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Abstract
The lack of large-scale data seriously hinders the develop-
ment of palmprint recognition. Recent approaches address
this issue by generating large-scale realistic pseudo palm-
prints from Bézier curves. However, the significant difference
between Bézier curves and real palmprints limits their effec-
tiveness. In this paper, we divide the Bézier-Real difference
into creases and texture differences, thus reducing the genera-
tion difficulty. We introduce a new palm crease energy (PCE)
domain as a bridge from Bézier curves to real palmprints and
propose a two-stage generation model. The first stage gener-
ates PCE images (realistic creases) from Bézier curves, and
the second stage outputs realistic palmprints (realistic tex-
ture) with PCE images as input. In addition, we also design
a lightweight plug-and-play line feature enhancement block
to facilitate domain transfer and improve recognition perfor-
mance. Extensive experimental results demonstrate that the
proposed method surpasses state-of-the-art methods. Under
extremely few data settings like 40 IDs (only 2.5%of the to-
tal training set), our model achieves a 29% improvement over
RPG-Palm and outperforms ArcFace with 100% training set
by more than 6% in terms of TAR@FAR=1e-6.

Introduction
As a promising biometric technology, palmprint recognition
has demonstrated broad application prospects (Fei et al.
2018). Big companies like Amazon and Tencent have re-
leased palmprint based products. In recent years, deep learn-
ing has become the mainstream palmprint recognition tech-
nology (Zhong and Zhu 2019). However, a significant bot-
tleneck in the research and application of deep learning-
based palmprint recognition lies in the scarcity of large-scale
palmprint datasets. Collecting large-scale palmprint datasets
may pose a risk of violating user privacy.

To address this challenge, BézierPalm (Zhao et al.
2022) uses parameterized Bézier curves to simulate pseudo-
palmprints and pretrain recognition model. By adjusting
the control points of Bézier curves according to geometric
rules, BézierPalm can generate massive new identities with-
out training data. However, as shown in Fig.1, Bézier curves
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Figure 1: BézierPalm (Zhao et al. 2022), RPG-Palm (Shen
et al. 2023), and the proposed two-stage PCE-Palm.

are noticeably different from real palmprints in terms of both
crease distribution and texture. As a result, BézierPalm still
requires a non-neglectable amount of data for finetuning.

Inspired by BézierPalm, RPG-Palm (Shen et al. 2023)
proposes a generation model that directly generates realis-
tic pseudo-palmprints from the Bézier curves with unpaired
training. To address this challenge, the generation model in-
corporates a palmprint recognition model to ensure identity
consistency and a conditional modulation generator to im-
prove the intraclass diversity. As a result, RPG-Palm can
generate massive realistic palmprints and significantly im-
prove recognition performance. Unfortunately, RPG-Palm
still suffers from the severe domain gap and difficulty in
unpaired training. Both identity consistency and generation
models cannot work well with limited training data.

In this paper, we propose a novel two-stage method to
well address the severe domain gap between Bézier curves
and realistic palmprints.

Our method introduces a palm crease energy (PCE) do-
main as an intermediate bridge connecting Bézier curves
and realistic palmprints. Therefore, the generation process
can be divided into two stages: Bézier curves to PCE images
and PCE images to palmprints, as illustrated in Fig.2.

In the first stage, our generation model produces PCE im-
ages by transferring the style from Bézier curves to realistic
palm creases. Both the PCE images and Bézier curves are bi-
nary line-based images, simplifying the task to focus solely
on transferring the style from the curves to realistic creases.
As depicted in Fig.2, although the task remains unpaired,
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Figure 2: The proposed two-stage generation model intro-
duces the PCE domain to bridge the domain gap.

the difficulty is reduced compared to directly generating re-
alistic creases and skin textures from Bézier curves. In the
second stage, we introduce a cycle conditional generation
model to transform images from the PCE domain to the re-
alistic palmprint domain. Since PCE images are extracted
from real palmprints and share the same distribution as real
palm creases, the generation model in the second stage pri-
marily focuses on generating realistic skin textures based on
the provided PCE creases. As shown in Fig.2, the paired su-
pervision further reduces the learning difficulty during the
process. By dividing the challenging unpaired generation
process from Bézier curves to real palmprints into two more
tractable stages, the approach enhances the generation per-
formance and reduces the dependence on real data.

