prosody of speech which is a key factor for realistic speech
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synthesis (Skerry-Ryan et al. 2018; Sun et al. 2020). To fur-
ther address the one-to-many mapping, we use a flow based
post-net (Ren, Liu, and Zhao 2021) which refines acoustic
representations with enhanced modelling capability of cap-
turing fine-grained details (Ren et al. 2022). Combined with
the variance information, the post-net helps to learn the com-
plex one-to-many-mapping between phonemes and speech,
thereby improving the naturalness of the synthesised speech.

We conduct extensive experiments on two public datasets
with qualitative and quantitative evaluation metrics. The re-
sults show that the proposed method achieves exceptional
generation quality, making a mean opinion score (MOS) gap
of only 0.28 in naturalness and 0.16 in intelligibility com-
pared to the vocoded speech1.

In summary, we directly tackle the intrinsic one-to-many
mapping problem of LTS, arising from the existence of ho-
mophenes and multiple speech variations. We adopt self-
supervised speech representations as a linguistic condition
to disambiguate homophenes without using text labels. To
model speech variations, we employ acoustic variance infor-
mation which helps to capture diverse speech styles. Exper-
imental results prove that our method outperforms existing
approaches, achieving human-like generation quality.

Related Works
Lip-to-Speech
With the rapid development of deep-learning, LTS pipelines
have been simplified to end-to-end systems, eliminating the
need for hand-crafted visual features (Le Cornu and Mil-
ner 2015, 2017). Vid2Speech (Ephrat and Peleg 2017) and
Lipper (Kumar et al. 2019) adopt convolutions to estimate
low-dimensional LPC features. However, since the LPC fea-
tures contain insufficient information for producing audible
waveforms, recent works mostly utilise mel-spectrogram as
a regression target. Taking mel-spectrogram, (Prajwal et al.
2020) modifies sequence-to-sequence TTS model (Shen
et al. 2018) to construct an LTS system in a single speaker
scenario. VCA-GAN (Kim, Hong, and Ro 2021) and (Ya-
dav et al. 2021) further enhance the quality by taking speech
variations into account.

To leverage contextual information, GlowLTS (He et al.
2022) proposes a non-autoregressive network architecture
based on transformer (Vaswani et al. 2017), and SVTS (Mira
et al. 2022) adopts conformer (Gulati et al. 2020). Most re-
cently, MT (Kim, Hong, and Ro 2023) employs content su-
pervision by using additional text labels to produce accurate
content. In contrast to previous studies, we focus on alle-
viating the one-to-many mapping problem in LTS systems
by clarifying homophenes and explicitly modelling speech
variations, without using text labels.

Text-to-Speech
Text-to-speech (TTS) systems transform text inputs to in-
termediate acoustic representations (e.g. mel-spectrogram),

1Vocoded speech refers to speech reconstructed from the
ground truth mel-spectrogram through a vocoder, and thus it is
practically considered the upper bound quality for our evaluation.

which are then converted into audible waveform by a
vocoder (Prenger, Valle, and Catanzaro 2019; Yamamoto,
Song, and Kim 2020; Kong, Kim, and Bae 2020; Kim et al.
2021). The TTS systems have evolved over time, shifting
from conventional concatenative (Hunt and Black 1996) and
statistical parametric approaches (Black, Zen, and Tokuda
2007) to end-to-end systems (Shen et al. 2018; Ren et al.
2021; Łańcucki 2021; Lee et al. 2021b; Popov et al. 2021).
While recent TTS systems achieve human-like synthetic
quality, they require a large amount of manually annotated
transcriptions. LTS systems have attracted increasing atten-
tion since they can be trained without transcriptions, but
the generation quality largely lags behind that of TTS. In
this work, we propose a high-quality LTS method that bene-
fits from the self-supervised nature, while generating natural
speech whose quality is comparable to that of TTS.

