
COMBAT: Alternated Training for Effective Clean-Label Backdoor Attacks

Tran Huynh1, Dang Nguyen1, 2, Tung Pham1, Anh Tran1

1VinAI Research
2University of Maryland

v.tranhn2@vinai.io, dangmn@umd.edu, v.tungph4@vinai.io, v.anhtt152@vinai.io

Abstract

Backdoor attacks pose a critical concern to the practice of us-
ing third-party data for AI development. The data can be poi-
soned to make a trained model misbehave when a predefined
trigger pattern appears, granting the attackers illegal benefits.
While most proposed backdoor attacks are dirty-label, clean-
label attacks are more desirable by keeping data labels un-
changed to dodge human inspection. However, designing a
working clean-label attack is a challenging task, and exist-
ing clean-label attacks show underwhelming performance. In
this paper, we propose a novel mechanism to develop clean-
label attacks with outstanding attack performance. The key
component is a trigger pattern generator, which is trained to-
gether with a surrogate model in an alternating manner. Our
proposed mechanism is flexible and customizable, allowing
different backdoor trigger types and behaviors for either sin-
gle or multiple target labels. Our backdoor attacks can reach
near-perfect attack success rates and bypass all state-of-the-
art backdoor defenses, as illustrated via comprehensive ex-
periments on standard benchmark datasets. Our code is avail-
able at https://github.com/VinAIResearch/COMBAT.

1 Introduction
To deal with numerous real-life situations, AI models often
need massive training data, which is hard to collect. Thus the
data often comes from various sources like third parties or
open sources. However, recent studies have shown that the
data outsourcing practice can open a loophole for backdoor
attacks. An attacker can provide training data that is par-
tially poisoned with a pre-defined trigger pattern. A model
trained on such data exhibits two properties. First, it per-
forms well on normal, “clean” images like a genuine model.
However, when the trigger pattern is embedded in the input,
the model will give an erroneous prediction as designed by
the attacker. This allows the attacker to gain malicious ac-
cess or cause damage to the user’s side. For example, attack-
ers can disguise themselves as privileged users by breaking
a face-recognition-based security system, or they can fool
self-driving cars into misreading the traffic signs and caus-
ing accidents. Hence, understanding the capability of this
security threat is critical, drawing many research interests in
recent years. This paper focuses on backdoor attacks on im-
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age classification, the most studied task, but the discovery
should be easily extended to other domains.

Data-poisoning-based backdoor attacks are often classi-
fied as “dirty-label” or “clean-label”. In dirty-label attacks,
the adversary poisons some data and changes its labels to
the attack’s target class. It could be easily spotted by hu-
mans, e.g., a poisoned dog image could be labeled as a “cat”.
In contrast, in clean-label attacks, the attacker only poisons
data without changing its labels, making this attack mecha-
nism more stealthy and desirable.

However, one critical drawback of most existing clean-
label attacks is their low efficiency. For dirty-label ones,
the poisoned examples have a fixed label regardless of the
image content, forcing the classifier to associate the back-
door trigger with the attack’s target class, leading to an al-
most 100% attack success rate (ASR). Meanwhile, in clean-
label attacks, the classifier may just learn the image con-
tent and ignore the trigger since all labels are correct. For
example, a naive adaptation to clean-label style for Bad-
Nets (Gu, Dolan-Gavitt, and Garg 2017), a common dirty-
label method, completely fails. In addition, most existing
clean-label attacks (Turner, Tsipras, and Madry 2019; Barni,
Kallas, and Tondi 2019) cannot reach an 80% ASR. Al-
though some recent works (Ning et al. 2021; Zeng et al.
2022) achieves near-perfect ASRs, they require significant
modifications to the training data. Due to the difficulty in de-
signing a working and effective algorithm, only a few clean-
label attacks have been proposed, and they have not been
well studied in backdoor defense research.

