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Abstract

Recent significant advancements in diffusion models have
revolutionized image generation, enabling the synthesis of
highly realistic images with text-based guidance. These
breakthroughs have paved the way for constructing datasets
via generative artificial intelligence (AI), offering immense
potential for various applications. However, two critical chal-
lenges hinder the widespread adoption of synthesized data:
computational cost and the generation of peculiar images.
While computational costs have improved through various
approaches, the issue of peculiar image generation remains
relatively unexplored. Existing solutions rely on heuristics,
extra training, or AI-based post-processing to mitigate this
problem. In this paper, we present a novel approach to ad-
dress both issues simultaneously. We establish that both gra-
dient descent and diffusion sampling are specific cases of the
generalized expectation-maximization algorithm. We hypoth-
esize and empirically demonstrate that peculiar image gener-
ation is akin to the local minima problem in optimization.
Inspired by optimization techniques, we apply naive momen-
tum and positive-negative momentum to diffusion sampling.
Last, we propose new metrics to evaluate the peculiarity. Ex-
perimental results show momentum effectively prevents pe-
culiar image generation without extra computation.

Introduction
In recent years, significant advancements have been made in
the field of generative artificial intelligence (AI), resulting
in the remarkable ability to generate highly realistic data.
Also, modern generative AI learn a wide range of knowl-
edge and can easily produce images based on text prompts,
enabling intentional control over the outputs. As a result,
they can generate images, from realistic to imaginative, ef-
fectively alleviating the burden of dataset construction. Pre-
viously, data acquisition was challenging due to high costs
and various limitations, such as risks, dangers, and privacy
concerns. However, generative AI has introduced a novel
approach to data collection, wherein the generated data be-
comes employed as training data for other AI models.

Nevertheless, current generative AI has some drawbacks
and limitations. Firstly, generating an image demands sig-
nificant time and computational costs. For instance, denois-
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ing diffusion probabilistic model (DDPM) (Ho, Jain, and
Abbeel 2020) suggests that a substantial number of sequen-
tial steps (approximately 1,000) are required to generate
data. Secondly, the generated images are not always entirely
reliable, often displaying peculiar and imperfect characteris-
tics. Notably, as highlighted in (Perez et al. 2023), diffusion
models often return images of humans with extra fingers,
animals with more or less legs. To address the challenge
of generation cost, several research efforts such as denois-
ing diffusion implicit model (DDIM) (Song, Meng, and Er-
mon 2021), PNDM(Liu et al. 2021), or DPM solver++ (Lu
et al. 2022b) have been proposed. These methods reshape
the denoising process or utilize ordinary differential equa-
tion (ODE) solvers in diffusion sampling. This reduces the
number of steps needed from 1,000 to tens, with only a mi-
nor image quality decline. Conversely, these methods do not
directly tackle the second issue of peculiar images, which
continues to persist. Also, the peculiar images are another
kind of degradation, so addressing this problem without ex-
tra costs must help mitigate the computation cost issue.

This paper tackles these issues by combining techniques
that evade local minima in SGD. We hypothesize that SGD
and diffusion sampling are categorized as a kind of gener-
alized expectation-maximization (GEM) (Dempster, Laird,
and Rubin 1977), and derive the two methods into a gen-
eral form. Then, we compare the diffusion process with
SGD-based optimization in terms of equations and visual-
ization. Our analysis reveals that the generation of peculiar
images is equivalent to local minima in SGD optimization.
To surmount this challenge, we incorporate momentum—a
commonly used strategy to escape local minima—along
with its variant, positive-negative momentum, into diffusion
sampling. Our experiments demonstrate the effectiveness of
both momentum strategies in alleviating the production of
peculiar artifacts and efficiently generating reasonable im-
ages. Our contribution can be summarized as follows:
1. We hypothesize and validate that both SGD and diffusion

sampling are special classes of GEM.
2. We establish an equivalence between the peculiar image

generation and local minima problems.
3. We propose metrics to measure the qualitative failure.
4. We implement momentum and verify its capacity to ad-

dress qualitative failures without extra computations.
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(a) DDIM without our approach

(b) DDIM with our approach

Figure 1: Comparison of results generated by stable diffusion with and without our approach.

