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Abstract

Semi-supervised learning (SSL), as one of the dominant
methods, aims at leveraging the unlabeled data to deal with
the annotation dilemma of supervised learning, which has at-
tracted much attentions in the medical image segmentation.
Most of the existing approaches leverage a unitary network
by convolutional neural networks (CNNs) with compulsory
consistency of the predictions through small perturbations ap-
plied to inputs or models. The penalties of such a learning
paradigm are that (1) CNN-based models place severe limita-
tions on global learning; (2) rich and diverse class-level distri-
butions are inhibited. In this paper, we present a novel CNN-
Transformer learning framework in the manifold space for
semi-supervised medical image segmentation. First, at intra-
student level, we propose a novel class-wise consistency loss
to facilitate the learning of both discriminative and compact
target feature representations. Then, at inter-student level, we
align the CNN and Transformer features using a prototype-
based optimal transport method. Extensive experiments show
that our method outperforms previous state-of-the-art meth-
ods on three public medical image segmentation benchmarks.

1 Introduction
Medical image segmentation, in the pursuit of integrating
boundary detection, region formation and agglomeration for
analyzing tissue structures, is a long-standing fundamental
task. Recently, convolutional neural networks (CNNs) (Ron-
neberger, Fischer, and Brox 2015; Zhou et al. 2019b) have
achieved remarkable success benefiting from the large-scale
annotated dataset. However, collecting pixel-level annota-
tions is expensive and time-consuming, especially for medi-
cal images. Semi-supervised learning (SSL) attracts high at-
tention by using both labeled data and large amount of unla-
beled data to relieve the pressure of sufficient labeling.

Learning such a paradigm also remains being exposed to
ongoing adverse representational conditions, for example,
the lack of global attention makes imprecise performance.
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Specifically, CNN-based SSL methods fail to model the ex-
plicit long-range relations beyond local regions (shown in
Fig. 1 (c) and (d)), since the receptive field of a network’s
units is severely limited. To increase model diversity, previ-
ous approaches focused on different perturbations (French
et al. 2019), varying network structures (Luo et al. 2021a),
or various initializations (Ke et al. 2019). However, captur-
ing complementary information is arduous in the later stage
of training, as an indirect result of counterproductive decou-
pling two feature extractors (Zheng et al. 2022). In addi-
tion, the existing SSL methods directly leverage pixel-wise
predictions from CNNs, which ignore rich class-level de-
pendencies, resulting in very limited capability for accurate
segmentation, especially for organs with similar contextual
information or/and surrounding position, e.g., a part of pan-
creas is incorrectly segmented as liver in Fig. 1 (f) and (g).

Recently, Transformers have made remarkable achieve-
ments toward establishing long-range dependencies alterna-
tive to CNNs and achieving excellent performance in mul-
tifarious visual tasks (Dosovitskiy et al. 2020). Although
global relations can be well captured by Transformers, the
lack of inductive biases and the receptive field of convolu-
tional kernels all lead to less effective learning, let alone the
quadratic computational complexity. Fortunately, the above
problems can be solved by combining CNNs and Transform-
ers for fully associating local features with global cues. En-
lightened by the success of joint learning, in this paper, we
explore the essence of CNNs and Transformers for building
both local invariant translation and global long-range depen-
dency in semi-supervised medical image segmentation.

Plenty of works have been presented to learn features in
general Euclidean space, yet seldom considering the topo-
logical structures of data, which is crucial on manifold. In
fact, directly operating in Euclidean space is challenging,
considering: (i) Intra-student problem: Both CNNs and
Transformers face the difficulty of inconsistency in the same
category and the confused semantics among categories,
which all lead to inseparable representations. (ii) Inter-
student problem: the inner feature and output paradigm of
Transformers is heterogeneous from CNNs, which leads to
different class distributions. How to learn the complemen-
tarity of two-style features and train the Transformer with
few annotations remains an open question.
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Figure 1: Left: Visualization of feature maps. The CNN-based SSL methods, i.e., MT (in (c)) and DCT (in (d)), cannot capture
long-term relations and thus fail to attend on objects beyond local regions (e.g., unactivated pancreas and liver). Right: Seg-
mentation confusion matrix, where the diagonal should be brighter (intra-class compactness), while the rest should be darker
(inter-class discrepancy). As observed in yellow boxes, MT (in (f)) and DCT (in (g)) tend to mis-classify pancreas as liver (e.g.,
brighter of pancreas-to-liver) and under-segment pancreas (e.g., darker of pancreas-to-pancreas). Our M-CnT (in (b)) can attend
objects in long-range scenarios, and achieve accurate localization with better compactness (in (e)).