In our perspective, defining the optimal backdoor trigger
based on measuring its effect on the model poisoning result
is a solution for developing successful clean-label attacks.
Therefore, we propose a novel clean-label attack mechanism
called Clean-label OptiMize Backdoor Alternated Training,
or COMBAT for short. It aims to learn a generator that can
generate an effective, input-dependent backdoor trigger. As
indicated in its name, COMBAT employs an alternated train-
ing process to alternately optimize the generator and a sur-
rogate model, aiming to maximize the generator’s poisoning
effectiveness. In the surrogate model training step, COM-
BAT mimics the real data poisoning and backdoor modeling
process. In the generator training step, it updates the gen-
erator to maximize the attack success rate on the surrogate
model. More loss functions can be freely added in this step
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to define other desired properties of the attack, such as im-
perceptibility and defense nullification. After training, we
obtain an optimized generator with known and transferable
poisoning effectiveness. We evaluate our method on various
datasets, including CIFAR-10, ImageNet-10, and CelebA.
Impressive results are captured in the experiments, showing
that our attack is highly effective accross different datasets
and models while using exceedingly small triggers. The at-
tack is also stealthy, breaking all backdoor defenses.

Besides its effectiveness, COMBAT is also flexible, al-
lowing various customizations. We demonstrate this advan-
tage by designing different variants, including input-aware,
warping-based, and multi-target attacks. COMBAT is suffi-
cient to train these extremely-different methods to all reach
high success rates. We believe it will define a general train-
ing procedure for future clean-label backdoor attacks, stim-
ulating the development of this critical security research.

2 Background
2.1 Threat Model
In backdoor attacks, the attacker can provide a poisoned
dataset (dataset-poisoning) or a poisoned network (model-
poisoning). We focus on the dataset-poisoning scheme.

In this attack scenario, the attacker acts as a data provider
that supplies a victim with a dataset for image classification
training via a commercial transaction or an open-source re-
lease. He or she secretly poisons the data before releasing it,
using a backdoor injection function with a pre-defined trig-
ger pattern and a target attack label. The trigger pattern can
be in any form, such as noise, image patch, blended con-
tent, or pixel shifts. The victim will train a classifier on the
poisoned dataset and then obtains a backdoored model that
disguises itself as a rightful model by returning correct pre-
diction from clean input and producing the target class from
any poisoned datum. The victim does not recognize this be-
havior and deploys it in his or her system, allowing the at-
tacker to gain illegal benefits.

Data poisoning techniques can be divided into two
groups: dirty-label and clean-label. In this work, we focus
on the clean-label attacks, in which the attacker poisons only
some images and keeps their labels unchanged. For effi-
ciency, normally only a portion of the target-class images
are injected with the backdoor.

2.2 Previous Backdoor Attacks
The earliest backdoor attack is BadNets (Gu, Dolan-Gavitt,
and Garg 2017), which uses a fixed image patch as a trigger
embedded into a small portion of data and changes their la-
bels to the target class. Despite its simple scheme, BadNets
highly succeeded on various datasets. After BadNets, many
methods have been proposed in which some (Liu et al. 2018;
Yao et al. 2019; Rakin, He, and Fan 2020; Chen et al. 2021;
Bober-Irizar et al. 2022) define novel ways to inject back-
door, and others develop stealthy and effective backdoor in-
jection functions. In this study, we only consider the latter.

The majority of proposed backdoor attacks are dirty-
label, and we can only name a few here. (Nguyen and Tran
2020) employed input-dependent trigger patterns to dodge

the common backdoor defenses that relied on the fixed-
trigger assumption. (Nguyen and Tran 2021) designed a
novel, imperceptible backdoor trigger based on image warp-
ing. (Doan et al. 2021) optimized the backdoor trigger func-
tion during the training process towards imperceptible trig-
ger in the input space, while later works (Doan, Lao, and
Li 2021; Zhong, Qian, and Zhang 2022) further made back-
doors imperceptible in the latent space. Recent approaches
(Wang et al. 2021; Hammoud and Ghanem 2021) exploited
the frequency domain for stealthy attacks.

As mentioned, dirty-label attacks are not realistic in
the dataset-providing scenario due to the easy-to-detect in-
consistency between image contents and labels. (Turner,
Tsipras, and Madry 2019) first time discussed this issue and
proposed the clean-label attack scheme. The paper then pro-
posed to perturb each poisoning example to make its latent
depart from the original class before adding a fixed trig-
ger patch. (Barni, Kallas, and Tondi 2019) later proposed
to use fixed sinusoidal strips as the trigger pattern. Refool
(Liu et al. 2020) designed a natural-looking attack in which
the embedded trigger pattern is disguised as image reflec-
tion. (Saha, Subramanya, and Pirsiavash 2020) introduced a
hidden backdoor attack via model fine-tuning that first gen-
erated a patch-based poisoned sample, then embedded it into
texture of a training image of the target class by minimiz-
ing their distance in the feature space, thus making the trig-
ger invisible. (Souri et al. 2021) allowed hidden attacks on
training-from-scratch models by applying gradient match-
ing. Recently, Narcissus (Zeng et al. 2022) employed a clean
surrogate model and optimized an uniform trigger; that ap-
proach is quite similar to adversarial attack. Still, all these
methods had underwhelming attack performance compared
to dirty-label counterparts.