Related Works
Efficient Diffusion Sampling
Diffusion model generates novel images by iterative denois-
ing from random noise. The concept was originally proposed
by (Sohl-Dickstein et al. 2015), but it did not gain much at-
tention compared to generative adversarial network (GAN)
(Goodfellow et al. 2014; Radford, Metz, and Chintala 2015;
Karras et al. 2018; Brock, Donahue, and Simonyan 2019).
Subsequently, DDPM (Ho, Jain, and Abbeel 2020) pre-
sented improvements in training the diffusion model and in-
troduced the application of Langevin dynamics to diffusion
sampling like (Welling and Teh 2011), leading to significant
advancements. It formulated diffusion sampling as:

xt−1 =
1

√
at

xt +
√
1− at√
at

ϵθ(xt, t) + σtz (1)

where z ∼ N (0, I). In both equations, xt indicates the gen-
erated image of timestep t = 0, 1, ..., T . Then, ϵθ means a
model for noise estimation. The noise level of the next step
can be controlled by at. However, the DDPM demands ex-
tensive computation and time costs. To reduce the computa-
tion cost, DDIM reformulated the denoising process as:

xt−1 =
√
at−1

(
xt −

√
1− atϵθ(xt, t)√

at

)
︸ ︷︷ ︸
o(xt,t): expected x0 from xt at t

+
√

1− at−1 − σ2
t ϵθ(xt, t)︸ ︷︷ ︸

x⃗t: direction pointing to xt

+σtz,
(2)

It accomplished this by predicting the noise-free image and
linearly recombining it with the current noisy image, result-
ing in less struggling. This approach alleviated some of the
computational challenges. Subsequently, researchers have
explored alternative approaches to further accelerate diffu-
sion sampling by adopting ODE solvers such as PLMS (Liu
et al. 2021), DEIS (Zhang and Chen 2022) and DPM solvers
(Lu et al. 2022a,b). These methods successfully achieved
similar results to DDPM but with a reduced number of steps
by utilizing high-order approximation.

Escaping Qualitative Failure
Generating peculiar images is a widely known challenge
in generative AI. Studies like (Borji 2023; Ma et al. 2023;
Perez et al. 2023; Wang et al. 2023; Karras et al. 2023)
emphasize that AI models often struggle with rendering
body parts accurately, such as human or animal faces, limbs,
hands, and fingers. Backgrounds in images also suffer from
issues, as seen in (Ma et al. 2023; Borji 2023).

In the generative AI community, practitioners have shared
various guidelines to address these issues. However, most
solutions available are based on know-how or heuristic engi-
neering, including hyper-parameter tuning (e.g., image res-
olution and aspect ratio), using detailed prompts, and neg-
ative prompts. These solutions often involve manual inter-
vention. Few studies, such as (Perez et al. 2023), have ex-
plored this problem as a research topic and proposed auto-
matic prompt adjusting or refinement techniques. Advanced
diffusion models, as in (Ma et al. 2023; Nichol et al. 2021),
have also been explored, but these require complex training
and resources. Alternatively, post-processing methods such
as image editing and restoration, suggested in (Wang et al.
2023), are commonly recommended for improving gener-
ated results. However, they require additional computations.

Problem Definition
The advancements in diffusion models and the integration
of text encoder grounding have propelled image synthesis to
remarkable levels, allowing for the creation of highly realis-
tic images based on text prompts. This has positioned image
synthesis as a promising way for dataset generation. How-
ever, we emphasize a critical issue within diffusion mod-
els, specifically regarding the accurate depiction of content
details in the generated images. For instance, as evident in
Figure 1, some images generated by stable diffusion (Rom-
bach et al. 2022) exhibit unnatural features such as ani-
mals with three legs or people lacking legs. Then, these
phenomena have been widely known issues (Borji 2023;
Perez et al. 2023). Incorporating such unnatural images into
training data mandates models to accommodate the anoma-
lies, potentially introducing complexities in real-world ap-
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plications. Moreover, resolving this peculiarity issue with-
out adding extra computational burden serves to improve the
computational efficiency, which is another challenge faced
by diffusion models. Given the growing significance of im-
age synthesis in dataset construction, the rapid generation of
high-quality and trustworthy images is crucial for maintain-
ing the reliability and resilience of AI systems.