To address the above issues, we define the Manifold
constraints in combinatorial CNN-Transformer learning
(termed as M-CnT) for semi-supervised medical image seg-
mentation. The proposed method can be learned synergisti-
cally with CNN and Transformer to adaptively learn mani-
folds of varying structure across samples. There have been
some methods (Konstantinidis et al. 2022; Huang et al.
2017) employing manifolds to prove that features in differ-
ent manifolds carry special statistical and geometrical prop-
erties, which bring complementary discriminative power for
various tasks. Recent advances in manifold learning reveal
two properties (Konstantinidis et al. 2022): (1) allowing sim-
ilar features to appear closer to each other, while dissimilar
features move further apart; (2) providing superiors mani-
fold metric to measure the discrepancy with different statis-
tical and geometrical properties. Inspired by these attempts,
M-CnT incorporates more compact and discriminative em-
beddings in the manifold space considering that: (1) Intra-
student class-wise consistency: to strengthen the discrimi-
native power of both CNN and Transformer, the intra-class
samples are required to be compact, while the inter-class
samples are separable. (2) Inter-student knowledge trans-
fer: CNN and Transformer have distinct inner feature flow
forms, in which their features with complementary class-
wise distribution create a potential opportunity for collabo-
ration. In that, the inter-student discrepancy is represented as
the distance between two submanifolds, which is then mini-
mized based on the defined manifold metric (e.g., symmetric
positive definite metric (Konstantinidis et al. 2022)).

Based on these considerations, we learn an implicit con-
sistency regularization with complementary information for
producing more stable pseudo labels to overcome the above
deficiencies. As observed in Fig. 1 (b), our M-CnT can rec-
ognize objects in varying sizes and long-range scenarios
(e.g., large liver and tiny pancreas), owing to local-global
cues and class-specific characteristics. M-CnT learns fea-
tures with better discriminability among different classes
(darker non-diagonal), leading to more accurate results in
Fig. 1 (e). Our main contributions are summarized as fol-
lows: (I) We analyze the intra- and inter-student problems
raised by the CNN-based SSL methods for semi-supervised
medical image segmentation, and propose a novel scheme,
named M-CnT, to fully capitalize the unlabeled data in the

manifold space. (II) We introduce an intra-student class-
wise consistency to construct more compact class-wise rep-
resentations and reduce inter-class dependencies. (III) An
inter-student knowledge transfer loss is explored to rein-
force class-wise statistics in the manifold space and thus
strengthen the discrimination of inner features. (IV) Exten-
sive experiments are performed on three public datasets, re-
sulting in new state-of-the-art results on different scenarios.

2 Related Work
Semi-supervised Medical image Segmentation. Recent ef-
forts in semi-supervised segmentation have been focused
on incorporating unlabeled data into CNNs, which can be
largely categorized into four groups: self-training (Bai et al.
2017; Ouali, Hudelot, and Tami 2020a), co-training (Qiao
et al. 2018; Zhou et al. 2019a), deep adversarial learning
(Zhang et al. 2017; Zheng et al. 2019) and self-ensembling
(Π-model (Li et al. 2018) and Mean-Teacher (MT) model
(A.Tarvainen and H.Valpola 2017)). For example, Qiao et
al. (Qiao et al. 2018) achieved Deep Co-Training (DCT) by
learning two classifiers on two views. Zhang et al. (Zhang
et al. 2017) designed a Deep Adversarial Network (DAN),
which enforced the segmentation of unlabeled data to be
similar to the labelled ones. Yu et al. (Yu et al. 2019) pro-
posed a Uncertainty-Aware Mean-Teacher (UA-MT) which
enables the student to learn from the reliable targets.