2.3 Backdoor Defense Methods
To protect victims from backdoor attacks, detecting and mit-
igating potential attack methods have been applied in any
stage ranging from dataset scanning (data defense), model
examination (model defense), to test-time monitoring when
the model is already deployed (test-time defense). Below is
a brief summary of those defense methods.
Data defense. This defense aims at purifying the train-
ing dataset by detecting and removing poisoned samples,
preventing backdoor formation from the source. (Tran, Li,
and Madry 2018) filtered backdoor samples assuming a dis-
cernible trace in the spectrum of the covariance feature rep-
resentations. (Chen et al. 2018) relied on latent representa-
tion clustering, assuming clean and poisoned samples had
distinct characteristics in the feature space. (Zeng et al.
2021b) filter data based on the frequently observed high-
frequency artifacts in backdoored samples.
Model defense. Model defenses identify or mitigate poi-
soned models by inspecting their behaviors when dealing
with clean data. Fine-pruning (Liu, Dolan-Gavitt, and Garg
2018) suggested pruning inactive neurons, but it could not
verify backdoor presence. Neural Cleanse (Wang et al. 2019)
tested if a model was poisoned by first computing optimal
class-inducing patterns for each label, then detecting abnor-
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mally small patterns. ABS (Liu et al. 2019) scanned the
neurons to generate backdoor trigger candidates via reverse
engineering technique, then verified these candidates on a
clean image set. (Xu et al. 2020) utilized GradCAM (Sel-
varaju et al. 2017) to analyze the model’s behaviors on im-
ages with and without the presence of engineering-reversed
triggers. (Zhao et al. 2020) repaired the model’s backdoor
using the mode connectivity (Garipov et al. 2018) technique.
(Kolouri et al. 2020) jointly optimized some universal lit-
mus patterns (ULPs) and a meta-classifier to diagnose sus-
picious models. Li (Li et al. 2021) assumed knowledge dis-
tillation could perturb backdoor-related neurons. More re-
cently, (Zeng et al. 2021a) proposed a minimax formulation
for retraining the suspicious model to remove backdoors.
Test-time defense. Defense methods utilized at test time
aim to filter out malicious samples. STRIP (Gao et al. 2019)
exploited the stagnancy of the network prediction on poi-
soned data under various perturbations to detect poisoned
samples. Neo (Udeshi et al. 2022) instead located the trigger
region by searching for the minimal square-like block that
altered the network prediction. Later, Februus (Doan, Ab-
basnejad, and Ranasinghe 2020) utilized GradCAM to iden-
tify abnormally small influential regions as potential trig-
gers. In both, the trigger candidates were then verified by
pasting them to a set of clean images.

3 Methodology
3.1 Problem Overview
In this section, we recall the formulation of clean-label back-
door attack problem.

Let fθ : X → C be the classification function mapping
from the data space X to the set of classes C, where θ is
the classifier’s hyper-parameters. Assume that we are given
a training data set S =

{
(xi, yi) : xi ∈ X , yi ∈ C, i =

1, 2, . . . , n
}

and C =
{
0, 1, . . . ,m}, then S =

⋃m
j=0 Sj ,

where Sj denotes the subset of data for class j.
We consider a clean-label backdoor attack on a target

class c ∈ C. It first samples from clean data of the target
class c a subset for poisoning Pc ⊆ Sc, given a poison-
ing rate p = |Pc|/|S|. Then, it applies a transformation T ,
which is a compositional function of a backdoor injection
function G and some pre- and post-processing steps, to poi-
son data in Pc to form a poisoned subset Pc

b . For exam-
ple, in (Turner, Tsipras, and Madry 2019), T consists of a
pre-processing step (GAN interpolation/adversarial pertur-
bation) and a patch-based backdoor trigger function. In this
work, we consider the simple case when T is exactly G. The
rest of the training data, denoted by S ′ := S \ Pc, is kept
unchanged. The combined set Sb := S ′ ∪ Pc

b is delivered to
the victim to train a poisoned classifier of a hyper-parameter
θb. This process can be expressed by formal equations:

Pc
b = {(G(xi), yi)|(xi, yi) ∈ Pc}, (1)

Sb = Pc
b ∪ (S \ Pc), (2)

θb = argmin
θ

∑
(x,y)∈Sb

L
(
fθ(x), y), (3)

where L is a loss function, e.g., cross-entropy. The desired
poisoned classifier can correctly classify clean data input.
However, when applying the backdoor trigger onto the input,
this classifier always returns the target label c:

fθb(x) = c(x), fθb(G(x)) = c ∀x ∈ X , (4)

with c(·) is the truth function returning the true input class.
In this study, we focus on designing an efficient back-

door function G so that any backdoor model trained using
G (Eq. 1, 2, 3) can highly meet the conditions in Eq. 4.

3.2 Trigger Generator
In this section, we present the process of designing an ef-
fective backdoor function G. We start with a simple design
where G is a noise-additive function parameterized by ϕ:

Gϕ(x) = x+ ηgϕ(x), (5)

with gϕ is a neural network that generates a trigger noise in
the range of [−1, 1] conditioned on the input image x and η
is the ℓ∞ bound of the added noise. Many existing backdoor
attacks can be formulated as Eq. 5. However, recent research
(Zeng et al. 2021b) highlights two problems that render such
attacks easily detectable using a deep neural network-based
detector. These issues include (1) inherent high-frequency
artifacts of the trigger and (2) the decreased correlation of
neighboring pixels when adding the trigger to the input im-
age. In this work, we introduce two techniques to mitigate
these problems. First, we constrain the generated noise to
contain only low-frequency components.

To achieve this, given a noise gϕ(x) ∈ Rd×d 1, we re-
move its high-frequency artifacts by applying a filtering
mask m to its type-II 2D Discrete Cosine Transform (DCT)
(Ahmed, Natarajan, and Rao 1974) DCT(gϕ(x)). Specifi-
cally, we consider m ∈ Rd×d such that:

mi,j =

{
1 if 1 ≤ i, j ≤ rd

0 otherwise
(6)

and take Hadamard product of m and DCT(gϕ(x)) to pre-
serve only rd×rd top-left entries of DCT(gϕ(x)) with some
ratio r ∈ (0, 1). Then, we reconstruct the trigger noise by ap-
plying the inverse DCT (IDCT) to the masked DCT(gϕ(x)).
The whole transformation is represented as:

Q(gϕ(x)) = IDCT(m⊙ DCT(gϕ(x))). (7)

Although the generated noise carries only low-frequency
components, adding it directly to an image can break the
correlations between neighboring pixels of the original im-
age. To mitigate this problem, we further apply a Gaussian
blur filter k to the poisoned image. We obtain the final back-
door function as:

Gϕ(x) = (x+ ηQ(gϕ(x))) ∗ k. (8)

For stronger stealthiness, we also want the trigger to be suf-
ficiently small. Therefore, given a classifier fθ, we want to
minimize the loss of assigning poisoned data to the target

1Here, we assume 2D input for simplicity. For RGB images, the
following process is performed on each channel.
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class c as well as the magnitude of the trigger. In the for-
mula, these loss terms are defined as follows:

La(fθ,Gϕ;S, η) :=
∑

(xj ,yj)∈S

L(fθ(Gϕ(xj), c) (9)

Lℓ2(gϕ;S, η) :=
∑

(xj ,yj)∈S

∥ηQ(gϕ(xj))∥2. (10)

We observe that when training with only these loss func-
tions, gϕ tends to generate adversarial noises. These pertur-
bations cause the model to misclassify even without data
poisoning in training, thus countering the purpose of back-
door attacks. We prevent gϕ from learning adversarial noises
by employing a pretrained clean classifier of the same task
as fθ, denoted as hψ where ψ are network parameters. For
each data sample (xj , yj), hψ should still correctly classify
the input even when adding the trigger generated by gϕ:

Ld(Gϕ, hψ;S, η) :=
∑

(xj ,yj)∈S

L
(
hψ(Gϕ(xj), yj

)
(11)

While we use a single, specific clean network hψ in this
loss function, gϕ can avoid producing adversarial perturba-
tions of any similar clean classifier, thanks to the adversarial
transferability property of deep networks. We will empiri-
cally confirm this in Section 4.4.