Diffusion Sampling with Momentum
To address the two problems, we formulate a hypothesis:
The qualitative failure in image generation is equivalent to
local minima in optimization. Based on this, we apply tech-
niques for escaping local minima to diffusion sampling. To
validate, there are some questions that have to be addressed.

Diffusion Sampling as Optimization
According to (Ho, Jain, and Abbeel 2020), the noise estima-
tion network ϵθ is a learned gradient of the clean dataset
density. Also, DDIM predicts o(xt, t) and updates slightly
toward the it for every step. The o(xt, t) indicates an “ex-
pected noise-free image (||o(xt, t) − x0||2 ≃ 0)” at t, and
the noise-free image is the goal of diffusion sampling (the
expected minima). In other words, x⃗t indicates gradient to-
ward o(xt, t). This process shares the idea of GEM algo-
rithm (Dempster, Laird, and Rubin 1977) which is repetition
of expectation-step (E-step) and partial-maximization-step
(PM-step). In diffusion sampling, ϵθ works as an expecta-
tion of loss, and the update is equivalent to the PM-step.

Peculiar Image as Local Minima
The GEM algorithm is recognized for its ability to converge
to points of zero gradient, yet it’s also prone to becoming
trapped in local minima or saddle points. A point satisfying
two criteria is called a local minimum or saddle point: 1)
the presence of alternative minima that are superior in value,
and 2) the inability to make further updates. When applying
these criteria to the generation of peculiar images, a clear
parallel is observed. For instance, a naturally structured four-
legged horse is undeniably a more accurate representation
than one with three legs, highlighting the existence of supe-
rior alternatives. Moreover, when peculiar images are gen-
erated without any remaining noise to remove, the process
reaches a convergence point beyond which no further de-
noising is possible. This suggests that despite achieving con-
vergence, there are still better possible outcomes, akin to the
challenges faced with local minima in optimization. There-
fore, the generation of peculiar images in diffusion models
can be likened to encountering local minima or saddle points
in optimization processes.

Similarity between SGD and Diffusion Sampling
The alignment of diffusion sampling with the GEM algo-
rithm has been demonstrated. However, an essential aspect
remains: drawing a comparable level of similarity between
Stochastic Gradient Descent (SGD) and diffusion sampling.
This step is vital for facilitating the transfer of specific tech-
niques from SGD to diffusion sampling.

Comparison in formula. Interestingly, SGD is also known
as a class of GEM (Audhkhasi, Osoba, and Kosko 2016).
SGD with backpropagation can be represented as:

Θt+1 = Θt − η
1

B

B∑
b=1

dL(sb; Θt)

dΘt
, s ∈R D, (3)

where Θt means model weights at t-th iteration, η means
learning rate. B indicates batch size, L(s; Θ) means the loss
function on sample s with weights Θ. The s is randomly cho-
sen from training dataset D. Then, the sampling process of
DDIM (Eq. (2)) can be written into SGD-like form as:

xt−1 =
√
at−1o(xt, t) + x⃗t + σtz

= xt −
(

xt +
√
at−1o(xt, t) + x⃗t

)
+ σtz

(4)

The two concepts, SGD and diffusion sampling can be
formulated into form of GEM with stochastic manner as:

Algorithm 1: Formulation of GEM for a variable u
1: Input: uT

2: for t=T ,T − 1,...,1 do
3: E-step: Compute Q(ut)
4: PM-step: ut−1 = ut −∆ut + noise,
5: end for
6: return u0

where Q(ut) indicates cost function for ut, ∆ut means an
update term, and noise indicates stochastic noise. Then, the
Q(ut), ∆ut and noise are summarized in Table. ?? and ??.