Self-Supervised Learning
Over the recent years, SSL has been an emerging approach
for acquiring comprehensive data representations from un-
labeled data, and it has achieved notable success in nat-
ural language processing (Kenton and Toutanova 2019)
and computer vision (Chen et al. 2020; Lin et al. 2021).
In speech processing, wav2vec2.0 (Baevski et al. 2020)
and HuBERT (Hsu et al. 2021) demonstrate promising re-
sults, providing various applications such as speech recog-
nition (Baevski et al. 2021), voice conversion (Lee et al.
2021a; Choi et al. 2021), and speech resynthesis (Polyak
et al. 2021). Following works (wen Yang et al. 2021; Chang,
Yang, and Lee 2022) report that the hidden representations
from different layers pertain to distinct speech attributes
such as voice characteristics and linguistic content. Inspired
by this, we leverage self-supervised hidden representations
from the specific layer of the SSL model to provide linguis-
tic condition, mitigating homophene problems.

Method
Given a silent talking face video, our goal is to synthe-
sise the corresponding mel-spectrogram. As shown in Fig-
ure 1(a), the proposed model mainly consists of three com-
ponents: video encoder, variance decoder, and flow based
post-net. The video encoder extracts distinct visual features
from input videos, and the variance decoder successively
produces coarse mel-spectrogram conditioned on linguistic
features and acoustic speech variations (i.e. pitch and en-
ergy). The flow based post-net elaborates the coarse mel-
spectrogram into the fine-grained one, and the result is fi-
nally converted to an audible waveform by a pre-trained neu-
ral vocoder (Kim et al. 2021).

Video Encoder
From the input video with Tv frames, the video encoder ex-
tracts distinct hidden representations hv ∈ RTv×d where
d denotes the hidden embedding dimension. As depicted in
Figure 1(b), the video encoder comprises 3D convolution (Ji
et al. 2012), ResNet18 (He et al. 2016), and a conformer en-
coder (Gulati et al. 2020). Combined with 3D convolution,
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Figure 1: In subfigure (a) and (b), espk is a speaker embedding. In subfigure (a) and (c), hv denotes the encoded video feature.
In (c), Emb.T. refers to an embedding table. In subfigure (d), the paths with dotted lines are operated only in a training stage.
ymel and ŷmel refer to the ground truth and predicted mel-spectrogram, respectively. cond means the post-net conditions which
contain the input and output of the conformer decoder, and espk. In our experiment, we set N = 8.

ResNet18 can capture adjacent contexts and local visual fea-
tures, as proved in (Petridis et al. 2018; Ma, Petridis, and
Pantic 2022). On the top of ResNet18, we add a conformer
encoder which is a stack of conformer layers. Its capabil-
ity to learn long-term dependencies allows to take advan-
tage of the globality while preserving the locality obtained
from the preceding convolutional layers (Guo et al. 2022).
Moreover, since each individual has different visual char-
acteristics, we inject speaker identity to the conformer en-
coder through an embedding table. As validated in our ex-
periments, the speaker embedding helps the model to extract
discriminative visual features, enhancing naturalness and in-
telligibility of the synthesised speech.

Variance Decoder
To ease the one-to-many mapping problem in LTS, the vari-
ance decoder aims to generate acoustic representation with
rich variance information. As shown in Figure 1(c), the vari-
ance decoder consists of variance predictors and a conformer
decoder. The variance predictors are composed of linguis-
tic, pitch, and energy predictor, each of which aims to con-
dition the corresponding variance information into the hid-
den visual representations hv . During training, we take the
ground truth variance information to the hidden sequence,
and use predicted value during inference. The following con-
former decoder then converts the empowered hidden visual
features to intermediate acoustic representations. In the fol-
lowing paragraphs, we describe the details of each predictor.

Linguistic Predictor The presence of homophenes hin-
ders the synthesis of intelligible speech with accurate pro-
nunciation (Ephrat and Peleg 2017). Although the previous
work (Kim, Hong, and Ro 2023) attempts to address the am-
biguity of homophenes by leveraging text supervision, it re-
quires manually annotated text labels and fails to enjoy the

benefits of the LTS system. To generate intelligible speech
while preserving the self-supervised nature, we propose a
linguistic predictor that disambiguates homophenes without
the need for text labels.

To this end, we adopt quantised self-supervised speech
representations. We extract continuous linguistic represen-
tations from raw waveforms using pre-trained SSL speech
model, namely HuBERT (Hsu et al. 2021), and quantise
the continuous representations for robust training2. Previous
studies (Polyak et al. 2021; Lakhotia et al. 2021; Kreuk et al.
2022) report that the quantised speech representations from
the specific layer of HuBERT contain elaborate linguistic
features relevant to accurate pronunciation. We investigate
the effects of different configurations of linguistic feature
extraction, and empirically find that the representations from
the 12th layer of HuBERT-LARGE3, quantised by K-means
algorithm with 200 clusters, exhibits the highest correlation
with linguistic information.