In essence, we find the optimal trigger function by solving
the following optimization problem:

ϕ∗ = argmin
ϕ

∑
(xj ,yj)∈S

[
La(fθ,Gϕ;S, η) + λℓ2Lℓ2(gϕ;S, η)

+ λdLd(Gϕ, hψ;S, η)
]
, (12)

with λℓ2 and λd are weighting hyper-parameters.

3.3 Alternated Training
As discussed, given a classifier, we could find the best trig-
ger generator for that classifier. Since we want to poison the
victim classifier fθb , ideally, we wish to have that classifier
in training Gϕ. However, we need Gϕ first to train that victim
classifier. This is a chicken-and-egg problem. A solution is
to train a surrogate classifier fθ that is as close to fθb as pos-
sible. In particular, besides optimizing Gϕ with Eq. 12, we
concurrently optimize fθ with another loss function:

θ∗ = argmin
θ

∑
(xj ,yj)∈S

L(fθ(xj), yj) +
∑

(xj ,c)∈Pc
b

L(fθ(Gϕ(xj)), c),

(13)
which mimics the process of training the victim classifier.
We note that solving both Eq. 12 and Eq. 13 is like finding
a balance between the trigger’s magnitude and the class’s
boundary, and we implement it via alternated training. We
also argue that the joint optimization allows smaller trigger
sizes, consequently makes the poisoned data less percepti-
ble. The results in Section 4.5 confirms that when the trigger
is small, the ASRs obtained from alternated training outper-
form that from without alternated training.

After the alternated training process, the attacker acquires
the optimal trigger generator Gϕ∗ , then uses it to generate

the poisoned dataset Sb. The whole process is described in
Algorithm 1. The poisoned data will expectedly be used by
the victim to train a classifier. This victim model will be poi-
soned and behave similarly to the surrogate model, as empir-
ically proved in Section 4.2.

4 Experiments
4.1 Experimental Setup
We use three popular datasets, namely CIFAR-10
(Krizhevsky, Hinton et al. 2009), ImageNet-10, and
CelebA (Liu et al. 2015), for our experiments. To create
the ImageNet-10 dataset, we randomly select 10 classes
from ImageNet-1K (Deng et al. 2009). For CelebA, we
follow the recommended configuration from (Salem et al.
2020) to choose three most balanced attributes, namely
Heavy Makeup, Mouth Slightly Open, and Smiling, and
concatenate them to form eight compound classes for a
multi-label classification task. To construct the classifier f ,
we utilize the Pre-activation ResNet-18 (He et al. 2016)
for CIFAR-10 and ResNet-18 for both ImageNet-10 and
CelebA. In all experiments, we use the same backbone
between h and f . Additionally, we design the generator
function g with a U-Net (Ronneberger, Fischer, and Brox
2015) backbone.

For each experiment, we simulate the entire data and
model poisoning process and assess the accuracy of the vic-
tim model on both clean and poisoned data. Models are
trained for 200 epochs using SGD optimizer. We use a batch
size of 128 for CIFAR-10 and CelebA and 32 for ImageNet-
10. The initial learning rate is set to 0.01 for CIFAR-10 and
CelebA, and 0.001 for ImageNet-10, which is decreased ten-
fold at epoch 100 and 150. We use the target class c = 0
across all tests. The target-class training images are poisoned
to achieve an overall poisoning rate of 5%. We set λℓ2 and
λd as 0.02 and 0.8, respectively. For the high-frequency re-
moval tricks, we choose ratio r = 0.65 and use Gaussian
blur filter with kernel size of 3 and standard deviation σ uni-
formly sampled from [0.1, 1].

4.2 Attack Experiments
White-box settings We first conduct experiments on the
standard backdoor setting, where the attacker has prior
knowledge about the victim’s model training, so they can
match the surrogate model’s architecture to the victim
model’s. To ensure imperceptible triggers, we set a small
value of η to 10/255. We report the test performance of the
victim models in Table 1. Across all datasets, these models
have similar accuracy as the clean counterpart on clean data.
Our method achieves near-perfect ASRs on CIFAR-10 and
CelebA. Even on ImageNet-10, it still achieves a high ASR
of 83.78%, confirming its effectiveness for large images.

