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Abstract

Automatic medical report generation (MRG) is of great re-
search value as it has the potential to relieve radiologists from
the heavy burden of report writing. Despite recent advance-
ments, accurate MRG remains challenging due to the need
for precise clinical understanding and disease identification.
Moreover, the imbalanced distribution of diseases makes the
challenge even more pronounced, as rare diseases are un-
derrepresented in training data, making their diagnosis un-
reliable. To address these challenges, we propose diagnosis-
driven prompts for medical report generation (PromptMRG),
a novel framework that aims to improve the diagnostic accu-
racy of MRG with the guidance of diagnosis-aware prompts.
Specifically, PromptMRG is based on encoder-decoder archi-
tecture with an extra disease classification branch. When gen-
erating reports, the diagnostic results from the classification
branch are converted into token prompts to explicitly guide
the generation process. To further improve the diagnostic ac-
curacy, we design cross-modal feature enhancement, which
retrieves similar reports from the database to assist the diag-
nosis of a query image by leveraging the knowledge from a
pre-trained CLIP. Moreover, the disease imbalanced issue is
addressed by applying an adaptive logit-adjusted loss to the
classification branch based on the individual learning status
of each disease, which overcomes the barrier of text decoder’s
inability to manipulate disease distributions. Experiments on
two MRG benchmarks show the effectiveness of the proposed
method, where it obtains state-of-the-art clinical efficacy per-
formance on both datasets.

Introduction
Automated analysis of medical images involves wide range
of tasks, such as anomaly detection (Cai et al. 2022), disease
classification (Luo et al. 2022, 2020), lesion detection (Luo
et al. 2021), landmark detection (Jin, Che, and Chen 2023),
etc. Among them, medical report generation (MRG) is a task
to generate a free-text description of a medical image, where
it provides a comprehensive summary of the image’s con-
tent. Due to its potential in relieving the heavy workload of
radiologists, many works haven been proposed for MRG in
recent years.
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Ground-truth: There is opacity 
to suggest pneumonia.

Prediction 1: There is no opacity 
to suggest pneumonia.

Prediction 2: There are right 
lower lobe opacities concerning 
for pneumonia.
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Figure 1: (a) Comparison of two predictions. (b) F1 scores
of five SOTA methods, a vanilla classifier, and our pro-
posed model on MIMIC test. (c) F1 scores of a vanilla MRG
model over different diseases on MIMIC test, and diseases
are sorted in ascending order of training numbers.

However, it is challenging to generate an accurate medical
report as it demands a comprehensive understanding of the
given image, especially the ability to identify clinical find-
ings. For example, Figure 1(a) shows two sample predictions
of a chest X-ray alongside the ground-truth (GT). While the
wording of the first prediction is highly similar to the GT, its
diagnosis regarding opacity and pneumonia is incorrect. In
contrast, the second prediction is preferred as it successfully
identifies opacity and pneumonia, albeit the different word-
ing. Therefore, an ideal MRG system should be able to iden-
tify abnormalities accurately, then convert the findings into
texts with both linguistic precision and clinical relevance.

To obtain a MRG system with satisfactory performance,
various methods have been proposed. For example, knowl-
edge graph is an effective technique to enhance feature
learning and diagnostic ability by injecting domain knowl-
edge into the model (Zhang et al. 2020; Liu et al. 2021a);
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multi-task learning has also been widely used for obtaining
better feature representations, where extra auxiliary tasks are
simultaneously conducted (Jing, Xie, and Xing 2018; Wang
et al. 2022; Yan and Pei 2022). Despite the success, state-of-
the-art (SOTA) methods still lack the ability in generating
diagnostically correct reports. As evidenced by our obser-
vation shown in Figure 1(b), a vanilla disease classification
model outperforms most SOTA MRG methods significantly
in terms of the F1 score of clinical efficacy (CE). In MRG,
CE serves as a metric for assessing the diagnostic accuracy
of generated reports. Thus, the figure indicates the existing
MRG methods have not fully leveraged the diagnostic infor-
mation in medical images, which is an obstacle to the appli-
cation of MRG. Additionally, the biased distribution of dis-
eases leads to imbalanced CE performance (see Figure 1(c)).
Yet, this issue has not been addressed in prior works, which
further reduces the clinical value of current MRG models as
their diagnosis on rare diseases are unreliable.