Given the visual hidden features hv , the linguistic predic-
tor aims to estimate the cluster indices of each frame. The
linguistic predictor is optimised by cross-entropy (CE) loss
which can be formulated as follows:

Ll =

Tv∑
i=1

CE(li, LinguisticPredictor(hv,i)), (1)

where li and hv,i are the ith cluster index of the target se-
quence and the ith visual representation, respectively.

Pitch Predictor Pitch plays an important role in synthesis-
ing realistic speech with natural prosody (Yasuda et al. 2019;

2Before quantisation, the continuous features are downsampled
to match the length of video by nearest-neighbor interpolation.

3https://huggingface.co/facebook/hubert-large-ls960-ft
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Łańcucki 2021). However, the pitch exhibits multiple vari-
ations across gender, age, and emotions, exacerbating the
one-to-many problem in LTS. To accurately capture pitch
information from lip motions, we construct a pitch predic-
tor (Łańcucki 2021) that estimates the pitch sequence based
on the hidden visual features.

Following (Łańcucki 2021), we extract the ground truth
pitch values from the ground truth audio through pYIN al-
gorithm (Mauch and Dixon 2014), and standardise them
to have zero mean and unit variance for better sampling.
The extracted pitch values are successively downsampled to
match the temporal dimension of the visual features. The
pitch predictor is optimised with L1 loss between the ground
truth and predicted pitch sequence as follows:

Lp =

Tv∑
i=1

||pi − PitchPredictor(hv,i)||1, (2)

where pi is the ground truth pitch for the ith video frame.

Energy Predictor Energy represents the intensity of
speech, which affects the volume and prosody of
speech (Bulut, Lee, and Narayanan 2007). We obtain the
target energy sequence by taking the L2 norm of the mel-
spectrogram along the frequency-axis (Choi et al. 2021). To
estimate the energy sequence from hv , we construct energy
predictor (Ren et al. 2021), which is optimised by L1 loss be-
tween the ground truth and predicted energy sequence which
can be formulated as follows:

Le =

Tv∑
i=1

||ei − EnergyPredictor(hv,i)||1, (3)

where ei refers to the ith target energy value.
Each variance information is encoded into variance em-

beddings either through an embedding table (linguistic), or a
single 1D convolution layer (pitch and energy). The variance
embeddings are added to the visual representations hv , and
the adapted representation is upsampled to match the time
resolution of target mel-spectrogram. Lastly, the conformer
decoder converts the adapted representations to a coarse
mel-sepctrogram. We apply L1 loss between the ground
truth mel-spectrogram and the predicted mel-spectrogram:

Lmel =

Tm∑
j=1

||Y j − Ŷ j ||1, (4)

where Yj denotes the jth frame of the ground truth mel-
spectrogram with length Tm, and Ŷj stands for the jth frame
of predicted mel-spectrogram.

Note that the variance predictors simplify the acous-
tic target distribution by providing conditional information,
thereby mitigating the one-to-many mapping issue (Ren
et al. 2022). We analyse the effect of variance information
in our experiment section.

Post-Net
Natural human speech comes with dynamic variations.
However, simple reconstruction loss (L1 or L2 loss) is lim-
ited to capture such details, resulting in a blurry and over-
smoothed synthetic speech (Liu et al. 2022). To further

improve the sample quality, we apply a flow based post-
net (Ren, Liu, and Zhao 2021) which elaborates the coarse-
grained mel-spectrogram into a fine-grained one.

The architecture of the post-net is depicted in Figure 1(d).
In training stage, the post-net transforms mel-spectrogram
training data x into a tractable prior distribution through a
series of invertible functions f = f0 ◦ f1 ◦ · · · fk, conditioned
with the input and output of the conformer decoder, and the
speaker embedding. The post-net is optimised with minimis-
ing the negative likelihood of data x as follows:

log pθ(x) = log pθ(z) +
k∑

i=1

log | det(J(fi(x)))|, (5)

Lpost = − log pθ(x), (6)
where pθ(z) is the tractable prior (isotropic multivariate
Gaussian) over latent variable z, and J is the Jacobian. Dur-
ing inference stage, we take samples z from the prior distri-
bution and feed them into the post-net reversely to generate
the final mel-spectrogram. As proved in (Ren et al. 2022),
this flow-based module enhances the capability of modelling
complex data distributions, which helps to address one-to-
many mapping problem.