Next, we compare our method with the existing clean-
label attacks on CIFAR-10 in Table 2. The baselines in-
clude BadNets (Gu, Dolan-Gavitt, and Garg 2017), Label-
consistent (Turner, Tsipras, and Madry 2019), SIG (Barni,
Kallas, and Tondi 2019), Sleeper Agent (Souri et al. 2021),
and Narcissus (Zeng et al. 2022). Note that Sleeper Agent
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Dataset η p (%) OA (%) BA (%) ASR (%)

CIFAR-10 10/255 5.00 94.77 94.58 97.73
ImageNet-10 10/255 5.00 85.00 88.60 83.78
CelebA 10/255 5.00 79.34 79.41 99.84

Table 1: Attack performance on different datasets. For each dataset, we report the benign accuracy (BA) of victim models on
clean inputs and the attack success rates (ASR) of backdoored samples. Additionally, we report the original accuracy (OA) of
the corresponding clean models as a reference.

Method
Standard setting Low poisoning rate (p = 0.05%) Tight constraint (η = 4/255)

η BA (%) ASR (%) η BA (%) ASR (%) BA (%) ASR (%)

BadNets 255/255 94.99 5.49 255/255 94.82 0.79 94.40 0.81
Label Consistent 255/255 94.78 65.69 255/255 95.00 0.79 94.27 0.47
SIG 25/255 94.72 69.35 25/255 94.54 0.27 94.34 0.78
Sleeper Agent 12/255 91.43 60.90 16/255 91.74 9.06 90.61 10.57
Narcissus 10/255 95.06 89.09 16/255 95.37 47.86 94.99 70.12
Ours 10/255 94.58 97.73 16/255 94.80 72.31 94.56 83.20

Table 2: Comparison between clean-label attacks on CIFAR-10. We consider one standard and two extreme attack scenarios. We
report the benign accuracy (BA) of victim models on clean inputs and the attack success rates (ASR) of backdoored samples.
For a fair comparison, we do not apply ×3 amplification when evaluating the Narcissus attack.

computes ASR on a sampled source image set, but we mod-
ified their code to compute ASR on the poisoned test images.
Moreover, Narcissus amplifies the trigger noise at inference
to enhance the ASR, but we report its performance without
such amplification to ensure a fair comparison. We evaluate
all methods in one standard and two extreme scenarios: ex-
tremely low poisoning rate of p = 0.05% (only 25 poisoned
samples) and tight trigger norm constraint of η = 4/255. In
the standard setting, all methods except BadNets can achieve
at least 60% ASR. However, only our method can reach
near-perfect performance with 97.73% ASR, outperforming
the others by a significant margin. When poisoning only 25
examples, only Narcissus and COMBAT manage to implant
the backdoors to the victim models. While Narcissus could
not pass 50% ASR, our method produces 72.31% ASR. Fi-
nally, even with the tight constraint, our approach achieves
83.20% ASR, while the others fail to reach 75% ASR.

Black-box settings In real-world scenarios, it is highly
unlikely for attackers to possess prior knowledge about the
victim’s model architecture. However, even in such circum-
stances, our learned generators are able to produce transfer-
able triggers that can effectively target victims with differ-
ent backbones than the surrogate models. To demonstrate
this, we conduct a series of transfer attack experiments, and
the results are reported in Table 3. Our tests include various
victim backbones such as MobileNetV2, VGG13, and Vit-
Small-8. In most cases, the transferred ASRs are greater than
80%, except for ViT-Small-8 on ImageNet-10. We attribute
this result to the small size of the dataset (13,000 training im-
ages) as it may not be sufficient to train a Transformer-based
classifier. This claim is supported by the fact that when we
use a significantly larger dataset like CelebA (over 160,000
images), our attack achieves a near-perfect ASR of 99.77%.