Inspired by the above observations, we propose
PromptMRG, a MRG framework with diagnosis-driven
prompts (DDP), aiming to improve the CE performance of
MRG with the guidance of diagnostic results. Specifically,
based on the encoder-decoder architecture, PromptMRG
is also equipped with a disease classification branch.
When generating reports, the diagnostic results from the
classification branch are converted into token prompts to
explicitly guide the generation process. To further improve
the diagnostic accuracy, we design cross-modal feature
enhancement (CFE), which retrieves similar reports from
the database to assist the diagnosis of a query image
by leveraging a pre-trained CLIP model. Moreover, the
disease imbalanced issue is also explicitly addressed via
self-adaptive disease-balanced learning (SDL), which
adaptively adjusts the optimization objectives of different
diseases based on their learning status. Experiments on two
MRG benchmarks show the effectiveness of the proposed
method, where it obtains SOTA CE performance on both
datasets. We summarize contributions as follows.
• We propose a new MRG framework that utilizes a dis-

ease classification branch to guide the report generation
process via token prompts, enabling the model to pro-
duce diagnostically correct reports. We demonstrate its
superiority via two benchmarks, where it obtains SOTA
CE performance on both datasets.

• A feature enhancement module is designed to improve
the disease classification performance by leveraging the
multi-modal knowledge from a pre-trained foundation
model for similar records retrieval.

• Self-adaptive disease-balanced learning is proposed to
address the imbalanced learning among diseases by ap-
plying an adaptive logit-adjusted loss to the classification
branch, which overcomes the barrier of text decoder’s in-
ability to manipulate disease distributions.

Related Works
Medical Report Generation
Most MRG models adopted the encoder-decoder architec-
ture from image captioning (Xu et al. 2015; Lu et al. 2017;

Ji et al. 2021) due to the similarity of the two tasks. How-
ever, MRG is more challenging than captioning as reports
are much longer than captions while the clinical abnor-
malities are more difficult to identify than natural objects.
Therefore, various methods have been proposed to tackle
the above challenges. Chen et al. (2020) and Yang et al.
(2023) proposed extra memory modules to record past simi-
lar patterns for providing informative content during the de-
coding process, such that the generation performance could
be improved. The proposed CFE in this paper also retrieves
similar records as extra information, but differently, it uti-
lizes these information to enhance the disease classification
branch rather than the generation process.

Knowledge graph has been widely used to incorporate
domain knowledge to assist report generation. For exam-
ple, Zhang et al. (2020) and Liu et al. (2021a) proposed
to combine a pre-constructed graph to denote the relation-
ship between diseases and organs via graph neural networks,
which allows for dedicated feature learning of the abnormal-
ities. Later, Li et al. (2023) developed a method to dynami-
cally update the graph by injecting new knowledge on-the-
fly. Huang, Zhang, and Zhang (2023) designed an injected
knowledge distiller to fuse the knowledge from a symptom
graph into the final decoding stage, which shares a similar
spirit to our DDP. Nevertheless, DDP explicitly tackles the
CE issue via a different guidance mechanism (i.e., prompts),
and shows much stronger performance in CE.

Multi-task learning is another common technique to facil-
itate the representation learning of MRG. Among the aux-
iliary tasks, disease classification is the most popular one
as it helps model to learn discriminative features (Jing, Xie,
and Xing 2018; Wang et al. 2022; Yan and Pei 2022). Simi-
larly, weakly supervised contrastive learning was introduced
by Yan et al. (2021) as an auxiliary task to learn a semanti-
cally meaningful space. Additionally, image-text matching
was explored (Wang et al. 2022, 2021; Yan and Pei 2022) to
learn an aligned image-text representations in a fine-grained
manner. Despite the usage of disease classification in this
work, we highlight the key difference as follows. Previous
methods often treat classification as a parallel task and ex-
pect it to benefit report generation in an implicit way through
learning discriminative features. In contrast, we make use of
the diagnostic results from the classification via prompts to
explicitly guide the generation process. RGRG (Tanida et al.
2023) is the most related work to ours, which leverages ob-
ject detector as a region guidance for sentence-wise genera-
tion. However, their decoder only attends to the regional vi-
sual features as most previous works do while ours attends to
both visual features and prompts, where the prompts enable
the decoder to explicitly leverage the diagnostic information
for generating clinically correct reports.