Class-wise Losses in Segmentation. Recent works have
shown the advantages of utilizing class-wise statistics in pro-
cessing intra-class consistency and inter-class distance. Un-
der a fully supervised setting, Li et al. (Li et al. 2022) de-
signed an inter-class loss based on Euclidean Distance (ED),
which distinguished similar pixels from different categories;
while Wang (Wang et al. 2020) proposed the intra-class fea-
ture variation (IFVD), which alleviated the difference of
class distributions between the student and teacher. In the
semi-supervised learning, Alonso et al. (Alonso et al. 2021)
considered intra-class compactness by using pixel-level con-
trastive learning (PLCL) to create a better class separation.

Manifold Learning. Recently, manifolds learning has been
widely employed in vision tasks (Konstantinidis et al. 2022;
Luo et al. 2020; Huang et al. 2017), largely attributes to
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Figure 2: An overview of our M-CnT. It takes both labeled and unlabeled images as input, and obtains two-style predictions
(PCNN and PTrans) after feature extraction by a parallel CNN-Transformer architecture. For the labeled image Il, we apply
the commonly-used supervised loss Lsup to update model parameters. As for the unlabeled image Iu, the model is optimized
with the pixel-level consistency loss Lpixel and two manifold constrains (Lintra and Linter) to explore class statistics.

the discriminative power, which carries statistical and geo-
metrical properties. For example, Konstantinidis et al. (Kon-
stantinidis et al. 2022) proposed a multi-manifold attention
(MMA) that employed three different manifolds to learning
a highly descriptive attention map. Hao et al. (Jia et al. 2021)
explored the rich patch-level information in manifold space
and thus designed a fine-grained distillation loss. Inspired by
these attempts, we design an effective manifold constraint to
learn their separable representations.

3 Method
In the semi-supervised learning, the training set consists of
two parts: a labeled set Dl = {(Il, Yl)}Nl=1 and an unla-
beled set Du = {(Iu)}N+M

u=N+1 , where Yl is the ground truth.
The overview of our M-CnT is shown in Fig. 2, consisting
of two manifold constraints upon the dual-student scheme
with CNN-Transformer architecture (Sec. 3.1): (i) The intra-
student class-wise consistency Lintra is explored to simulta-
neously perform intra-class aggregation and inter-class elim-
ination (Sec. 3.2); (ii) The inter-student knowledge transfer
loss is implemented to align class-wise knowledge between
two-style students (Sec. 3.3). By combining these two con-
straints (Sec. 3.4), our M-CnT is able to explore global ca-
pability and class-level features from unlabeled data.

3.1 Architecture of CNN-Transformer
Our M-CnT exploits the complementarity of two students:
the convolutional student f(I; θC) and Transformer student
f(I; θT ). Each component will be introduced in detail.

Convolutional Student. The conventional U-Net, which
adopts the feature pyramid structure, is employed as back-
bone to extract local-level context information. Specifically,
there are five stages with stacking convolutional blocks in
the encoder of U-Net for feature embedding. When the en-
coder goes deeper, the resolution of feature maps gradually
decreases to {1/1, 1/2, 1/4, 1/8, 1/16} for the five stages;

while the number of channel dimensions accordingly in-
creases to {16, 32, 64, 128, 256}.

Transformer Student. Different from the convolutional stu-
dent embedding local cues, Transformer aims to incorporate
global representations. In particular, we employ Swin-UNet
(Cao et al. 2021) as the backbone for the branch of Trans-
former student, which is designed in a hierarchical manner
with spatial reduction and window-based attention for re-
ducing computational complexity. There are also five stages
in the encoder of Swin-UNet. The resolution of feature maps
gradually decreases to {1/4, 1/8, 1/16, 1/32, 1/32} for five
stages, respectively; while the number of channels accord-
ingly increases to {96, 192, 384, 768, 768}.

Pixel-level Consistency Loss Lpixel. Given the unlabeled
images Iu, we can obtain the pixel-wise confidence maps
(PCNN and PTrans), from the CNN and Transformer
branches, and the pseudo label can be calculated via: Ŷ =
argmax(P ). Instead of directly averaging predictions from
both students as the pseudo label, we consider the uncer-
tainty in the CNN and Transformer, which can effectively
eliminate the unreliable pseudo label. Specifically, we cal-
culate the entropy of pixel-wise probability distribution in
both PCNN and PTrans to obtain the pseudo labels of higher
quality as: H (P )

h,w
= −

∑C−1
c=0 Ph,w(c) logPh,w(c),

where Ph,w is the prediction of PCNN/PTrans in the posi-
tion of (h,w), and C is the number of classes. As the predic-
tion with lower uncertainty is more accurate, we select more
confident part from either CNN or Transformer to form the
reliable pseudo label Ŷ h,w

u for unlabeled Iu:

Ŷ h,w
u = Sh,w ⊙ Ŷ h,w

CNN + (1− Sh,w)⊙ Ŷ h,w
Trans, (1)

Sh,w = 1
{
H(P )h,wCNN < H(P )h,wTrans

}
, (2)

where Sh,w records the position of pixels with lower un-
certainty from CNN; while (1 − Sh,w) can select the confi-
dent pixels from Transformer. Then, we utilize the reliable
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pseudo label Ŷ h,w
u to supervise the output of two students

by using the Dice loss, which can be denoted as:

Lpixel =
1

2

(
Ldice(PCNN , Ŷu) + Ldice(PTrans, Ŷu)

)
.

(3)
Manifold Layers. Enlightened by the successful application
of manifold learning paradigm, we aim to apply the mani-
fold constraints to fully exploit the crucial class-wise statis-
tics embedded in the unlabeled data. The representations in
the manifold space are built over the final decoder stage be-
fore the segmentation head. Specifically, the input feature X
is firstly transformed to the same resolution of input image
(size of H×W ), i.e., X ∈ RH×W×D. Then, it is rearranged
into a sequence with size of HW ×D. Inspired by the pre-
vious work (Luo et al. 2020), we employ the fully-connected
layers on the rearranged sequence, which map them into
the manifold spaces

{
Mi ∈ Rd|i = 1, 2, . . . ,HW

}
. To this

end, we can obtain CNN-based MCNN and Transformer-
based MTrans with the same size of HW × d.

3.2 Intra-student Class-wise Consistency
In this section, we investigate the way to generate the sepa-
rable features in the manifold space for each student. Specif-
ically, we define an intra-class aggregation loss to achieve
more compact features and an inter-class elimination loss
to further generate relatively larger margin between classes.

Intra-class Aggregation Loss. In our approach, a
prototype-based strategy is employed, which connects the
class-specific prototype of unlabeled data (i.e., class center)
with the high-quality features extracted from labeled data
of the same class. Such that, the indistinguishable unlabeled
prototypes can explicitly learn from the representative fea-
tures from labeled data, in a class-aware manner.

• Class-specific Prototypes G. The prototype of c-th class
can be calculated by averaging manifold of the class:

Gc =
1

|Sc|
∑
i∈Sc

Mi, (4)

where Mi is the i-th feature in manifold M; Sc is the set
of features having the same label of c, according to the
pseudo label Ŷ h,w

u and |Sc| represents the size of the set.
• Memory Bank B. We employ a memory bank B to collect

the high-quality features from the labeled data. Inspired by
(Alonso et al. 2021), for each class, we utilize the atten-
tion modules to obtain the ranking score for the candidate
features (i.e., the ones have the correct predictions to the
ground truth). The attention module comprises of two se-
quential linear functions and a Sigmoid function, which
correspondingly yields a score in the range of [0, 1] for
each feature. Then, the top-K highest-scoring features are
selected and added to the memory bank; hence, the mem-
ory bank has the size of C ×K × d.

With the prototypes and memory bank, we force the class-
wise prototypes G to approach their corresponding high-
quality class-specific representations in the memory bank B,
aiming to shrink the intra-class distribution. Concretely, we

utilize the cosine similarity to compute the distance between
Gc and Bk

c , and the loss Laggregate can be defined as:

Laggregate =
1

C

1

K

C∑
c=1

K∑
k=1

(
1−

〈
Gc,Bk

c

〉
∥Gc∥2 · ∥Bk

c ∥2

)
. (5)

Here, Laggregate can align the ambiguous unlabeled class
centers to the confident labeled high-quality features, and
make each class distribution more compact, resulting in a
good separation of various classes in the latent space.