Method ut Q(ut)

SGD ΘT−t η 1
B

∑B
b=1 L(sb; ΘT−t)

DDPM/DDIM xt ϵθ(xt, t)

Table 1: E-step Parts of SGD and diffusion sampling

Method ∆ut noise

SGD η 1
B

∑B
b=1

dL(sb;ΘT−t)
dΘT−t

0

DDPM (1− 1√
at
)xt +

√
1−at√
at

ϵθ(xt, t) σtz

DDIM (1−
√
at−1√
at

)xt σtz
+(

√
at−1

√
1−at√

at
−

√
1− at−1 − σ2

t )ϵθ(xt, t)

Table 2: PM-step Parts of SGD and diffusion sampling

In this context, previous methods like PNDM and DPM
solver can be viewed as high-order optimization techniques
such as Newton-Raphson or Gauss-Newton methods.
Comparison in visualization. We found similarity between
SGD and diffusion sampling in the formulation of GEM. In
addition, we visually compared them.

First, we generated CIFAR10(Krizhevsky, Hinton et al.
2009)-like images using a pretrained DDIM and saved ev-
ery image (xt) from an initial random noise (xT ∼ N (0, I),
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Figure 2: Landscape visualization of xt for every step t =
1, 2, ..., 50. The color indicates log(||o(xt+n, t)−xDDPM||2).
(The xDDPM is obtained by DDPM sampling with T = 1, 000
from the same xT ), and n ∼ N (0, I).

where T means the number of steps) to the converged x0. We
then gathered the surroundings of xt trajectory by injecting
various random noise as xt + n, where n ∼ N (0, I). Using
PCA, we reduced dimension of the surrounding and trajec-
tory images for landscape visualization. Figure 2 presents
the trajectory and landscape. The dot color progresses from
red to black, indicating t. Landscape color corresponds to
log(||o(xt+n, t)−xDDPM||2). Since image generation lacks
ground truth, we employed xDDPM as an alternative. The
xDDPM was obtained by DDPM with T = 1, 000 from the
same xT . SGD features a continuous loss landscape (search
space), but is characterized by numerous local minima (Li
et al. 2018). A similar pattern is observed in diffusion sam-
pling. This landscape illustrates not only the resemblance
between the search spaces of SGD and diffusion sampling
but also the presence of local minima in diffusion sampling.

Second, we conducted an analysis of the evolution of gen-
erated images concerning the total number of steps (T ). Sim-
ilar to the acknowledged impact of learning rates on the
local minima phenomenon, we conjectured a comparable
influence of T on the occurrence of peculiar images. Fig-
ure 3 visually represents changes in generated images as T
varies, utilizing stable diffusion. As shown, diverse patterns
emerge. The first row shows a discernible trend emerging
where the quality of generation appears to be directly pro-
portional to T . The second row shows poor generation from
T = 20 to T = 100, with only the instance at T = 50 yield-
ing an image of a normal appearance. This observation lends
support to the presence of local minima. The last row shows
normal images at T = 20 and T ≥ 180 cases. These obser-
vations indicate that the search space of diffusion sampling
is quite complex, so there are many local minima.

In summary, our key findings include: 1) SGD and diffu-
sion sampling both align with GEM-based optimization, 2)
Their smooth search spaces are similar, and 3) We observed
complex patterns indicating local minima. Based on these,
we focused on mitigating image peculiarity by applying op-
timization techniques to escape local minima.

Integrating Momentum into Diffusion Sampling
Now that we have identified the qualitative failure in im-
age generation as local minima and established the similar-
ity between SGD and diffusion sampling, we searched for
methods to escape these local minima. Several studies have
explored how to avoid local minima in SGD-based optimiza-

tion. Among them, we adopted two techniques, 1) Momen-
tum and 2) Stochastic gradient noise (SGN).
Momentum. Momentum is a well-known technique in op-
timization that can aid in escaping local minima (Sutskever
et al. 2013; Zavriev and Kostyuk 1993; Jelassi and Li 2022).
It introduces a moving average of past gradients, which
helps the weights have non-zero gradients at local min-
ima, facilitating escape from such points. Also, the momen-
tum is similar to using a larger η. Studies, like (Zavriev
and Kostyuk 1993; Gitman et al. 2019; Leclerc and Madry
2020), have mentioned the benefits of momentum. The SGD
(Sutskever et al. 2013) with momentum can be written as:

mt = βmt−1 + (1− β)(ηt∆Θt), (5)
Θt+1 = Θt −mt, (6)

where β means momentum parameter about forgetting the
previous states that satisfying β ∈ [0, 1). When it is im-
ported into DDIM, diffusion sampling can be formulated as:

Algorithm 2: Momentum for diffusion sampling

1: xT ∼ N (0, I)
2: mt = 0
3: for t=T ,...,1 do
4: x′t−1 = DDIM(xt, t)
5: mt = βmt+1 + (1− β)(xt − x′

t−1)
6: xt−1 = xt −mt

7: end for
8: return x0

Momentum with Stochastic Gradient Noise. Next, we fo-
cused on the noise injection term in Eq. (1) (4). As described
in (Ho, Jain, and Abbeel 2020), they adapted Langevin dy-
namics to the diffusion model, where the equation inherently
incorporates the noise injection term to account for non-
deterministic movements in molecular dynamics. A com-
parable concept, SGN, can also be found in optimization
techniques. It is a kind of random noise on the update term
during gradient descent. Stochastic noise is widely recog-
nized as an effective approach for escaping saddle points
or sharp minima during optimization. Consequently, intro-
ducing SGN has been observed to aid in locating flat min-
ima. Numerous studies (Hochreiter and Schmidhuber 1994;
Keskar et al. 2016; Ge et al. 2015; Jin et al. 2017; Zhu
et al. 2019; Xie, Sato, and Sugiyama 2020) have explored the
benefits of artificially injecting random noise into SGD and
demonstrated improved generalization performance. Never-
theless, this approach to artificial noise injection does come
with certain limitations (Wu et al. 2020).

In the context of diffusion sampling, the discrepancy be-
tween real noise and estimated noise can serve as a form of
SGN. However, the naive momentum method is unable to
effectively account for SGN (Xie et al. 2021), there is no
change in SGN with or without naive momentum.

Incorporating SGN within a momentum-based framework
can be achieved through the use of Positive-Negative mo-
mentum (Xie et al. 2021), as proposed in the literature. Ac-
cording to (Xie et al. 2021), this approach allows for the
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T = 20 T = 40 T = 50 T = 80 T = 100 T = 120 T = 140 T = 160 T = 180 T = 200

Figure 3: Generated images with varying number of steps (T ). Note that the images of first row have to contain cock, not person.
This figure illustrates the presence of various patterns in the generation process, indicating the existence of local minima.

control of the SGN magnitude. Positive-Negative momen-
tum is defined as a momentum value that satisfies β < 0
instead of the conventional range of β ∈ [0, 1). When t is an
odd number, it can be represented as follows:{
m

(even)
t =

∑
τ=0,2,4...,t−1(1 + |β|)|β|t−τ (xτ − x′

τ−1)

m
(odd)
t =

∑
τ=1,3,5...,t(1 + |β|)|β|t−τ (xτ − x′

τ−1)
(7)

mt = (1 + |β|)m(odd)
t − |β|m(even)

t . (8)
By using this positive-negative momentum, the magnitude
of SGN becomes [(1 + |β|)2 + |β|2]-times larger than one
without momentum (Xie et al. 2021).
Conceptual Comparison with Previous Approaches.
Prior works rooted in ODE solvers, such as PLMS and DPM
solver++, as well as our integration of momentum, reflect a
common concept: incorporating historical information into
updates. However, momentum is applied across the entire
update term (A(xt)), whereas previous works were confined
to ϵθ(xt, t) only. Furthermore, our approach aggregates the
entirety of historical data, whereas previous works limited
this consideration to only the past few steps, like 2 or 3 steps.

The concept of positive-negative momentum reveals a
common thread in previous works as well. In specific, PLMS
employed Adams–Bashforth methods, a numerical approxi-
mation technique, to integrate short-term momentum. It uti-
lized specific weighting coefficients [5524 ,

−59
24 , 37

24 ,
−9
24 ] to ac-

count for the estimated noise across the current four steps.
Also, DPM solver++ adopted [1+ 1

2r , - 1
2r ] weighting to ac-

commodate the estimated noise within the current two steps,
where r signifies the ratio of log-SNR between the steps.