To summarise, the final loss (Lfinal) is given by:

Lfinal = Lmel + λvarLvar + λpostLpost, (7)

where Lvar = Ll + Lp + Le. In our experiments, we set
λvar = λpost = 0.1.

Neural Vocoder
To convert the predicted mel-spectrogram into an audible
waveform, we utilise pre-trained Fre-GAN (Kim et al. 2021)
as our neural vocoder. Based on adversarial networks, it pro-
duces frequency-consistent waveform by adopting discrete
wavelet transform (Daubechies 1988) as a lossless down-
sampling method. Compared to Griffin-Lim algorithm (Grif-
fin and Lim 1984) which is mostly adopted in previous
works (Kim, Hong, and Ro 2021; He et al. 2022; Kim, Hong,
and Ro 2023), the Fre-GAN vocoder shows exceptional per-
formance in reconstructing waveforms. The vocoder is used
only at inference process.

Experimental Settting
Datasets
GRID (Cooke et al. 2006) is one of the established
datasets for lip to speech synthesis in a constrained environ-
ment. It contains 33 speakers and 50 minutes of short video
clips per speaker. The number of vocabularies in GRID is
only 51 and the speakers always face forward with nearly no
head movement. In our experiment, the dataset is split into
train (80%), validation (10%), and test set (10%) by sam-
pling equally from all speakers.

Lip2Wav (Prajwal et al. 2020) is a large-scale bench-
mark dataset for an unconstrained and large vocabulary lip
to speech synthesis. It comprises real-world lecture record-
ings featuring 5 distinct speakers, with about 20 hours of
video for each speaker. Our experiment is conducted on
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2 speakers, Lip2Wav-Chemistry and Lip2Wav-Chess, as in
GlowLTS (He et al. 2022). The two speakers are trained
jointly in a multi-speaker setting, and both are equally di-
vided into 80-10-10% for train, validation, and test sets.

Preprocessing
Audio data are resampled to 16kHz and transformed to mel-
spectrograms with 40ms window length, 10ms hop length,
and 80 mel filterbanks. To achieve the temporal synchroni-
sation with the audio, the video data are resampled to 25
frames per second, resulting in a fixed ratio of 1 to 4 be-
tween the lengths of video and audio. We then extract 68
face landmarks for each video frame using FaceAlignment4.
Based on the landmarks, the lip regions are aligned to a fixed
position, and cropped to their centers with a dimension of
112× 112. The cropped images are converted to grayscale.

Model Configuration
We construct the identical model architecture for each
dataset, with the exception of the conformer encoder. For
the constrained GRID dataset, the conformer encoder is de-
signed with 6 attention heads and a hidden dimension of 384,
and for the unconstrained Lip2Wav, the encoder is designed
with 8 heads and a hidden dimension of 512. We follow the
recent works (Mira et al. 2022; Kim, Hong, and Ro 2023)
for the configuration of 3D convolution and ResNet18. The
speaker embedding is obtained from an embedding table,
where each speaker identity is converted into a fixed size
embedding vector. The pitch and energy predictors are com-
posed of two 1D convolution layers (Łańcucki 2021), while
the linguistic predictor consisted of four 1D convolutions.

Training Details
Our model is trained on four NVIDIA A5000 GPUs with a
batch size of 64. We use AdamW optimiser (Loshchilov and
Hutter 2019) with β1 = 0.9, β2 = 0.98, and ϵ = 10−9. The
learning rate is fixed to 2×10−4, and the weight decay is set
to 10−6. For training the GRID dataset, we randomly sample
consecutive sequence with a length of 50, and the model is
trained for 400 epochs. For the Lip2Wav dataset, we sample
contiguous 75 frames and train our model for 900 epochs. To
prevent overfitting, we apply data augmentations: horizontal
flipping with probability of 50%, and random masking with
fixed position throughout all frames. The masked area is ran-
domly sampled within the range from 10× 10 to 30× 30.