4.3 Defense Experiments
In this section, we evaluate our proposed backdoor attack
against several popular defenses, namely, Frequency-based
defense (Zeng et al. 2021b), Neural Cleanse (Wang et al.
2019), Fine-pruning (Liu, Dolan-Gavitt, and Garg 2018),
STRIP (Gao et al. 2019) and GradCAM (Xu et al. 2020;
Doan, Abbasnejad, and Ranasinghe 2020). More defense ex-
periments can be found in the Appendix.
Frequency-based defense is a data defense that involves
training a detector to recognize poisoned samples in the
frequency domain. This method is highly effective, as
many existing backdoor attacks generate easily detectable
high-frequency artifacts. We address it by applying high-
frequency removal tricks in Section 3.2, which effectively
reduce the detection rate on all datasets (Table 4). We pro-
vide a more in-depth analysis in the Appendix.
Neural Cleanse is a widely used model defense. It computes
for each class an optimal class-inducing pattern, then de-
tects if there is an abnormally smaller pattern among them,
using an anomaly index computed by an outlier detection
algorithm. If an index is greater than 2, the model will be
marked as backdoor. COMBAT passes Neural Cleanse for
all datasets (Fig. 1c).
Fine-pruning is another model defense that focuses on neu-
ron analysis. It gradually prunes the neurons that are inac-
tive when predicting clean images, assuming they are more
likely linked to the backdoor. We run it on our victim models
and plot the clean (BA) and backdoor (ASR) accuracy w.r.t.
the number of neurons pruned in Fig. 1a. The defense can
not mitigate our backdoor since there is no point with high
BA and low ASR.
STRIP is a common test-time defense. Given the model and
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Dataset Surrogate Model
Victim model

MobileNetV2 VGG13 ViT-Small-8

CIFAR-10 PreActResNet18 93.76 / 98.70 93.76 / 97.10 76.92 / 87.10
ImageNet-10 ResNet18 89.20 / 88.22 91.60 / 80.89 81.20 / 23.11

CelebA ResNet18 79.79 / 99.48 78.85 / 97.57 76.84 / 99.77

Table 3: Transfer attack to different victim backbones, each cell shows BA (%) / ASR (%).

Algorithm 1: COMBAT
Input: Training data set S, target label c, injection rate p, poison
magnitude η, number of training iteration N , a clean classifier hψ ,
hyper-parameters λℓ2 and λd.

Stage 1: Find the optimal trigger function Gϕ∗

initialize ϕ and θ
for the number of iterations < N do

Randomly sample a mini-batch Smini from S
Find Sc

mini as the subset of Smini with the class label c
Randomly sample Pc

mini from Sc
mini with ratio p

Update θ: min
θ

∑
(xj ,yj)∈Smini\Pc

mini

L(fθ(xj), yj) +
∑

(xj ,c)∈Pc
mini

L
(
fθ(Gϕ(xj)), c

)
Update ϕ: min

ϕ

∑
(xj ,yj)∈Smini

[
L
(
fθ(Gϕ(xj)), c

)
+

λℓ2∥ηQ(gϕ(xj))∥2 + λdL
(
hψ(Gϕ(xj)), yj

)]
end

Stage 2: Generate the poisoned dataset Sb
Find Sc as the subset of S with the class label c
Randomly sample Pc from Sc with ratio p
Pc
b ← ∅

for (x, y) in Pc do
Pc
b ← Pc

b ∪ {(Gϕ(x), y)}
end
Sb ← (S \ Pc) ∪ Pc

b

return Gϕ∗ and Sb.

a suspicious input, STRIP superimposes various image pat-
terns on the input and records the prediction entropy over
those perturbed images. Consistent predictions, indicated by
low entropy, suggest that the sample may be poisoned. We
provide STRIP’s results on our models in Fig. 1b. COMBAT
has a similar entropy range as that of a clean model, hence
easily bypasses the defense.

GradCAM inspection was used in some studies (Xu et al.
2020; Doan, Abbasnejad, and Ranasinghe 2020) to de-
tect abnormal network behavior for backdoor detection. We
tested GradCAM on CIFAR-10 poisoned models. With Bad-
Nets, the trigger is easily caught in the GradCAM heatmaps,
as shown in Fig. 1d. In contrast, our highlighted heatmap
regions spread out and vary in size and position; hence our
trigger stays obscure under such inspection.

CIFAR-10 ImageNet-10 CelebA

W/o HF removal 100.00 100.00 100.00
W/ HF removal 16.20 23.33 34.33

Table 4: Effect of our high-frequency (HF) removal on the
detection rate (%) of frequency-based backdoor detector.

Victim Model λd = 0 λd = 0.8
p = 5% p = 0% p = 5% p = 0%

PreActResNet18 94.72 91.29 97.73 6.60
MobileNetV2 93.91 92.54 98.70 13.66
VGG13 93.17 79.81 97.10 4.61

Table 5: Attack success rate without and with adversarial
avoidance loss. The experiment is conducted on the CIFAR-
10 dataset and the surrogate model is PreActResNet18.