Prompt as Guidance
Prompting is originally a technique from natural language
processing for improving the generalization of language
models (Liu et al. 2023). Instead of training various tasks
in supervised learning individually, prompting enables lan-
guage models to unify and adapt to a wide range of tasks
by modifying inputs into textual templates. Later, some
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Figure 2: The overall framework of PromptMRG, which mainly consists of an image encoder and a text decoder for report
generation. The diagnosis-driven prompts module is proposed to guide the decoder for diagnostically correct reports. The
cross-modal feature enhancement is designed to enhance the feature for disease classification via a report database. The self-
adaptive disease-balanced learning is further proposed to handle the imbalanced performance among diseases.

works (Li and Liang 2021; Lester, Al-Rfou, and Constant
2021; Liu et al. 2021b) adopted this technique for efficient
fine-tuning, where prompts act as trainable task-specific vec-
tors. Due to the effectiveness and simplicity, prompt tun-
ing was further introduced to vision (Jia et al. 2022) and
vision-language models (Radford et al. 2021; Zhou et al.
2022; Tsimpoukelli et al. 2021; Alayrac et al. 2022). More
recently, there are works treating prompts as a guidance for
improving the performance of specific tasks. For example,
Qin et al. (2023) developed an automatic generation method
of medical prompts to improve the knowledge transferabil-
ity of pre-trained vision-language models to medical object
detection. Ge et al. (2022) proposed to embed domain in-
formation into prompts for unsupervised domain adaptation.
In this paper, we convert diagnostic results into prompts to
guide report generation. To the best of our knowledge, this
is the first work that introduces prompts to the task of MRG.

Method
In this section, we first introduce the overall framework of
our model, then present the proposed modules, respectively.

Framework
The overall architecture is shown in Figure 2. As can be
seen, PromptMRG follows the mainstream encoder-decoder
architecture, where the encoder fe extracts visual features
of an image I and the decoder fd generates report R condi-
tioned on both visual features and diagnosis-driven prompts.
Formally, we denote the visual feature extraction as

fe(I) = X = {x1,x2, ...,xS}, (1)

where xi ∈ RC is a feature patch, C denotes the feature
dimension, and S is the number of patches. We denote each
report as R = {r1, r2, ..., rT }, ri ∈ V, where each ri is a
token, T is the length of the report, and V represents the
vocabulary. The process of decoding is formulated as

rt = fd(X, d1, ..., dL, r1, ..., rt−1), (2)

where rt is the token to be predicted at time step t and
{d1, ..., dL} are diagnosis-driven prompts (see next subsec-

tion). Language modeling loss is used as the primary loss:

LLM = −
T∑

t=1

log p(rt|r1, ..., rt−1, X, d1, ..., dL). (3)

Diagnosis-Driven Prompts
Generating texts that are consistent with the diagnostic re-
sults is essential to the task of MRG. This is because the
report of a medical image should not only provide a compre-
hensive summary, but also reflect the clinical significance. If
the generated report is not diagnostically accurate, it may
give a wrong conclusion of an exam, which can lead to seri-
ous consequences. However, we have observed that existing
models have difficulty in generating reports with satisfactory
clinical efficacy. Specifically, we trained a vanilla disease
classification model on MIMIC training set and compared it
with SOTA MRG methods on MIMIC test set in terms of F1
score. From the result shown in Figure 1(b), we see that the
classification model outperforms most SOTA methods by a
large margin, indicating that the existing MRG models still
lack the ability in generating diagnostically accurate reports.