Inter-class Elimination Loss. Another efficient way to
achieve the separable boundary between classes is to maxi-
mize the distance between any two different clusters in the
latent space (Luo et al. 2020). Hence, for the class-specific
prototypes G, we reduce the inter-class dependency by max-
imizing the dissimilarities among prototypes:

Leliminate =
2

C(C − 1)

∑
c<j

⟨Gc,Gj⟩
∥Gc∥2 · ∥Gj∥2

. (6)

By combining both intra-class and inter-class losses, our
intra-student class-wise consistency Linra can enforce net-
work to separate features belonging to different classes from
each other, which is applied on both convolution and Trans-
former branches to improve their generalization capacity:

Linra =
1

2

∑
i∈{CNN,Trans}

(
Li

aggregate + Li
eliminate

)
. (7)

3.3 Inter-student Knowledge Transfer
In this section, we focus on the distinctive inner features
embedded by the convolutional and Transformer student
branches, which follow a heterogeneous class-wise distri-
bution. An inter-student knowledge transfer loss is proposed
to investigate the complementary class-level statistics in the
manifold space. Inspired by the Symmetric Positive Defi-
nite (SPD) metric in the manifold space, we utilize it to
measure the class-wise discrepancy of two student branches.
Based on the SPD representation setting (Konstantinidis
et al. 2022), it is composed of square matrices M of size
d× d, which can be denoted as:

Sd
++ =

{
M ∈ Rd×d : uTMu > 0 ∀ u ∈ Rd − {0d}

}
.
(8)

The SPD matrices forming a manifold have a necessary-
and-sufficient condition that if the matrix is regarded as the
point, it should be symmetrical and have positive eigen-
values. Intuitively, covariance matrices are ubiquitous in
any statistical related field, which are SPD with capable to
gain structure properties in data. Recently, covariance ma-
trices have attracted attentions for computer vision and ma-
chine learning tasks to support conditional independences
and model image textures. Particularly, in the context of
several Transformer-based deep networks (Konstantinidis
et al. 2022), the introduction of covariance matrices in the
processing of multi-head attention exhibits superior perfor-
mance, leading to the enhancement of discrimination for
their learned feature representations. To measure the dis-
tance between the points in an SPD manifold, following
(Konstantinidis et al. 2022), we leverage the Frobenius norm
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ACDC (3%) ACDC (10%) ACDC (15%) ISIC (3%) ISIC (10%) ISIC (15%)Method DSC HD DSC HD DSC HD DSC HD DSC HD DSC HD
MT 0.566 34.5 0.810 14.4 0.831 6.2 0.728 37.4 0.734 34.0 0.759 32.3
UA-MT 0.610 25.8 0.815 14.4 0.845 8.4 0.730 38.6 0.734 33.2 0.752 27.2
EM 0.602 24.1 0.791 14.5 0.838 12.0 0.723 36.3 0.727 39.3 0.766 25.8
DCT 0.582 26.4 0.804 13.8 0.854 7.9 0.729 40.6 0.760 35.7 0.777 31.4
CCT 0.586 27.9 0.816 13.1 0.837 7.8 0.677 42.2 0.723 31.7 0.765 27.9
CPS 0.603 25.5 0.833 11.0 0.850 8.0 0.686 44.4 0.743 35.7 0.771 28.4
ICT 0.581 22.8 0.811 11.4 0.854 6.5 0.732 37.2 0.753 34.6 0.785 28.9
DAN 0.528 32.6 0.795 14.6 0.841 8.4 0.695 39.5 0.724 30.4 0.755 26.5
URPC 0.567 31.4 0.829 10.6 0.841 4.8 0.703 39.3 0.758 32.8 0.752 28.6
CTCT 0.704 12.4 0.864 8.6 0.875 4.3 0.713 43.2 0.760 37.3 0.778 27.3
SSNet 0.705 17.4 0.853 10.6 0.881 4.3 0.728 40.8 0.758 32.8 0.789 26.2
ICT-Med 0.563 22.6 0.837 13.1 0.849 8.2 0.714 39.2 0.749 33.1 0.774 33.2
Ours 0.753 10.7 0.884 4.4 0.899 3.5 0.779 32.1 0.811 24.4 0.829 19.8

Table 1: Comparison with SOTA methods on ACDC and ISIC datasets under different ratios of labeled data.

instead of log-based measurement, considering that Frobe-
nius norm is not restricted by the values of the elements
in covariance matrices. Given the two class-wise manifolds
M̃CNN = [G0

CNN ,G1
CNN , . . . ,GC−1

CNN ] and M̃Trans =

[G0
Trans,G1

Trans, . . . ,G
C−1
Trans], the covariance matrices of

these manifolds are initially computed as:

cov(M̃) = E[(M̃ −E[M̃])(M̃ −E[M̃])T ] (9)