Measuring Peculiarity in Generated Images
To the best of our knowledge, there isn’t a defined evalua-
tion metric to measure the peculiarities of image synthesis.
While our work aims to enhance both the computational ef-
ficiency and the peculiarity of generated images, the assess-
ment of peculiarity poses a significant challenge. To make it
simple, we assessed only human images. Numerous analy-
ses have indicated that diffusion models exhibit anomalies in
limb and finger. For this, we introduced two metrics utilizing

the OpenPose (Cao et al. 2017), a pose estimation method
considering the interconnectivity between human joints. The
first metric centers on the average confidence scores of all
joints. For an image x, OpenPose (H(·)) not only estimates
25 joints but also quantifies their confidence scores as:

{(jpi , c
p
i )| i = 1, 2, .., 25, and p = 1, 2, .., Nx} = H(x),

(9)
where (jpi , c

p
i ) ∈ (Jp,Cp) means a joint and its confidence

score of p-th person among Nx persons in x. Our expec-
tation is that peculiar images would yield lower confidence
scores or no detected joints (zero confidence).

For our second metric, we initially considered a Fréchet
Inception Distance (FID)-like metric, but recognized its po-
tential bias towards frequently observed poses. Since pose
naturalness should be evaluated without considering fre-
quency – understanding that rare poses can be natural and
common ones peculiar – we focused on measuring pecu-
liarity independently of frequency. Drawing inspiration from
Hwang et al. (Hwang, Yang, and Kwak 2020), we developed
our metric using clustering applied to MS COCO dataset
(Lin et al. 2014), which is rich in real human images. For
each of N persons in MS COCO dataset, we performed
sample-wise min-max normalization on their poses as:

{Ξ1,Ξ2, ...,ΞN} = {norm(Jp
coco) |p = 1, 2, ..., N}. (10)

Then, we applied K-means clustering to the set of Ξ as:

{Ψ1,Ψ2, ...,ΨK} = kmeans({Ξ1,Ξ2, ...,ΞN},K), (11)

where K indicates the number of clusters. Each cluster cen-
ter Ψ means the representative normalized poses of real per-
sons. Then, we measured the quality based on the distance
for p-th person (dp) to the nearest cluster center as:

dp = min{ ||norm(Jp)−Ψk||2 | k = 1, 2, ...,K}. (12)

This metric measures the distance to the nearest representa-
tive pose, identified through the analysis of numerous real
images. Utilizing these two metrics enables the assessment
of peculiarity in human images.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

2458



Experiments
In this section, we evaluate how integrating momentum can
improve diffusion sampling. Our source code is available1.

Quantitative Analysis about Momentum
We conducted an analysis using pre-trained diffusion mod-
els2 on the CIFAR10 and CelebA datasets (Liu et al. 2015),
without any further training. Our aim was to assess the
FID for the number of score function evaluations (NFE).
To achieve this, we explored different sampling methods,
including DDPM, DDIM, PLMS, and DPM solver. Addi-
tionally, we considered two distinct schedules: linear and
quadratic skipping.
FID Analysis on Pretrained Diffusion Models. The ob-
jective of this analysis is to evaluate the efficacy of sam-
pling methods. For PNDM, it incorporates the Runge-Kutta
method for the initial steps, necessitating a 4× NFE due
to high-order approximations. Then, it uses part of linear
multi-step (PLMS) for the remainder steps. To ensure a fair
comparison, we substituted the initial steps with those de-
rived from DDIM. For DPM solver++, it introduces two
techniques: one is employing multistep algorithm that reuses
previously estimated noises. The other one is its own noise
scheduling. To isolate the impact of the update term while
negating the influence of other components, we adopted the
noise scheduling from DDIM instead of the new scheduling.
By implementing these modifications, we aimed to evalu-
ate only sampling methods, focusing on their update terms
without the confounding effects of additional components.