Inspired by the modified finite Radon transform
(MFRAT) (Jia, Huang, and Zhang 2008), we propose a dif-
ferentiable PCE extraction module (PCEM) with improved
Gaussian-MFRAT kernels to establish a suitable PCE do-
main. Cooperating with a cycle loss, the PCEM also serves
as a method for ensuring identity consistency in the second
stage, effectively circumventing the challenge of training
a reliable ID discriminator when facing a scarcity of sam-
ples. Based on the same idea of PCEM, we also introduce
a lightweight line feature enhancement block (LFEB) that
can be integrated into deep networks to enhance the percep-
tion of line features. The main contributions of this paper are
summarized as follows:

• We propose a novel two-stage realistic pseudo-palmprint
generation paradigm. To our best knowledge, we are the
first to divide the palmprint generation task into two
stages: realistic creases generation and realistic textures
generation. By introducing the PCE domain as a bridge
between Bézier curves and real palmprints, the entire
generation process becomes easier and can perform well
even with extremely little training data.

• We propose a differentiable PCE module (PCEM) with
Gaussian-MFRAT kernels, which can conveniently map
real palmprint images to the PCE domain. We also pro-
pose a plug-and-play Line Features Enhancement Block
(LFEB), which can boost the performance of both gener-
ations and recognition models.

• We improve the Bézier curves generation mechanism us-
ing prior knowledge of human dermatoglyphics. The dis-
tribution of improved curves is closer to real creases.

• Experimental results show that the proposed method sur-
passes existing SOTA methods under both full sample
training and few sample training settings. Under ex-

tremely few sample settings like 40 IDs (2.5% of the
training set), PCE-Palm outperforms RPG-Palm by 29%
and 100%-real-data trained ArcFace by more than 6%
(TAR@FAR=1e-6).

Related Work
Palmprint Recognition Methods
Traditional palmprint recognition methods can be roughly
divided into two categories, i.e., the local-based methods
(Fei et al. 2016; Guo et al. 2009; Kong and Zhang 2004; Jia,
Huang, and Zhang 2008; Luo et al. 2016; Sun et al. 2005;
Zheng, Kumar, and Pan 2015) that extract effective local fea-
tures for recognition by manually designing, and the global-
based methods (Almeida, Shmarko, and Lomas 2022; Feng
et al. 2006; Hu, Feng, and Zhou 2007; Lu, Zhang, and Wang
2003; Sang, Yuan, and Zhang 2009; Wang and Ruan 2006)
obtain low-dimensional features from the entire palmprint
ROI. Deep Learning based models (Dian and Dongmei
2016; Genovese et al. 2019; Jia et al. 2022; Svoboda, Masci,
and Bronstein 2016) train neural networks to extract features
of palmprints with improved classification or pair-wise loss
(Deng et al. 2019; Shen et al. 2022; Zhong and Zhu 2019).
However, further research on palmprint recognition is hin-
dered by the lack of large-scale public datasets.

Data Generation for Recognition Task
With the development of generation methods (Goodfellow
et al. 2020; Karras, Laine, and Aila 2019), some models have
been applied for producing pseudo samples in the field of
biometrics, such as recognition-oriented face and 3D face
generation (Deng et al. 2020; Nguyen-Phuoc et al. 2019; Qiu
et al. 2021; Yin et al. 2017; Fu et al. 2019, 2021; Geng, Cao,
and Tulyakov 2019), and fingerprint synthesis (Bahmani
et al. 2021; Engelsma, Grosz, and Jain 2022; Wyzykowski,
Segundo, and de Paula Lemes 2021). For palmprint recog-
nition, BézierPalm (Zhao et al. 2022) first synthesizes fake
palm creases by using parameterized Bézier curves. RPG-
Palm (Shen et al. 2023) further generates realistic pseudo-
palmprints by using Bézier curves as the identity control
condition. However, due to the severe gap between Bézier
curves and real palmprints, RPG-Palm suffers from signifi-
cant performance degradation in cases with few samples.