Motivated by the above observation, we propose
diagnosis-driven prompts (DDP), which act as a guidance of
the text decoder by conveying the diagnostic results from a
disease classification branch. The branch takes as inputs the
average pooled visual features with cross-modal enhance-
ment (see next subsection), and outputs the classification re-
sults via L classification heads, where L is the number of
diseases. Each classification head conducts a 4-class clas-
sification task via a fully connected layer, namely ’Blank’,
’Positive’, ’Negative’, and ’Uncertain’. The classification la-
bels can be obtained with CheXbert (Smit et al. 2020) by
converting reports into 14 predefined disease labels and the
training can be done with standard cross-entropy loss LCE.

During inference, the classification results are converted
into token prompts, where each token prompt corresponds
to one disease. To achieve this, we add four new tokens,
[BLA], [POS], [NEG], and [UNC], to the vocabulary to
represent the four classification classes, respectively. In this
way, the decoder can explicitly refer to these prompts for
generating reports with better clinical efficacy. We also give
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Report
… The aorta also appears 

significantly enlarged at the arch …

Prompt
Tell me the aorta/aortic situation based on the given 
paragraph by returning one of the letters (A/B/C/D). 
• If it is not mentioned, return A; 
• If it is abnormal, return B; 
• If it is normal, return C; 
• If it is uncertain, return D. 
The paragraph starts: …

Vicuna-13B

BPositive

Convert

QueryAnswer

Figure 3: An example prompt we used to query the label of
Aorta from Vicuna-13B.

quantitative results to compare different types of prompts
and qualitative examples to show how the prompts guide the
generation process via attention weights (see Experiments).

Auxiliary Disease Labeling With LLMs. We found that
the reports of our training data cover more abnormalities
than the predefined 14 diseases, and these extra disease in-
formation can also be beneficial to accurate diagnosis. Thus,
we leverage the ability of large language models (LLMs) to
obtain labels of four auxiliary abnormalities, including 1)
Aorta, 2) Bone/Spine, 3) Hemidiaphragm, and 4) Lung Vol-
ume. Specifically, we used Vicuna-13B (Zheng et al. 2023)
as our labeling assistant, and we present it reports with dis-
ease related prompts for querying the label of target diseases.
Figure 3 shows an example prompt that we used for auxil-
iary disease labeling.

Cross-Modal Feature Enhancement
Solely based on medical images for diagnosis can be sub-
optimal, as radiologists can usually access extra documents
for references, such as patient information and diagnostic
database. Inspired by this, in addition to the visual features,
we also resort to the report database of training data to obtain
more robust features for disease classification. To this end,
we propose cross-modal feature enhancement (CFE), and its
architecture is shown in Figure 4. In CFE, we first leverage a
CLIP model pre-trained on MIMIC training set (Endo et al.
2021) to perform cross-modal retrieval, which gives us top-
k report features of a given image I . Then these features
are aggregated into an embedding via a dynamic aggrega-
tion (DA) module, which is further concatenated with the
visual feature for disease classification. Formally, we have

xE = DA(X ′,xV )⊕ xV , (4)
where X ′ = {x′

1, ...,x
′
k} is the retrieved top-k report fea-

tures, xV is the average pooled visual feature, and ⊕ repre-
sents concatenation. To dynamically extract report features
with respect to the visual feature xV , we implement DA as
Transformer attention modules (Vaswani et al. 2017). X ′

first goes through a self-attention layer, then the output is
used as the key and value of a cross-attention layer while
xV is the query. Thus, DA can be formulated as

DA(X ′,xV ) = Cross-Attn(Self-Attn(X ′),xV ). (5)
Note that the DA module is trainable while the CLIP is
frozen during training. We argue that the philosophy of CFE
is similar to the workflow of radiologists. In clinical practice,
when radiologists are uncertain about the diagnosis of a new
medical image, they may refer to past records for compari-
son and verification so that the results are more reliable.

Multi-Head
Attention

Add&Norm

Feed
Forward

Add&Norm

Feed
Forward

Add&Norm

Multi-Head
Attention

Add&Norm ⨁
CLIP

Report Database

qkvqkv

𝒙!

𝐼 𝒙"𝑿#𝑓! " &Pool
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Self-Attn Cross-Attn

Dynamic Aggregation

Query
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Figure 4: Architecture of cross-modal feature enhancement.