The covariance matrices cov(M̃CNN ), cov(M̃Trans)
can be regarded as points in SPD manifold. Then, we
can calculate the inter-student knowledge transfer loss with
Frobenius distance between these matrices:

Linter =
1√
d

∥∥∥cov(M̃CNN )− cov(M̃Trans)
∥∥∥2
F
. (10)

3.4 Optimization Objective
The overview of our M-CnT is presented in Fig. 2, which is
optimized using the following loss:

Ltotal = Lsup + λpLpixel + λm(Lintra + Linter), (11)

where Lsup is supervised loss on labeled data (following
(Chen et al. 2021a), we use the combination of cross entropy
loss and Dice loss as the supervision, which is applied to
both convolutional and Transformer students); Lpixel refers
to the pixel-level consistency loss in Eq. (3); Lintra and
Linter are two manifold constrained losses for intra-student
class-wise consistency (Eq. (5) and Eq. (6)) and inter-student
knowledge transfer (Eq. (10)); Lpixel, Lintra and Linter

are applied to unlabeled data; λp and λm are loss weights
to balance the relationship between losses (specifically, we
choose λp = 1 and λm as Gaussian warming up function
λ(t) = 0.1×e(−5(1−t/tmax)

2), where t was the current train-
ing step and tmax was the maximum training step).

4 Experiments and Results
4.1 Datasets
We evaluate the effectiveness of our M-CnT on three pub-
lic datasets, i.e., Automated Cardiac Diagnosis Challenge
(ACDC) (Bernard et al. 2018), International Skin Imaging

Collaboration (ISIC) (Codella et al. 2018), and Synapse
(a multi-organ dataset) (Landman et al. 2015). (1) ACDC
dataset contains 100 magnetic resonance imaging (MRI)
scans of three organs. Following (Chen et al. 2021a), we
adopt 70, 10 and 20 cases for training, validation and testing.
Consistent to the semi-supervised setting defined by (Luo
et al. 2021a), we evaluate with 3%, 10%, and additional 15%
partitions of labeled data. (2) ISIC dataset is a skin lesion
segmentation dataset including 2,594 dermoscopy images,
with 1,838 training images and 756 validation images. Un-
der a semi-supervised setting, 3%, 10%, and 15% partitions
of training data are provided with ground truth, while the
rest training images are unlabeled. (3) Synapse dataset con-
sists of 30 computed tomography (CT) scans annotated with
eight abdominal organs. We adopt 18 and 12 cases for train-
ing and testing (Chen et al. 2021a). There are three partitions
of training data, i.e., 15%, 30% and 50%, are labeled data.

4.2 Implementation Details
All models are trained with the Stochastic Gradient Descent
(SGD) optimizer, where the initial learning rate is 0.01, mo-
mentum is 0.9 and weight decay is 10−4. The network con-
verges after 30,000 iterations of training. An exception is
made for the first 1,000 iterations, where λm is set to 0,
which prevents the model collapse caused by the initialized
prototypes. The batch size is 16, consisting of eight labeled
images and eight unlabeled images. We randomly crop a
patch with size of 224 × 224 as the input. We perform the
standard data augmentation to avoid overfitting, including
randomly flipping and rotating. The size of memory bank
∥Bc∥ for each class is set to 32. For inference, we average
the predictions from two students as final results.

Evaluation Metrics. Following existing work (Chen et al.
2021a), the Dice Similarity Coefficient (DSC) and Haus-
dorff Distance (HD) are utilized for quantitative compar-
isons. All ablation studies (in Sec. 4.4) are conducted on
ACDC and ISIC datasets with 3% labeled data.