The FID scores for 50,000 synthetic images per method
are presented in Table ??. The results demonstrate that in-
corporating momentum into diffusion models leads to im-
proved performance without requiring additional training.
As shown, the naive or positive-negative momentum im-
proves for all methods. Particularly noteworthy is the per-
formance of DDIM with momentum, outperforming even
the more recent works. These results support the hypothe-
sis that local minima is a factor in peculiar image, and em-
ploying techniques to escape local minima can alleviate the
issue. Additionally, Table ?? details the computation costs
of generating a CelebA-like image using PLMS and linear
scheduling, both with and without momentum. These results
demonstrate that momentum can improve the previous meth-
ods without extra computations.

Ablation Study about β and T

Numerous studies have indicated a proportional relationship
between the magnitude of SGN and the temperature ( η

B ). For
diffusion models, while setting B to 1 is straightforward,
defining η is challenging. Instead, a comparable parameter
emerges in the form of the step size (T ), which is similar to
1
η within the diffusion sampling framework.
Analysis of FID over β. We thoroughly investigated FID
enhancements by varying β and T , utilizing the pretrained
CIFAR10 model with quadratic skipping as established in

1https://github.com/jjh6297/momentum-diffusion-sampling
2https://github.com/tqch/ddpm-torch

Dataset Schedule Method β
# NFE

50 100 250 1000

C
IF

A
R

10

L
in

ea
r

DDPM 0.0 N/A N/A N/A 3.19

DDIM
0.0 7.19 5.58 4.62 N/A
0.2 11.09 4.91 4.02 N/A

-0.8 13.24 4.00 3.57 N/A

PLMS 0.0 4.15 3.73 3.62 N/A
0.2 3.63 3.91 3.71 N/A

DPM++ 0.0 5.69 4.56 4.00 N/A
0.2 3.84 3.78 3.80 N/A

Q
ua

dr
at

ic
Sk

ip DDIM
0.0 4.53 4.06 3.89 N/A
0.2 6.01 4.77 4.12 N/A

-0.8 4.25 3.67 3.69 N/A

PLMS 0.0 3.82 3.78 3.83 N/A
0.2 4.80 3.66 3.79 N/A

DPM++
0.0 3.99 3.77 3.84 N/A
0.2 5.33 4.40 4.04 N/A

-0.3 3.45 3.50 3.64 N/A

C
el

eb
A

L
in

ea
r

DDPM 0.0 N/A N/A N/A 2.99

DDIM
0.0 5.99 4.13 2.88 N/A
0.2 3.91 3.30 2.67 N/A
-0.8 13.75 7.16 3.49 N/A

PLMS 0.0 4.52 2.78 2.45 N/A
0.2 2.20 2.33 2.35 N/A

DPM++ 0.0 3.81 2.77 2.39 N/A
0.2 2.97 2.58 2.39 N/A

Q
ua

dr
at

ic
Sk

ip DDIM
0.0 6.29 6.05 6.15 N/A
0.2 7.36 6.50 6.20 N/A
-0.8 9.37 5.93 5.96 N/A

PLMS 0.0 7.20 6.59 6.26 N/A
0.2 7.07 6.56 6.28 N/A

DPM++
0.0 6.14 6.05 6.18 N/A
0.2 7.12 6.49 6.26 N/A
-0.3 6.89 6.15 6.09 N/A

Table 3: Quality of generated images measured in FID.

Setting GFLOPS/img FID(↓)
T = 250 w/o momentum 250×46.74 2.45
T = 50 w/o momentum 50×46.74 4.52
T = 50 w/ momentum 50×46.74 2.20

Table 4: Computation cost for generating a 64×64 image.