Evaluation Metrics
The performance of the proposed method is evaluated
with both qualitative and quantitative evaluation metrics.
For qualitative evaluation, we conduct mean opinion score
(MOS) test, wherein 30 domain-expert speakers assess the
quality of 30 random speech clips for naturalness and intel-
ligibility on a scale of 1 to 5. Naturalness of speech repre-
sents how close the speech is to that of human utterance.
Intelligibility focuses solely on the successful delivery of
linguistic contents; high scores are given if one can clearly

4https://github.com/ladrianb/face-alignment

identify the contents even if it sounds unnatural. Moreover,
we also compute word error rate (WER) and character error
rate (CER) of 300 random test samples for quantitative eval-
uation. For error calculation, we obtain the transcriptions of
speech clips by using publicly available automatic speech
recognition (ASR) model (Radford et al. 2023) pre-trained
on 438k hours of English corpus.

Based on the above evaluation metrics, we compare our
model against the ground truth, vocoded, and generated sam-
ples from recent LTS models which show promising results:
VCA-GAN (Kim, Hong, and Ro 2021), SVTS (Mira et al.
2022), and MT (Kim, Hong, and Ro 2023). We follow the of-
ficial implementation for VCA-GAN5 and MT6. For SVTS,
since there is no official implementation, we reproduce it
based on the official code of MT which takes SVTS as its
backbone network. For a fair comparison, all the LTS mod-
els are trained on the same settings, and the predicted mel-
spectrograms are converted to audible speech by Fre-GAN
vocoder (Kim et al. 2021).

Experimental Results
We evaluate our method in qualitative and quantitative man-
ner, and investigate each variance prediction pipeline. Fur-
ther, the effectiveness of each component in our model is
verified by the ablation study. The evaluations underscore a
notable enhancement over the other LTS models, and each
module provides distinct contribution to increasing the qual-
ity of synthesised speech.

Qualitative Results
To evaluate the quality of the generated speech, we con-
duct MOS for naturalness and intelligibility, and the results
are presented in Table 1. For the GRID dataset, our pro-
posed method achieves the highest naturalness and intelli-
gibility among all generated samples. Especially, the gener-
ated speech of the proposed method closely approximates
the vocoded quality with a minor gap of 0.28 in naturalness
and 0.13 in intelligibility. For Lip2Wav, the overall gener-
ation quality degrades due to the unconstrained nature of
the dataset. However, the proposed method produces speech
with promising quality, outperforming the existing methods
by a significant margin. Note that MT (Kim, Hong, and Ro
2023) is not applicable to Lip2Wav experiment, since it re-
quires text information for training while the dataset does
not provide text labels.

Moreover, to intuitively demonstrate the effectiveness of
the proposed method, we conduct mel-spectrogram visual-
isation analysis. In Figure 2, we depict the generated mel-
spectrograms along with the ground truth and vocoded mel-
spectrogram. Especially in red boxes, our model produces a
detailed and sharp mel-spectrogram with distinct harmon-
ics, showing close resemblance to the ground truth mel-
spectrogram. However, other methods ((c)-(e)) suffer from
blurry and over-smoothed results. This indicates that our

5https://github.com/ms-dot-k/Visual-Context-Attentional-
GAN

6https://github.com/ms-dot-k/Lip-to-Speech-Synthesis-in-the-
Wild
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Method GRID Lip2Wav
Nat. ↑ Intel. ↑ WER ↓ CER ↓ Nat. ↑ Intel. ↑ WER ↓ CER ↓

Ground Truth 4.82± 0.04 4.82± 0.05 12.20 7.03 4.80± 0.05 4.78± 0.05 4.12 2.58
Vocoded 4.74± 0.05 4.79± 0.05 12.44 7.18 4.63± 0.06 4.73± 0.06 6.05 4.19

VCA-GAN 3.46± 0.07 4.10± 0.08 17.62 9.55 2.05± 0.08 2.71± 0.10 48.73 32.51
SVTS 3.35± 0.09 3.97± 0.09 23.30 13.12 1.77± 0.07 2.18± 0.10 61.09 41.01
MT 2.42± 0.09 3.08± 0.12 30.56 18.14 N/A N/A N/A N/A
Ours 4.46± 0.07 4.63± 0.07 17.07 9.17 4.15± 0.08 3.69± 0.10 34.71 22.57

Table 1: Evaluation results. MOS results are presented with 95% confidence interval. ‘Nat.’ and ‘Intel.’ represent MOS for
naturalness and intelligibility, respectively. Note that MT (Kim, Hong, and Ro 2023) cannot be trained on the Lip2Wav dataset
since the model requires text transcription to be trained. ↑ denotes higher is better, ↓ denotes lower is better.