Few-shot Generation
With limited data, GAN-based models often face challenges
with discriminator overfitting and the imbalance between
discrete data spaces and continuous latent distributions (Li
et al. 2022; Yang and Wang 2023). These issues result in re-
duced fidelity and unstable training processes. Recent few-
shot improvement methods can be divided into the follow-
ing three categories, i.e., data augmentation (Dai, Hang, and
Guo 2022; Jeong and Shin 2021; Karras et al. 2020; Zhao
et al. 2020), regularization (Kong et al. 2022; Yang et al.
2021; Zhang et al. 2019a; Zhao et al. 2021), and trans-
fer learning (Mo, Cho, and Shin 2020; Liu et al. 2019;
Ojha et al. 2021). Nevertheless, among prior optimization
techniques for few-shot generation, there is still a lack of
identity-controllable palmprint generation methods.
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Figure 3: Proposed PCE extraction module (PCEM), (a) the
structure of the PCEM, (b) examples of traditional MFRAT
filters (Jia, Huang, and Zhang 2008), the proposed Gaussian-
MFRAT kernels, and filtered results.

Method
Overall Framework
The framework of the proposed method is illustrated in
Fig.2, which is a two-stage model using PCE as an interme-
diate domain. In the following, we will introduce the PCE
domain in detail, and then introduce the structures of gen-
eration models in two stages. Finally, the improved Bézier
curves generation method is also discussed.

The Construction of Palm Crease Energy Domain
In the PCE domain, we aim to extract binary creases
that are similar to Bézier curves from real palmprint im-
ages. Inspired by the traditional line extraction algorithm
MFRAT (Jia, Huang, and Zhang 2008), which uses a set of
manually designed linear filters and employs a maximum
response strategy to compute the line orientation energy, we
redesign this traditional algorithm into a differentiable PCE
extraction module (PCEM) that can be easily embedded into
deep networks, as shown in Fig.3 (a).

For an input grayscale image Y (256 × 256), a 11 × 11
mean filter is firstly applied to obtain the high-frequency
components by subtracting the filtered result from the origi-
nal Y . Then, the line features are obtained through a line-like

convolution layer that consists of several Gaussian-MFRAT
kernels along different directions. A max-response operation
on channels is presented to achieve non-linearity instead of a
common activation layer, which selects the maximum values
for each pixel along the channel direction and reproduces
a single-channel output that reflects the line orientation en-
ergy. Finally, an adaptive binarization is used to obtain the fi-
nal PCE image. To highlight the principle lines, the binariza-
tion threshold T is set according to the top 10% of the val-
ues on the whole image. Note that the images generated by
PCEM have a black background. To keep with BéizerPalm,
we perform color inversion during subsequent training.

Fig.3 (b) illustrates the differences between MFRAT fil-
ters and the proposed Gaussian-MFRAT kernels. Traditional
MFRAT uses line-like filters with constant values, which are
sensitive to noise or tiny variations. The proposed Gaussian-
MFRAT kernels are calculated as follows,

f (x, y) =
1√
2πσ

exp

(
∥ ( (x − x0) , (y − y0) ) ∥2∞

2σ2

)
, (1)

where (x, y) ∈ L(θ) represents the coordinates on the kernel,
(x0, y0) denotes the central point of it, L(θ) denotes a line
defined on a two-dimensional image plane with an angle of
θ, and σ is a hyperparameter. Additionally, f (x, y) = 0 when
(x, y) ̸∈ L(θ). Referring to (Jia, Huang, and Zhang 2008;
Guo et al. 2009) , we design 12 Gaussian-MFRAT kernels
with the size of 31 × 31 and θ ranging from 0◦ to 165◦, at
intervals of 15◦ in this paper.

Fig.3 (b) shows that the results of Gaussian-MFRAT are
clearer and have less noise. Therefore, we can remove the
inefficient response suppression denoising strategy in tradi-
tional MFRAT, achieving the simplification and differentia-
bility of the PCEM. By means of PCEM, real palmprint im-
ages can be mapped into the PCE domain conveniently.