Figure 4: FID analysis for varying β and number of steps.

the preceding section. The results are depicted in Figure
4. Significantly, the results unveil that for small step sizes
(T ≤ 25), a negative β worsens FID. However, negative β
effectively improves FID for all cases where T > 25. More-
over, a distinct pattern emerges: the optimal β is proportional
to 1

T . This observation means that the magnitude of SGN is
already excessive for smaller T , negating the need for fur-
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T = 50 T = 250

Figure 5: Visualization of o(xt, t) in DDIM for every step.
Note that the color indicates log(||o(xt + n, t) − xDDPM||2)
(The xDDPM was obtained by DDPM samling with T =
1, 000 from the same xT , and used as an alternative of
ground truth, and n ∼ N (0, I)).

w/o momentum w/ momentum

Figure 6: Examples of human images with pose estimation

ther enlargement. Conversely, as T increases and is associ-
ated with a smaller η, the SGN’s magnitude diminishes. In
this context, emphasizing the magnitude becomes impera-
tive, hence the efficacy of larger |β| values. These results
not only establish the equivalence between SGD and diffu-
sion sampling but also validate our hypothesis.
Landscape and Trajectory Visualization. In addition, we
analyzed and compared the effect of β over the trajectory
of o(xt, t) with T = 50 as illustrated in Figure 5. The pro-
cedure outlined in section Q3, involving the variation of β
and T values, was replicated for o(xt, t) in place of xt. As
shown, the positive β suffers from velocity of the first few
steps because the momentum is initialized as zero. Then, the
more negative β is beneficial for the higher T . This fact is
related to the previous ablation study shown in Figure 4. In
contrast, β = −0.3 is the best for the T = 50 case.

Application to Stable Diffusion
At last, we applied the momentum (β = −0.3) to a pre-
trained stable diffusion model with DDIM sampling and
T = 100. To ensure a fair evaluation, we conducted two sep-
arate tests using the same random seed: one with positive-
negative momentum and the other without it.
Qualitative Evaluation. Figure 1 and 6 present the results

β Single Person Groups
0.0 0.4351 0.1880

-0.3 0.4383 0.1991

Table 5: Average joint confidence(↑) of human images

# Persons β
# Clusters

5 10 15 25 50
Single 0.0 0.2823 0.2589 0.2461 0.2407 0.2221
Person -0.3 0.2782 0.2515 0.2416 0.2378 0.2219

Group 0.0 0.3086 0.2799 0.2627 0.2447 0.2255
-0.3 0.3067 0.2796 0.2625 0.2442 0.2271

Table 6: Average RMSE(↓) to the nearest cluster center

obtained from the same initial random noise (xT ), con-
trasted between the scenarios of employing and not employ-
ing positive-negative momentum. The comparison shows
significant improvements when momentum is incorporated
into the sampling. As depicted, the generated images are
more completed and visually natural with positive-negative
momentum. Animals are represented with their natural leg
count, while figures of astronauts regain their legs. These
demonstrate the efficacy of momentum-based optimization
in refining the image generation process. Also, they high-
light how momentum can tackle peculiar image generation
in diffusion models, even when guided by text prompts.
Quantitative Evaluation of Human Image Peculiarity.
Our proposed metrics were used to evaluate the quality of
human images. Using the same random seed, we generated
two types of full-body human images: one featuring a sin-
gle individual and another depicting a group, as shown in
Figure 6. The results are summarized in Table ?? and Ta-
ble ??, affirming the effectiveness of the momentum to the
quality of generated images. Table ?? signifies that the uti-
lization of momentum contributes to generating images with
increased pose estimation certainty. Meanwhile, Table ??
demonstrates that images generated with momentum exhibit
more natural poses compared to those generated without it.

Conclusion
In this paper, we address the issue of qualitative failure in
image generation by tackling local minima. Based on the
mention that noise estimation in diffusion models is equiva-
lent to learned gradients, we conjectured this issue resembles
a local minima problem in optimization. To counter this, we
introduced momentum – a way for escaping local minima
– into diffusion sampling. Our experimental section entails
a comparative analysis of the diffusion sampling process
and SGD, encompassing trend analysis and qualitative vi-
sualizations of outputs. By integrating two kinds of momen-
tum into diffusion sampling, the generated results exhibited
improved completeness and reliability. Lastly, we incorpo-
rated the positive-negative momentum into stable diffusion
models, yielding successful generation results and quantita-
tive performance. These experiments effectively validate the
equivalency between the problem of peculiar image genera-
tion and the local minima issue. Moreover, they demonstrate
the potential of momentum in alleviating this problem.
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