Self-Adaptive Disease-Balanced Learning
Due to the biased nature of diseases, some abnormalities
are common to see in the reports while some are quite rare.
Such an imbalanced distribution would lead to imbalanced
learning of diseases, where the common diseases can be
well identified but the rare ones are of poor performance.
This also applies to the largest MRG dataset MIMIC (Chen
et al. 2020; Nicolson, Dowling, and Koopman 2022). To ver-
ify it, we trained a vanilla MRG model (i.e., our baseline)
on MIMIC, and plot the F1 score of 14 diseases individu-
ally. As can be seen from Figure 1(c), the performance gap
between different diseases can be quite large. This imbal-
anced problem makes the diagnosis of rare diseases unreli-
able, thus considerably affecting the clinical application of
MRG. Although this problem has been noted by some prior
works (Chen et al. 2020; Nicolson, Dowling, and Koopman
2022), no solution has been proposed to address this issue
explicitly. It may be due to the insensitivity of the text de-
coder to diseases, as it generates words solely based on like-
lihoods without distinguishing between different diseases.
Thus, it is not straightforward to manipulate the distribution
of diseases through the decoder.

In this paper, we aim to address the imbalanced issue via
the classification branch as it is directly related to the learn-
ing of different diseases. When the imbalanced issue is han-
dled within the classification branch, the disease-balanced
results could then be used to guide the report generation via
the proposed prompts. To this end, we propose self-adaptive
disease-balanced learning (SDL), an algorithm that adap-
tively adjusts the learning objectives of different diseases
based on their learning status. To balance the learning be-
tween diseases, we introduce the logit-adjusted loss (Menon
et al. 2020), which encourages rare diseases to learn more by
decreasing their logits during optimization. For a given dis-
ease D, its logit-adjusted loss against label P (i.e., Positive)
is formulated as

ℓD(y = P, f(xE))

= − log
efy(x

E)+log πD∑
y′ ̸=P efy′ (xE) + (efy(x

E)+log πD )
,

(6)

where fy(xE) is the logit of class y, and πD is the class dis-
tribution of disease D. The loss against non-positive labels
remains the same as LCE.
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Dataset Model Year CE Metrics NLG Metrics
Precision Recall F1 BLEU-1 BLEU-4 METEOR ROUGE

MIMIC

R2Gen 2020 0.333 0.273 0.276 0.353 0.103 0.142 0.277
M2TR 2021 0.240 0.428 0.308 0.378 0.107 0.145 0.272
MKSG 2022 0.458 0.348 0.371 0.363 0.115 - 0.284
CliBert 2022 0.397 0.435 0.415 0.383 0.106 0.144 0.275
CVT2Dis.∗ 2022 0.356 0.412 0.384 0.392 0.124 0.153 0.285
M2KT 2023 0.420 0.339 0.352 0.386 0.111 - 0.274
ME 2023 0.364 0.309 0.311 0.386 0.124 0.152 0.291
KiUT 2023 0.371 0.318 0.321 0.393 0.113 0.160 0.285
DCL 2023 0.471 0.352 0.373 - 0.109 0.150 0.284
RGRG∗# 2023 0.461 0.475 0.447 0.373 0.126 0.168 0.264

Ours - 0.501 0.509 0.476 0.398 0.112 0.157 0.268

IU X-Ray

R2Gen† 2020 0.141 0.136 0.136 0.325 0.059 0.131 0.253
CVT2Dis.∗† 2022 0.174 0.172 0.168 0.383 0.082 0.147 0.277
M2KT† 2023 0.153 0.145 0.145 0.371 0.078 0.153 0.261
DCL† 2023 0.168 0.167 0.162 0.354 0.074 0.152 0.267
RGRG∗† 2023 0.183 0.187 0.180 0.266 0.063 0.146 0.180

Ours - 0.213 0.229 0.211 0.401 0.098 0.160 0.281

Table 1: Comparison with SOTA MRG methods on MIMIC-CXR and IU X-Ray. ∗ indicates the used image size is larger than
224. † indicates the performance evaluated by us. # indicates the usage of a different data split. The best results are in bold.