Transfer from Bézier Palm to PCE Domain
As shown in Fig.4 (a), a generator GB→P is introduced to
transform randomly sampled Bézier curves to PCE images
in the first stage. The main structure of the GB→P is illus-
trated in Fig.4 (b). To simulate the Gaussian-MFRAT convo-
lution in PCEM, a plug-and-play line feature enhancement
block (LFEB) is designed to enforce the network to focus on
the line energy features.

The structure of LFEB is also shown in Fig.4 (b). For
the input feature X ∈ Rh×w×c, the mean value is firstly
subtracted on each channel, and then a dilated convolution
based on Gaussian-MFRAT kernels are computed. The max-
response operation is used to obtain the line energy features.
The size of the Gaussian-MFRAT kernel is often large, we
thus adopt dilated convolutions to reduce computation and
time cost. Finally, the line energy feature is multiplied by a
learnable parameter and added to the original feature X to
obtain the output. The calculation formula is as follows,

fLFEB(Xi) = Xi + sifMAX{wk
G−MFRAT ∗ (Xi − µi)}

Nk
k=1, (2)

where Xi denotes the feature map on the i-th channel, µi de-
notes the mean of Xi, fMAX represents the max-response oper-
ation, wk

G−MFRAT represents the k-th Gaussian-MFRAT ker-
nel, the total number of Gaussian-MFRAT kernels Nk is set
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Figure 4: Transfer from Bézier curves to PCE image, (a) framework of the domain transfer model in the first stage, (b) details
of the proposed generator GB→P and the line feature enhancement block (LFEB).

as 12 , and si denotes a learnable parameter, which adjusts
the degree of feature enhancement for the i-th channel.

The generator GB→P transforms an input Bézier palm
B into a PCE image GB→P(B). To constrain the structural
consistency between B and GB→P(B), a contrastive loss is
used (Park et al. 2020). Specifically, a series of patches are
cropped from both B and GB→P(B). For a query patch q in
GB→P(B), the corresponding patch in B at the same position
is positive sample k+, and other patches in B are negative
samples {k−i }N

i=1. Then, the InfoNCE loss (Park et al. 2020)
is applied to make the positive samples closer and the nega-
tive samples farther apart, as follows:

LCL =
∑

q

− log
exp (q · k+/τ)

exp (q · k+/τ) + ΣN
i=1 exp (q · k−i /τ)

, (3)

where τ is a temperature hyper-parameter.
In addition, to optimize the generation quality of PCE im-

ages, real PCE images extracted from real palmprints are
used as adversarial samples. The commonly used adversar-
ial loss (Goodfellow et al. 2020) is then adopted to drive the
generated results closer to real PCE images.

As a result, the total loss in the first stage is computed as:

Lstage1 = λ1
1 LCL + λ1

2 Ladv(fPCEM(A),GB→P(B)), (4)

where fPCEM denotes the calculation of PCEM, A represents
a random real palmprint image, and λ

1
1, λ1

2 are two weights.

Generate Realistic Palmprint from PCE Domain
The framework of the second stage is shown in Fig.5, for a
real palmprint A, we first map A to the PCE domain using
the PCEM. Then the PCE image fPCEM(A) is input to the
generator GP→R to obtain a realistic pseudo palmprint A∗

that has consistent palm creases with the input PCE image.
We adopt the same generator backbone as in RPG-

palm (Shen et al. 2023), which is a disentanglement-based
U-Net structure. The disentanglement-based model can ef-
fectively decouple the preservation of crease contents and
the generation of styles and details, allowing for diversified
outputs by using the latent codes to control styles during in-
ference, which is naturally suitable for few-shot training.

Figure 5: Conditional generation framework from PCE im-
age to the realistic palmprint in the second stage.

The same ResNet-based encoder E (Shen et al. 2023) is
used to map the input palmprint A to a latent space Q(z |
A) ∼ N(µQ, σ

2
Q) with mean µQ and variance σ2

Q by reparam-
eterization trick (Zhu et al. 2017b). Then the latent vector is
fed into generator GP→R to control the generated styles. In
the training phase, we constrain the divergence of the latent
vector to make the distribution of the latent space N(µQ, σ

2
Q)

approach to N(0, 1). The LKL loss is calculated as,

LKL = −1

2
(1 + log σ2

Q − σ2
Q − µ2

Q). (5)

By approximating the latent space to the standard normal
space, we can easily sample random noise z ∼ N(0, 1) as la-
tent control vectors to generate diversified palmprint details
in the inference phase.