4.3 Comparison with the State-of-the-Arts
We compare our M-CnT with 12 semi-supervised methods,
including: MT, UA-MT, EM (Vu, Jain, and Bucher 2019),
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15% 30% 50%Method DSC HD DSC HD DSC HD
MT 0.497 69.4 0.611 63.8 0.703 56.4
UA-MT 0.513 93.4 0.578 63.9 0.713 56.5
EM 0.495 72.7 0.597 63.8 0.706 61.9
DCT 0.510 77.0 0.606 64.2 0.708 54.4
CCT 0.402 75.9 0.576 69.9 0.687 71.5
CPS 0.479 66.2 0.607 69.0 0.704 50.8
ICT 0.527 70.5 0.627 59.6 0.719 39.9
DAN 0.470 93.3 0.583 73.3 0.675 72.1
URPC 0.489 69.6 0.597 66.0 0.722 42.4
CTCT 0.604 45.4 0.687 44.3 0.743 43.9
SSNet 0.581 47.3 0.668 34.9 0.750 31.8
ICT-Med 0.515 62.0 0.612 59.1 0.705 54.0
Ours 0.653 32.6 0.714 31.2 0.772 24.6

Table 2: Comparison with SOTAs methods on Synapse.

Figure 3: Exemplar segmentation results on Synapse.

DCT, CCT (Ouali, Hudelot, and Tami 2020b), CPS (Chen
et al. 2021b), ICT (Verma et al. 2019), DAN, URPC (Luo
et al. 2021b), CTCT (Luo et al. 2021a), SSNet (Wu et al.
2022), and ICT-Med (Basak et al. 2022).

ACDC Dataset. As shown in Table 1, M-CnT surpasses
the existing methods under all settings and achieves a new
SOTA. It also achieves the remarkable improvements, com-
pared to the second best results on three partitions (DSC:
+4.8%, +2.0%, +1.8%; HD: -1.7mm, -4.2mm, and -0.8mm).
In particular, compared with CTCT, which uses the same
CNN-Transformer architecture, our M-CnT outperforms
CTCT by a notable margin, especially under the challeng-
ing setting of 3% labeled data (DSC: +4.9%, HD: -1.7mm).
ISIC Dataset. Table 1 also reports the comparison results
on ISIC dataset. It can be observed that our method achieves
the best segmentation performance on all settings, with the
improvements of DSC: +4.7%, +5.1%, +4.0% and HD: -
4.2mm, -6.0mm, and -6.0mm over the runner-up.
Synapse Dataset. Table 2 lists the comparison results on a
more challenging Synapse dataset with nine categories. It is
worthwhile to mention that Synapse has the limited training
data (18 cases) of complex anatomical contrasts, anfractuous
boundaries and heterogeneous textures. The improvements
of M-CnT over the SOTA are +4.9%, +2.7%, +2.2% of DSC
and -12.8mm, -3.7mm, and -7.2mm of HD on different set-
tings, which substantiate the fine robustness of M-CnT.
Visual Comparison. Fig. 3 illustrates some segmentation

Lintra# Lsup Lpixel La Le
Linter ACDC ISIC

1 ✓ 0.510 0.677
2 ✓ ✓ 0.715 0.734
3 ✓ ✓ ✓ 0.726 0.749
4 ✓ ✓ ✓ 0.738 0.759
5 ✓ ✓ ✓ ✓ 0.743 0.768
6 ✓ ✓ ✓ 0.748 0.755
7 ✓ ✓ ✓ ✓ ✓ 0.753 0.779

Table 3: Ablation study of different losses included in Eq. 11
on both ACDC and ISIC datasets with 3% labeled. La and
Le are two abbreviations of Laggregate and Leliminate.

Figure 4: (a) Performance of M-CvT w.r.t. λp and λm. (b)
Impact of the insertion location of manifold constraints at
different stages of U-Net and Swin-UNet decoders.

results of top-five methods on Synapse with 50% labeled
data, where M-CnT is able to segment both tiny objects
with complex boundaries (e.g., gallbladder) and large ob-
jects with fine structures (e.g., stomach).

4.4 Hyper-Parameters
Impact of λp and λm. As mentioned in Eq. 11, λp and λm

are two coefficients that control the overall optimization ob-
jective. Hence, we evaluate the impact of these two param-
eters and the Gaussian warming up function λ(t) on 3% la-
beled ACDC. As shown in Fig. 4 (a), we first evaluate the
effect of λm with λp=1.0 (in pink). When the value is low
(i.e., λm=0.01), our manifold constraints start to make pos-
itive impacts on the optimization. However, high values are
detrimental. The underlying reason may be that the overall
losses are overwhelmed by the unlabeled data with high un-
certainty, which hinders the training process. The best per-
formance is achieved when choosing λ(t) as λm, which can
adaptively increase the weight according to the training it-
erations. Further, we freeze λm=λ(t) and utilize different
value of λp (in blue). Overall, λp=1 achieves the best results,
which is chosen in the following experiments.