(a) Ground Truth (b) Vocoded (c) VCA-GAN

(d) SVTS (e) MT (f) Ours

Figure 2: Visualisation of mel-spectrogram. Note that the proposed method better captures fine details with frequency correla-
tions compared to other methods ((c)-(e)), particularly in red boxes.

method can effectively learn the complex one-to-many map-
ping function, which consequently lead to natural and intel-
ligible synthetic speech.

Quantitative Results

As a quantitative evaluation, we compare the WER and CER
of the synthesised speech with those of the ground truth and
vocoded speech. For the GRID dataset, the error rates are
obtained by directly comparing the ASR transcriptions with
the provided ground truth texts. For the Lip2Wav dataset,
since the dataset does not provide text labels, we manually
annotate the ground truth texts and compare them with the
ASR transcription results.

The results are shown in Table 1. The proposed model
clearly shows the lowest WER and CER on both GRID and
Lip2Wav datasets. This demonstrates our method can syn-
thesise highly intelligible speech by effectively reducing the
homophene problems. Despite the higher error rates in the
Lip2Wav dataset compared to GRID dataset, the proposed
method achieves significantly lower WER and CER com-
pared to all the other models, making a gap larger than 10%
point. This explicitly supports that the proposed model is
readily applicable to the unconstrained environments.

Analysis on Acoustic Variance Information
To verify the effectiveness of the acoustic variance condi-
tions, we examine the similarities between 300 pairs of the
synthesised and ground truth speech. For pitch, we compute
the moments of pitch distribution (mean (µ), standard de-
viation (σ), skewness (γ), and kurtosis (κ)) and analyse on
how much the values resemble those of the ground truth.
The results are shown in Table 2. Each of the four values
from the output of the proposed model stands the closest to
those from the ground truth speech, especially the skewness
value deviating only by 0.042. This demonstrates that our
model can generate speech with highly accurate pitch con-
tour. With the absence of the pitch predictor, the kurtosis
shows a slight deviance. However, closing the gap of stan-
dard deviation with minimum changes in mean, skewness
and kurtosis clearly supports that the pitch predictor explic-
itly contributes to producing high-quality results.

For energy, we calculate the frame-wise mean absolute er-
ror (MAE) between energy of generated speech and that of
ground truth speech. As shown in Table 3, the MAE from
the proposed model reports the lowest among all other mod-
els by a distinct margin. This implies that the energy of the
generated speech from the proposed model closely resem-
bles that from the ground truth speech. The influence of the
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Method µ σ γ κ

Ground Truth 77.90 101.84 0.696 −1.217

VCA-GAN 102.14 95.98 0.124 −1.454
SVTS 98.85 97.95 0.198 −1.518
MT 83.42 91.82 0.450 −1.347

Ours 79.74 101.63 0.654 −1.284
w/o pitch 79.81 102.39 0.652 −1.282

Table 2: Mean (µ), standard deviation (σ), skewness(γ), and
kurtosis(κ) of the pitch distribution for ground truth and syn-
thesised audio.

Method VCA-GAN SVTS MT Ours Ours
w/o E.

MAE ↓ 4.155 4.275 5.314 3.886 3.959

Table 3: The MAE between the energy of ground truth and
that of synthesised audio. “E.” stands for energy.

energy predictor is also confirmed by the increase of MAE
when the predictor is removed.

Analysis on Self-Supervised Features
The significance of SSL speech models is proven by the re-
cent studies (Baevski et al. 2020; Hsu et al. 2021), and the
research is further explored with the utilisation of intermedi-
ate representations on various downstream tasks (wen Yang
et al. 2021; Chang, Yang, and Lee 2022). Outputs from the
first layer are used to extract speaker identity in (Fan et al.
2021; Choi et al. 2021), and (Lakhotia et al. 2021; Lee et al.
2022) utilise the middle layer to obtain linguistic representa-
tion. Particularly, (Lakhotia et al. 2021) reports that the num-
ber of K-means clusters clearly affects the model perfor-
mance when using the quantised linguistic representation.