As mentioned before, it is difficult to train a reliable palm-
print recognition network for ID loss (Shen et al. 2023) with
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Figure 6: The whole pseudo palmprint generation pipeline
in the inference phase.

very few samples. Therefore, we employ a cycled struc-
ture with the proposed PCEM to map the generated realis-
tic palmprint A∗ back to the PCE domain. By minimizing
the L1 distance between original fPCEM(A) and generated
fPCEM(A∗), the generated palmprint A∗ can be constrained
to strictly preserve the ID information of the input fPCEM(A).
The cycled ID consistency loss is defined as follows,

Lcyc =∥ fPCEM(A)− fPCEM(GP→R(fPCEM(A)) ∥1 . (6)

In addition, the distortion of the generated palmprint im-
ages is constrained by calculating the L1 loss between palm-
print A and the generated palmprint A∗, and a discriminator
D based on PatchGAN (Demir and Unal 2018) is applied to
enforce the realism of the generated palmprints.

Data augmentation module Note that training with few
samples directly may result in overfitting of the discrimi-
nator. To mitigate this issue, we adopt a differentiable data
augmentation module T (Karras et al. 2020) before feeding
the generated and real images into the discriminator. The
generation loss is calculated as,

LG = λ2
1 L1(A,A∗) + λ2

2 Ladv(T (A), T (A∗)). (7)

The total loss for the second stage is then computed as:

Lstage2 = LG + λ2
3 LKL + λ2

4 Lcyc, (8)

where λ
2
1, λ2

2, λ2
3, λ2

4 denote weights of different loss terms.

Inference Pipeline
The inference process of the proposed method is illustrated
in Fig.6. Bézier curves are first generated with randomly
sampled control points. Then, the generator GB→P is used to
transfer Bézier curves to the PCE domain. After that, trained
generator GP→R can produce realistic palmprints using PCE
images as ID condition. To generate diversified palmprints,
random noise vectors are input to GP→R as the latent control
vectors to reproduce various light and skin textures.

Improved BézierPalm
Randomly sampled Bézier curves in BézierPalm (Zhao et al.
2022) are significantly different from the distribution of real
palm creases. Therefore, we improve control point sampling
mechanism based on prior knowledge from human dermato-
glyphics researchs (Park et al. 2010), which divides princi-
ple palm lines into 5 types of templates, as shown in Fig.7.

Figure 7: 5 types of improved Bézier curves templates.

Based on the statistical information of human dermatoglyph-
ics researchs, these templates can provide a more accurate
range of control points. The improved Bézier curves are
closer to the distribution of real creases, thus minimizing the
gap between generated and real palmprints.

Improved Recognition Model With LFEB
To further enhance the line features of input palmprints, we
tend to apply the proposed LFEB to the recognition model.
We incorporate an LFEB before the first convolutional layer
of the backbone. This plug-and-play module can enhance
the line energy features of the input palmprint images.

Experiment
Experimental Setup
We follow the same experimental datasets and Open-set
evaluation protocol as in BézierPalm (Zhao et al. 2022) and
RPG-Palm (Shen et al. 2023). The recognition model per-
formance is evaluated in terms of TAR@FAR, where TAR
and FAR stand for ”True Accept Rate” and ”False Accept
Rate” respectively. FID (Heusel et al. 2017) metric is used
to evaluate the quality of the generated palmprint images.

Datasets We adopt 13 public datasets in our experiments
following BézierPalm and RPG-Palm. The public palm-
prints come from various devices with 3,268 IDs and 59,162
images in total. We follow detect-then-crop protocol (Zhang
et al. 2019b) to extract the Region Of Interests (ROIs).
Since palm creases are vertically distributed in polyu-ms and
polyu-2d+3d, we rotate them 90 degrees clockwise.