Effectiveness of Manifold Constraints on Each Stage.
We explore the influence of integrating manifold constraints
(Lintra and Linter) at different stages with 3% labeled data
on ACDC and ISIC datasets. As seen in Fig. 4 (b), our man-
ifold constraints can consistently increase the accuracy on
various stages and datasets, and the best results (ACDC:
+3.8%, ISIC: +4.5%) are achieved when the constraints are
applied to the final stage.
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Methods ACDC ISIC
baseline 0.715 0.734
+ ED 0.720 0.742
+ IFVD 0.727 0.754
+ PLCL 0.732 0.739
+ ours 0.753 0.779

Table 4: Comparison of different class-wise losses.

Figure 5: Integration of intra-class and inter-class losses into
each student on ACDC and ISIC with 3% labeled data.

4.5 Ablation Study
Loss Impact. As shown in Table 3, a significant improve-
ment (ACDC: +20.5%, ISIC: +5.7%) is achieved when uti-
lizing the unlabeled data with our pixel-level consistency
Lpixel (#2). Compared with CTCT learning from cross-
teaching, our Lpixel considers the confidence of CNN and
Transformer, which results in an improvement of (ACDC:
+1.1%, ISIC: +2.1%). Regarding to the intra-student consis-
tency Lintra, our intra-class loss Laggregate (i.e., La) en-
courages the network to compact the class cluster of each
class in the latent space (#3), yielding improvements of
(ACDC: +1.1%, ISIC: +1.5%); while our inter-class loss
Leliminate (i.e., Le) maximizes the distance among classes
(#4), achieving improvements of (ACDC: +2.3%, ISIC:
+2.5%). Benefiting from both La and Le, our Lintra (#5)
can generate a total improvement of (ACDC: +2.8%, ISIC:
+3.4%). Moreover, Linter (#6) can align two-style class dis-
tributions and obtain the better performance. Overall, M-
CnT (#7) achieves the best performance of (ACDC: 75.3%,
ISIC: 77.9%) with distinctive features.

Effectiveness of Intra- and inter- class Losses on Each
Student. As shown in Fig. 5, both intra-class (Laggregate)
and inter-class losse (Leliminate) improve the performance
of each student, and the best result can be achieved via com-
bining the two losses with compactness and discrepancy.

Comparison of Class-wise Losses. To verify the capabil-
ity of manifold constraints for class reasoning, we replace
it with several class-wise losses introduced in Sec. 2, in-
cluding ED (Li et al. 2022), IFVD (Wang et al. 2020) and
PLCL (Alonso et al. 2021) . As seen in Table 4, our method
achieves a higher accuracy by learning class-wise distribu-
tions in both intra- and inter-student manners.

4.6 Interpretation of M-CnT
Distribution of Deeply Learned Features. Compared with
the runner-up CTCT, our M-CnT is capable to generatie

Figure 6: t-SNE visualization of deep feature representa-
tions extracted from (a) CTCT and (b) our M-CnT, which
are trained with 30% labeled data on Synapse.

Figure 7: Feature maps of four methods on Synapse.

more compact and well separated feature embeddings, as
shown in Fig. 6. It reveals that our manifold constraints can
improve the discriminativity of learned features, which is
crucial for semi-supervised segmentation.
Visualization of Feature Maps. We further visualize the
feature maps of top four methods trained with 50% labeled
data in Fig. 7. Our M-CnT inherits the advantages of both re-
taining local features and capturing global dependency, e.g.,
full coverage of large-sized liver (in the first row) and small-
sized stomach (in the second row).

5 Conclusion
We proposed a novel manifold constrained combinatorial
CNN-Transformer learning algorithm, namely M-CnT, for
semi-supervised medical image segmentation. M-CnT fol-
lows a typical dual-student scheme with CNN-Transformer
architecture, where the complementary class-wise character-
istics were explored by the presented manifold conditions,
i.e., intra-student class-wise consistency and inter-student
knowledge transfer losses. The former one helps to generate
compact and discriminative representations in each student
branch, while the latter one transfers class-wise knowledge
cross students. Our method has been evaluated on three pub-
lic datasets and outperformed other SSL approaches.
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