However, the fixed class distribution (Menon et al. 2020)
used for logit adjustment cannot reflect the learning dynam-
ics of diseases because these diseases not only have varied
distributions, but are also with different learning difficulties.
This issue is also depicted in Figure 1(c), where diseases
are arranged in ascending order of training numbers, and
their performance does not necessarily improve as the train-
ing number increases. Inspired by Zhang et al. (2021), we
propose to utilize prediction scores as an assessment of the
learning status for different diseases: a large score indicates
a well-learned disease while a small one implies that the dis-
ease is not sufficiently learned. Thus, the class distribution π
can be initialized with the statistics from training data, then
adaptively updated with the following formula:

π(j) = [sj1, s
j
2, ..., s

j
L], (7)

where sji is the average prediction score of the i-th disease
on the validation set at the j-th epoch. We denote the loss of
SDL as LSDL, and the total training loss of our model is

L = LLM + λLSDL, (8)

where λ is the balancing coefficient.

Experiments
Datasets
1) MIMIC-CXR (Johnson et al. 2019) is the largest MRG
dataset with chest X-rays and paired reports. We follow the
official split and the preprocessing from Chen et al. (2020),
where the processed dataset has 270,790, 2,130, and 3,858
samples for training, validation, and test, respectively. 2) IU
X-Ray (Demner-Fushman et al. 2016) is also widely used

for MRG evaluation, which contains 2,955 samples in total
after preprocessing. We found the test split from Chen et al.
(2020) is not suitable for disease-aware evaluation as some
diseases only have a couple of positive samples. Thus, we
use the model trained on MIMIC-CXR training set to di-
rectly perform the evaluation on the whole set of IU X-Ray.

Evaluation Metrics
We evaluate model performance with both natural lan-
guage generation (NLG) metrics and CE metrics. The
NLG metrics include BLEU (Papineni et al. 2002), ME-
TEOR (Denkowski and Lavie 2011), and ROUGE-L (Lin
2004). Following Nicolson, Dowling, and Koopman (2022),
the CE metrics include precision, recall, and F1, which are
evaluated by converting reports into 14 disease classification
labels using CheXbert (Smit et al. 2020).

Implementation Details
We use ImageNet pre-trained ResNet-101 (He et al. 2016)
as the encoder and Bert-base (Devlin et al. 2019) as the de-
coder. The coefficient λ is set to 4 and k = 21 is used for
CFE. AdamW (Loshchilov and Hutter 2017) is used as the
optimizer with a weight decay of 0.05. The initial learning
rate is set to 5e-5 with a cosine learning rate schedule. The
number of training epochs is 10, batch size is 16, and image
size is 224. The model was implemented with PyTorch 2.0
and trained with one RTX 3090 GPU for about 24 hours.

Results
We compare our model with SOTA methods, includ-
ing R2Gen (Chen et al. 2020), M2TR (Nooralahzadeh
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monitoring and support
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Figure 5: Qualitative examples of the baseline and the proposed method. Blue font indicates consistent content with the ground-
truth while red font indicates incorrect content.

DDP ADL CFE SDL CE Metrics NLG Metrics
Precision Recall F1 BLEU-1 BLEU-4 METEOR ROUGE

✘ ✘ ✘ ✘ 0.430 0.368 0.370 0.397 0.116 0.158 0.272
✔ ✘ ✘ ✘ 0.487 0.461 0.444 0.391 0.106 0.151 0.261
✔ ✔ ✘ ✘ 0.496 0.466 0.451 0.393 0.106 0.152 0.261
✔ ✔ ✔ ✘ 0.514 0.475 0.464 0.394 0.108 0.152 0.263
✔ ✔ ✘ ✔ 0.489 0.500 0.468 0.397 0.111 0.155 0.264
✔ ✔ ✔ ✔ 0.501 0.509 0.476 0.398 0.112 0.157 0.268

Table 2: Ablation study of each module on MIMIC test set.