Implementation Details of Generation Model Follow-
ing the BézierPalm and RPG-Palm, we generate 4000 iden-
tities with 100 samples for each identity by default. For the
first stage, the λ

1
1, λ1

2, and τ are set to 1.0, 1.0 and 1.0, and
the learning rate is 0.0002 in the first 30 epochs and linearly
decays to 1e − 6 in the last 30 epochs. For the second stage,
we set λ2

1, λ2
2, λ2

3, and λ
2
4 to 1.0, 10.0, 0.01 and 1.0 respec-

tively, and the learning rate is 0.0002 in the first 50 epochs
and linearly decays to 1e− 8 in the last 50 epochs according
to (Shen et al. 2023). The Adam optimizer parameters are
set to (0.5, 0.99) in the training phase. The resolution of all
images in the above training is 256× 256.

Implementation Details of Recognition Model For a
fair comparison, we adopt the same backbones of recogni-
tion model as BézierPalm (Zhao et al. 2022), i.e., ResNet50
(He et al. 2016) and MobileFaceNet (Chen et al. 2018) with
input resolution of 224 × 224. The recognition model is
firstly pretrained on synthesized data for 25 epochs and then
finetuned on real datasets for 50 epochs. The compared base-
line model is trained on real datasets for 50 epochs. Arc-
Face(Deng et al. 2019) with margin m = 0.5 and scale fac-
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Method Backbone
train : test = 1 : 1 train : test = 1 : 3

TAR@
1e-3

TAR@
1e-4

TAR@
1e-5

TAR@
1e-6

TAR@
1e-3

TAR@
1e-4

TAR@
1e-5

TAR@
1e-6

CompCode N/A 0.4800 0.4292 0.3625 0.2103 0.4501 0.3932 0.3494 0.2648
LLDP N/A 0.7382 0.6762 0.5222 0.1247 0.7372 0.6785 0.6171 0.2108
BOCV N/A 0.4930 0.4515 0.3956 0.2103 0.4527 0.3975 0.3527 0.2422
RLOC N/A 0.6490 0.5884 0.4475 0.1443 0.6482 0.5840 0.5224 0.3366
DOC N/A 0.4975 0.4409 0.3712 0.1667 0.4886 0.4329 0.3889 0.2007
PalmNet N/A 0.7174 0.6661 0.5992 0.1069 0.7217 0.6699 0.6155 0.2877
C-LMCL MB 0.9290 0.8554 0.7732 0.6239 0.8509 0.7554 0.7435 0.5932
ArcFace MB 0.9292 0.8568 0.7812 0.7049 0.8516 0.7531 0.6608 0.5825
BézierPalm MB 0.9640 0.9438 0.9102 0.8437 0.9407 0.8861 0.7934 0.7012
RPG-Palm MB 0.9802 0.9714 0.9486 0.8946 0.9496 0.9267 0.8969 0.8485
Ours MB 0.9873 0.9806 0.9547 0.9169 0.9674 0.9481 0.9317 0.9079
C-LMCL R50 0.9545 0.9027 0.8317 0.7534 0.8601 0.7701 0.6821 0.6254
ArcFace R50 0.9467 0.8925 0.8252 0.7462 0.8709 0.7884 0.7156 0.6580
BézierPalm R50 0.9671 0.9521 0.9274 0.8956 0.9424 0.8950 0.8217 0.7649
RPG-Palm R50 0.9821 0.9732 0.9569 0.9347 0.9533 0.9319 0.9016 0.8698
Ours R50 0.9916 0.9879 0.9827 0.9762 0.9624 0.9626 0.9438 0.9271

Table 1: Quantitative results under the open-set protocol where the performances are evaluated in terms of TAR@FAR. ‘MB’
is MobileFaceNet (Chen et al. 2018) and ‘R50’ is resnet50 (He et al. 2016).

tor s = 48 is used for the pretraining, finetuning, and base-
line training supervision. We employ the cosine learning rate
schedule with one warmup epoch. Maximum and minimum
learning rates for both pretraining and finetuning are set as
1e − 2 and 1e − 6, respectively. All recognition models are
trained using a mini-batch SGD with a batch size of 128, and
implemented with Pytorch on 4 NVIDIA Tesla V100 GPUs.