To find the optimal linguistic feature configuration for our
model, we compute WER, CER, and phoneme error rate
(PER) on the GRID validation set using various feature ex-
traction settings. To be specific, linguistic features are ob-
tained from 1st, 12th, and 24th layer outputs of HuBERT.
The continuous linguistic features are then quantised with
100, 200 clusters, and the cluster indices are used as tar-
gets for the linguistic predictor. Table 4 demonstrates that
the outputs from 12th layer of HuBERT quantised with 200
clusters produce the most intelligible speech, achieving the
lowest PER and CER. While the same configuration but 100
clusters achieves the lowest WER, larger number of clus-
ters shows lower PER and CER. Considering the fact that
phoneme accuracy is closely related to the accurate pronun-
ciation (Zhang et al. 2022), the configuration with the lowest
PER generates the most intelligible speech.

Ablation Study
To verify the effect of each module in the proposed method,
we conduct an ablation study on the Lip2Wav dataset us-
ing 7-scale comparative MOS (CMOS), WER, and CER. In
CMOS, 30 domain experts listen to the audio samples from
two systems and compare the quality from -3 to +3.

#clusters layer WER ↓ PER ↓ CER ↓
100 1 18.02 9.58 10.04
100 12 16.53 10.77 11.39
100 24 17.57 8.92 10.10

200 1 17.62 9.73 9.76
200 12 17.12 8.91 9.70
200 24 29.17 9.59 16.03

Table 4: Evaluation on different configurations of linguistic
feature extraction. #clusters denotes the number of K-means
clusters and layer means the layer index of HuBERT.

Method Nat. ↑ Intel. ↑ WER ↓ CER ↓
Ours 0.00 0.00 34.71 22.57

w/o linguistic −0.90 −0.70 42.51 27.99
w/o pitch −1.06 −0.61 39.96 26.30
w/o energy −0.42 −0.62 40.58 26.46
w/o post-net −1.48 −0.57 40.05 25.48
w/o espk −0.48 −0.56 42.33 27.04

Table 5: CMOS, WER, and CER results of an ablation study.

As shown in Table 5, the results of the ablation study
clearly support that each component independently con-
tributes to improving the quality of the synthetic speech. No-
tably, the absence of the linguistic predictor results in the
largest quality degradation in speech intelligibility, WER,
and CER. This proves the effectiveness of the linguistic pre-
dictor in clarifying homophenes, which connects to speech
generation with accurate pronunciation. The significance of
the acoustic variance information, especially pitch, is vali-
dated by the quality degradation when such information is
not considered. Removing the post-net shows the largest de-
crease in naturalness, highlighting the effectiveness of the
module in producing fine details of acoustic features. The
importance of speaker information espk is proven by the de-
graded quality when the information is excluded.

Conclusion
In this paper, we propose a novel LTS system that generates
speech close to human-level quality in both naturalness and
intelligibility. We directly tackle the inherent one-to-many
mapping problems of LTS, and address them by provid-
ing linguistic and acoustic variance information. We further
refine the generated speech by enhancing modelling capa-
bility. Both qualitative and quantitative experiments clearly
demonstrate that the proposed method improves the overall
quality of the synthesised speech, outperforming the previ-
ous works by a notable margin. We also verify the effec-
tiveness of each proposed component through the ablation
study, and analyse the effect of the variance information
from various perspectives. For the future work, we will con-
tinue to enhance the generated speech quality by adopting
audio-visual SSL models. We also aim to simplify the over-
all generation pipeline with the inclusion of neural vocoder,
making a fully end-to-end architecture.
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Broader Impact
By employing the proposed LTS system, numerous pos-
itive societal impacts can be realised, including the dub-
bing of silent videos and the simulation of natural utterances
for individuals with speech impairments. However, along-
side these advantages, there exist potential threats associated
with the misuse of our system, such as the generation of fake
speech and voice phishing. Furthermore, as the LTS system
enables one to comprehend conversations from a distance,
there is a risk of its use in invading personal privacy.
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