et al. 2021), MKSG (Yang et al. 2022), CliBert (Yan and
Pei 2022), CVT2Dis. (Nicolson, Dowling, and Koopman
2022), M2KT (Yang et al. 2023), ME (Wang et al. 2023),
KiUT (Huang, Zhang, and Zhang 2023), DCL (Li et al.
2023), and RGRG (Tanida et al. 2023). Table 1 shows the
results on both MIMIC-CXR and IU X-Ray. We can see that
the proposed method achieves SOTA performance on the
three CE metrics on both datasets and outperforms most ex-
isting methods by a large margin. For example, our method
obtains 0.476 F1 score on MIMIC, which shows a 10% ab-
solute improvement over a recent work DCL (0.373 F1) and
15% over KiUT (0.321 F1). Even compared with the best
existing method RGRG (0.447 F1), the absolute improve-
ment is 2.9%. Similarly, on IU X-Ray, PromptMRG outper-
forms other methods considerably, where its absolute im-
provement over the best existing method RGRG is 3.1%. As
for NLG metrics, our method is also competitive. For exam-
ple, PromptMRG achieves the best results on all the NLG
metrics of IU and the best BLEU-1 on MIMIC. However,
the performance of our method on the other NLG metrics of
MIMIC is not as good as that of IU. We suspect it is caused
by DDP, as we found that model without DDP tends to gen-
erate more frequent phrases from the training data than the
one with DDP, especially for long reports (MIMIC is about
two times longer than IU on average). As a result, the for-
mer will achieve better NLG performance than the latter, as
NLG metrics evaluate language consistency between predic-
tions and references by utilizing word matching.

Model Analysis
Ablation Study. To verify the effectiveness of each mod-
ule, we do ablation study on MIMIC test set, which is shown

in Table 2. Firstly, we see that the baseline only achieves
fair CE performance (e.g., 0.370 F1). By adding DDP, the
F1 score increases significantly to 0.444, indicating the ef-
fectiveness of DDP in producing diagnostically correct re-
ports. Adding auxiliary disease labeling (ADL) also bene-
fits CE results, improves F1 score to 0.451. When CFE and
SDL are further applied, the F1 score improves to 0.464 and
0.468, respectively. Finally, utilizing all the modules yields
the best F1 of 0.476. We notice that ADL and CFE improve
both precision and recall while SDL is more helpful for re-
call. We believe this is related to the mechanism of SDL,
which encourages the learning of less-learned diseases on
recalling positive cases. On the other hand, the usage of DDP
degrades the NLG performance by about 0.8% on average.
Through an examination of the N-gram statistics of the gen-
erated reports, we noted that the baseline is more likely to
repeat the frequent phrases from the training set in compari-
son to the model that utilizes DDP. We suspect it is because
DDP provides extra diagnostic information during the gen-
eration process, making the generated texts more diverse and
less susceptible to high-frequency phrases. Consequently,
the NLG performance would exhibit a decline with DDP, as
a result of fewer matched phrases. When CFE and SDL are
further added, the NLG performance increases, but still lags
behind the baseline (except for BLEU-1). Overall, the pro-
posed modules substantially improve the CE performance at
the expense of slightly degraded NLG performance.

Qualitative Results. We show a qualitative example to
demonstrate the superiority of PromptMRG over the base-
line, which is shown in Figure 5. The blue fonts indicate
the consistent diagnosis with the GT and the red ones im-
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Type B-1 B-4 Prec. Rec. F1 F1∆

None 0.397 0.116 0.430 0.368 0.370 -
Token 0.393 0.106 0.496 0.466 0.451 +8.1%
Text 0.385 0.103 0.490 0.461 0.446 +7.6%
Feat. 0.393 0.111 0.418 0.352 0.357 -1.3%
Embe. 0.384 0.098 0.471 0.454 0.434 +6.4%

Table 3: Comparison of different prompt types.

ply incorrect results. As we can see, PromptMRG covers
most key descriptions in the GT. For example, it correctly
predicts the positive cases of cardiomegaly, opacity, edema,
atelectasis, and the unchanged position of support devices,
with only one wrong prediction on pleural effusion. In con-
trast, the baseline is unable to accurately predict the diseases.
For example, it gives false positive cases for cardiomedi-
astinum, pleural effusion, and pneumonia, while missing
cardiomegaly and opacity. To understand how DDP boosts
the diagnostic accuracy, we visualize the attention weights
of the prompts in the figure. We can see that when predict-
ing certain words, the attention on the relevant disease token
is much larger than the remaining tokens, indicating that the
token prompts indeed convey useful diagnostic information
to the decoder during the generation process.