Experimental Results
Open-set Palmprint Recognition We first verify the per-
formance of the recognition model under the Open-set pro-
tocol, where the training identities and testing identities
are completely isolated. We adopt two different training
and testing ratios of 1:1 and 1:3 (i.e., train-IDs:test-IDs are
1634 : 1632 and 818 : 2448). We compare traditional and
deep learning-based palmprint recognition methods (Kong
and Zhang 2004; Luo et al. 2016; Guo et al. 2009; Jia,
Huang, and Zhang 2008; Fei et al. 2016; Genovese et al.
2019; Zhong and Zhu 2019; Deng et al. 2019; Zhao et al.
2022; Shen et al. 2023), and quantitative results are shown
in Tab.1. Our method improves the RPG-Palm with a clear
margin and achieves SOTA performance under both 1:1 and
1:3 settings. The improvement of our method under the 1:3
setting is greater than 1:1 setting, showing the effectiveness
of our method with fewer real data.

Palmprint Recognition with Limited IDs To validate
the performance of our method with limited training data,
we test the model with various numbers of training identities
under the 1:1 open-set protocol. In our experiments, total of
4000 pseudo IDs are synthesized, and each ID contains 100
pseudo palmprints. The same MobileFaceNet is adopted as
a recognition backbone for different methods. As shown in
Tab 2, ArcFace, BézierPalm, and RPG-Palm become unus-
able when training with very few real IDs, but our method
is able to maintain the performance. When trained with only

Method #ID TAR@FAR=
1e-3 1e-4 1e-5 1e-6

ArcFace
1,600

0.9292 0.8568 0.7812 0.7049
BézierPalm 0.9640 0.9438 0.9102 0.8437
RPG-Palm 0.9802 0.9714 0.9486 0.8946
Ours 0.9873 0.9806 0.9547 0.9169
ArcFace

800
0.8934 0.7432 0.7104 0.6437

BézierPalm 0.9534 0.9390 0.9025 0.8164
RPG-Palm 0.9783 0.9687 0.9356 0.8741
Ours 0.9846 0.9718 0.9473 0.8976
ArcFace

400
0.8102 0.7050 0.6668 0.3320

BézierPalm 0.9189 0.8497 0.7542 0.6899
RPG-Palm 0.9573 0.9324 0.8836 0.8162
Ours 0.9679 0.9567 0.9259 0.8572
ArcFace

160
0.6761 0.5294 0.4783 0.2437

BézierPalm 0.8179 0.6998 0.5826 0.4832
RPG-Palm 0.9356 0.8641 0.8063 0.7246
Ours 0.9581 0.9247 0.8861 0.8245
ArcFace

80
0.5384 0.4682 0.3249 0.1173

BézierPalm 0.6547 0.5511 0.4490 0.3743
RPG-Palm 0.8974 0.8092 0.6947 0.5824
Ours 0.9421 0.9009 0.8438 0.7722
ArcFace

40
0.4582 0.3908 0.2505 0.0934

BézierPalm 0.6218 0.5145 0.3937 0.3472
RPG-Palm 0.8136 0.6942 0.5894 0.4796
Ours 0.9351 0.8881 0.8340 0.7694
ArcFace

16
0.4431 0.3758 0.2372 0.0723

BézierPalm 0.5997 0.4883 0.3542 0.2978
RPG-Palm 0.6958 0.5714 0.4286 0.3271
Ours 0.9058 0.8203 0.7469 0.6554

Table 2: Performance under different real training identities.
The generation model and the recognition model access the
same number of real training identities.

2.5% real IDs (40), our model still outperforms the results
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Method FID↓
train:test=1:1 (with 40 IDs)

TAR↑
@1e-3

TAR↑
@1e-4

TAR↑
@1e-5

TAR↑
@1e-6

pix2pixHD 218.1 0.6475 0.5062 0.3708 0.2431
CycleGAN 385.8 0.6982 0.5697 0.4312 0.3162
BicycleGAN 168.8 0.7472 0.6373 0.4978 0.3649
RPG-Palm 188.9 0.8136 0.6942 0.5894 0.4796
Ours 40.3 0.9351 0.8881 0.8340 0.7694

Table 3: Quantitative recognition results using different gen-
eration methods under the open-set protocol.