4.4 Role of the Adversarial Avoidance Loss
In this section, we illustrate the role of the adversarial avoid-
ance loss Ld proposed in Eq. 11.

We observe that without Ld, g tends to “cheat” by learn-
ing to produce universal targeted adversarial noises. These
noises can fool the victim classifier during inference, re-
gardless of whether data poisoning was present during train-
ing, contradicting the goal of backdoor attacks. Moreover,
standard adversarial defenses can mitigate these adversarial
noises. To demonstrate this behavior, we present our ASR
with and without Ld in Table 5. When λd = 0, the ASR
stays high across different victim backbones, regardless of
the value of p. However, when Ld is applied with λd = 0.8,
the ASR drops significantly when no data poisoning is in-
volved. It holds true, even when the victim’s backbone is
different from the surrogate model, confirming that Ld effec-
tively prevents g from producing adversarial perturbations.

4.5 Ablation Studies
Alternated training. The alternated training is a key com-
ponent of our proposal. It simulates the data poisoning pro-
cess, providing g with an accurate representation of real-
world victim models, thus increasing the attack’s effective-
ness. In contrast, a less effective and simplistic method is to
train g using a fixed surrogate model, f , pre-trained on clean
data. To compare the two approaches, we conducted exper-
iments on CIFAR-10 with different noise strengths (η). Our
approach firmly outperforms the naive one (left of Fig. 2).
Performance w.r.t poisoning rates. We investigate the im-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

2441



(a) Fine-pruning

(b) STRIP

CIFAR-10 ImageNet-10 CelebA0

1

2

3

An
om

al
y 

in
de

x

1.18 1.12 1.25
1.63 1.56 1.49

clean
backdoor

(c) Neural Cleanse (d) GradCAM visualization

Figure 1: Experiment results of evaluating COMBAT against defense methods
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Figure 2: Ablation studies on CIFAR-10. Left: Role of alter-
nated training. Right: Performance w.r.t poisoning rates.

pact of poisoning rate on the performance of victim models
on CIFAR-10 and report the results on the right of Fig. 2.
Even when using a small number of poisoned images, COM-
BAT can achieve a surprisingly high attack success rate. As
the number of poisoned images increases, the attack success
rate consistently approaches 100%.

5 Customize the Attack Configurations
Training a trigger generator offers a high level of customiz-
ability to suit the attacker’s objectives. We demonstrate be-
low an example variant of our attack with multiple target
labels. More variants, such as input-aware, warping-based,
or imperceptible triggers, can be found in the Appendix.
Multiple target labels. In practice, the attacker can use
multiple target labels, i.e., all labels are targeted. It re-
quires the adversary to use different triggers for different
classes in order to define which label the victim network

should return in an inference-time attack. This attack can
be simply implemented by using multiple trigger functions
G0,G1, ...,Gm for each target class, but it is expensive and
non-scalable. Instead, we can employ a single conditional
generator G(x, y) that inputs both an image x and a target
label y ∈ {0, 1, ...,m}. The generated trigger is label-aware,
i.e., G(x, i) ̸= G(x, j) ∀i ̸= j. From the original training set
S , we now select the poisoning set P covering all classes.
The new poisoned dataset Sb is defined as follows:
Sb = Pb ∪ (S \ P), Pb = {(G(xi, yi), yi)|(xi, yi) ∈ P}.

(14)
At inference time, the attacker can freely choose the target:
fθb(G(x, y)) = y ∀x ∈ X , y ∈ {0, 1, ...,m} . (15)

We implement this attack on CIFAR-10 by modifying the
formulation for the function G in Eq. 8 as follows:

G(x, y) = (x+ ηQ(g(x, y))) ∗ k. (16)
with g(x, y) is a conditional U-Net. It achieves near-perfect
results with BA at 92.48% and ASR at 99.07%.

6 Conclusions and Future Works
This paper proposes COMBAT, a framework for training
clean-label backdoor attacks with outstanding efficacy. The
key component is an alternated training process that opti-
mizes together a trigger generator and a surrogate classifier.
Our attack is effective, stealthy, and flexible for customiza-
tion, which is extensively verified. We believe this study is
crucial to understanding the potential capability of clean-
label backdoor attacks, stimulating future defense studies
aiming safe and trustful AI. Besides, we plan to further im-
prove COMBAT’s transferability in future studies.
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