Type of Prompts. For DDP, in addition to the proposed
token prompt, we also explored other types of prompts for
comparison. Table 3 gives the comparison of these prompts.
1) Text prompt directly converts the classification results
into texts, where a positive result of pneumonia can be rep-
resented as ”Pneumonia: Positive;”. We can see that the per-
formance of text prompt is satisfactory, albeit slightly worse
than that of the token prompt across all metrics. 2) Feat.
prompt uses the average pooled feature right before the
classification branch as prompt, which is supposed to be dis-
criminative. However, our results show that feature prompt
obtains even worse CE metrcis (e.g., 1.3% reduction on F1)
than baseline, implying that the decoder cannot extract diag-
nostic information from feature prompt. 3) Embe. prompt
can be seen as an explicit version of feature prompt, which
explicitly encodes the classification results as numbers into
an embedding. For example, the i-th dimension is denoted as
1 if disease i is not mentioned, denoted as 2 if it is positive,
and so on. Since there are more dimensions than the number
of diseases in an embedding, we simply pad the remaining
dimensions with zeros. Despite being inferior to the token
and text prompts, the embed. prompt considerably improves
the CE performance (e.g., 6.4% increase on F1), indicating
that it is essential to represent the diagnostic information ex-
plicitly for an effective prompt guidance.

Disease Balance. To assess the efficacy of SDL, we plot
individual F1 scores for all diseases to compare the method
with and without SDL. Figure 6 presents the results using
histograms, where the diseases are sorted in ascending or-
der of their training numbers. Firstly, we see that the perfor-
mance of rare diseases have been largely improved with the
help of SDL, and the average absolute improvement across
seven rare diseases is approximately 8%. Some even show
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Figure 6: Comparison of the F1 score (%) over the diseases
between the method with and without SDL. The diseases are
sorted in ascending order of their training numbers.

improvements over 12%, such as pleural other and pneu-
monia. For common diseases, some are also improved (e.g.,
edema and atelectasis) while some are slightly degraded
(e.g., lung opacity). Despite the large improvement over rare
diseases, the increase of average F1 score is only 1.2%. It
indicates that the currently adopted example-based CE met-
rics do not reflect the balancedness of diseases, where more
frequent diseases have larger weights. Thus, while there has
been a substantial increase in the performance of rare dis-
eases, the average F1 score has only experienced a marginal
improvement. To address it, macro-averaged CE metrics
could be computed to reflect disease balancedness.

Conclusion and Future Work
In this work, we proposed a MRG framework to tackle
the problem of unsatisfactory CE, where the diagnostic re-
sults from a disease classification branch are converted into
prompts to guide the report generation. The CFE module
was proposed to further improve the diagnostic accuracy
by enhancing the feature with cross-modal retrieval and dy-
namic aggregation. Furthermore, SDL was developed to al-
leviate the imbalanced learning among diseases by individ-
ually adjusting the learning objectives of each disease based
on its unique learning status. Experiments on two datasets
demonstrate the superiority of our method, especially its ad-
vantage in generating diagnostically correct reports, bridg-
ing the gap between current MRG models and the clinical
demands in practice.

While the experiments were based on chest X-rays, our
method is potentially applicable to other modalities. How-
ever, several issues need to be addressed. Firstly, disease la-
bels are required for training the classification branch. Luck-
ily, most MRG datasets contain such labels. In case no la-
bels are provided, unsupervised clustering algorithms can be
used to group reports into meaningful clusters. Secondly, the
CLIP in CFE requires a sufficient amount of image-report
pairs for domain adaptation, which can be challenging for
domains with limited data. FFA-IR (Li et al. 2021) is an ideal
dataset to validate our method on fundus images due to its
large scale and disease diversity, which we leave for future
work. Moreover, we would leverage richer and fine-grained
information for the prompting, which could be beneficial to
both linguistic precision and diagnostic accuracy.
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