Figure 8: Generated palmprint images of different methods,
(a) input BézierPalm, (b) pix2pixHD, (c) CycleGAN, (d) Bi-
cycleGAN, (e) RPG-Palm, (f) PCE image, (g)-(j) diversity
results of PCE-Palm.

of ArcFace trained with 100% of real IDs (1600).
Comparison of Generation Methods Four generation

methods pix2pixHD (Wang et al. 2018), CycleGAN (Zhu
et al. 2017a), BicycleGAN (Zhu et al. 2017b) and RPG-
Palm (Shen et al. 2023) are used for comparison, which are
all retrained using 40 real IDs with unpaired data following
RPG-Palm. The quantitative results are shown in Tab.3. The
recognition model pretrained based on our method is much
better than other methods. Our method can also achieve an
FID score of 40.3, showing a significant improvement. The
generated palmprints are illustrated in Fig.8. Under the small
amount of training data, the generated samples of RPG-
Palm exhibit severe blurring and inconsistent lines, while
our method still maintains the overall clarity and ID consis-
tency. Additionally, our method can restore better-detailed
information on the palm creases, including the change of
thickness. The results of pix2pixHD, CycleGAN, and Bicy-
cleGAN exhibit a more severe blur problem than RPG-Palm.

Ablation Study
Components and Design Choices The main components
and design choices of our method are PCEM, data augmen-
tation (DA) module for few-samples, improved Bézier curve
synthesis, generation model with LFEB, and recognition
model with LFEB. We use ”P”, ”A”, ”I”, ”G+L” and ”R+L”
to represent them respectively. For the baseline generation
model, we use the two-stage training method and remove
the above modules. The ablation experiments are trained us-
ing 40 IDs. The test set is fixed under 1:1 open-set protocol.
Results of the ablation test are shown in Tab.4. Model with

P A I G+L R+L TAR@FAR=
1e-4 1e-5 1e-6

% % % % % 0.5503 0.4556 0.4144
! % % % % 0.7022 0.6149 0.5525
! ! % % % 0.7449 0.6691 0.6077
! ! ! % % 0.7757 0.7094 0.6385
! ! ! ! % 0.8238 0.7743 0.7060
! ! ! ! ! 0.8881 0.8340 0.7694

Table 4: Ablation of different components in our method.
‘P’, ‘A’, ’I’, ‘G+L’, and ‘R+L’ denote PCEM, DA module,
improved BézierPalm, generation model with LFEB, and
recognition model with LFEB, respectively.

Figure 9: Visualization of input image and features, (a)
palmprint image; (b) normalized image after LFEB; (c) fea-
ture visualization without LFEB; (d) feature visualization
with LFEB.

PCEM achieves the greatest performance improvement at
13.81%@FAR=1e-6, which reflects the superiority of gen-
erating realistic samples under limited data. By compar-
ing with the baseline generation and recognition model, the
LFEB module brings significant and consistent performance
gain of 6%@FAR=1e-6 by enhancing palm creases energy
features. DA module achieves 5.52%@FAR=1e-6 improve-
ment by effectively expanding the intra-class diversity with
few numbers of training samples. In addition, our improve-
ment of Bézier curves also leads to better performance by
introducing a more reasonable distribution of palm creases.

Visualizations of LFEB To further verify the effective-
ness of the LFEB module, we visualize the features of the
layer1 block in MobileFaceNet with and without the en-
hancement of LFEB in Fig.9. It can be seen in Fig. 9 (c)
that the model pays attention to both palm creases and non-
line regions without LFEB. By adding the LFEB module,
the model can focus on palm creases, as in Fig. 9 (d).

Conclusion
This paper introduces a novel two-stage realistic pseudo
palmprint generation method. A new PCE domain is pro-
posed to address the challenge of generating from Bézier
to palmprints under limited data. Additionally, a line feature
enhancement block is introduced to further improve the gen-
eration and recognition models. Furthermore, an improved
Bézier curve generation mechanism is proposed, aligning
with the distribution of real creases. Experimental results
demonstrate that the proposed method significantly outper-
forms state-of-the-art methods, particularly under few-shot
conditions.
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