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Abstract
Mixed-Modal Image Retrieval (MMIR) as a flexible search
paradigm has attracted wide attention. However, previous ap-
proaches always achieve limited performance, due to two crit-
ical factors are seriously overlooked. 1) The contribution of
image and text modalities is different, but incorrectly treated
equally. 2) There exist inherent labeling noises in describing
users’ intentions with text in web datasets from diverse real-
world scenarios, giving rise to overfitting. We propose a Dy-
namic Weighted Combiner (DWC) to tackle the above chal-
lenges, which includes three merits. First, we propose an Ed-
itable Modality De-equalizer (EMD) by taking into account
the contribution disparity between modalities, containing two
modality feature editors and an adaptive weighted combiner.
Second, to alleviate labeling noises and data bias, we propose
a dynamic soft-similarity label generator (SSG) to implicitly
improve noisy supervision. Finally, to bridge modality gaps
and facilitate similarity learning, we propose a CLIP-based
mutual enhancement module alternately trained by a mixed-
modality contrastive loss. Extensive experiments verify that
our proposed model significantly outperforms state-of-the-art
methods on real-world datasets. The source code is available
at https://github.com/fuxianghuang1/DWC.

Introduction
Image retrieval (Su, Zhong, and Zhang 2019; Brown et al.
2020; Huang et al. 2020; Shen et al. 2020; Hu et al. 2021;
Wei et al. 2020; Chun et al. 2021; Yang et al. 2021a; Huang,
Zhang, and Gao 2021; Dubey 2022), as a crucial computer
vision task, aims to search for items of interest from the
database. A key limitation of traditional image retrieval is
the in-feasibility to precisely describe users’ intentions (i.e.,
the concepts in users’ minds) through a single image or a sin-
gle text. Therefore, to offer a flexible and intuitive user expe-
rience, a Mixed-Modal Image Retrieval (MMIR) paradigm
as shown in Fig. 1 is explored, where the search intention
is expressed with mixed modalities utilized to retrieve a tar-
get image. Therefore, MMIR requires a synergistic under-
standing of both visual and linguistic content, which is an
acknowledged challenge.

Most existing approaches (Wen et al. 2021; Gu et al. 2021;
Goenka et al. 2022; Huang and Zhang 2023) mainly fo-
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(a) Successful case：the mixed-modal query dominated by the image

(b) Failure case: the mixed-modal query dominated by the text
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Figure 1: Overview of MMIR, i.e., image+text → image.
The mixed-modal query is dominated by different modali-
ties unequally. (a) Dominated by image modality. (b) Dom-
inated by text modality.

cus on designing complex components to learn composite
image-text representations. However, these methods usually
achieve poor retrieval results, with almost no more than 20%
of queries retrieving the correct image in the top-1 rank. We
cannot help asking why it happened?

Based on our observations and analysis, we have three
critical findings, which are seriously overlooked. First, the
contribution of image and text modality differs in diverse
real-world scenarios. We observe that previous methods
usually prefer to returning results similar to the query image
modality, which fails when the intended image similar to the
target does not exist. This is mainly due to that previous ap-
proaches depend heavily on the image modality but under-
estimate the text modality. Fig. 1 (a) fits this scenario, where
the query image is very similar to the target image. How-
ever, in real-world scenarios and the existing datasets, the
mixed-modal query is often dominated by the text modal-
ity, that is, the similarity between the query image and the
target image is very low. For example, as shown in Fig. 1
(b), only query text and the concept of shirt in query im-
age are conducive to retrieval, while most visual informa-
tion is redundant or even detrimental. We conduct an ex-
ploratory experiment with different modality queries indi-
vidually in Fig. 2 (a), which verifies modality importance
disparity for different categories. Second, the widely used
datasets (Han et al. 2017; Guo et al. 2018; Wu et al. 2021)
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Figure 2: (a) Single-modal query. (b) Mixed-modal query
with different composition methods. Concatenation means
concatenating the image and text modality features. Direct
weighting refers to (Zhao, Song, and Jin 2022).

collected from web are inherently noisy in labeling intention
description with text and full of data bias. This is due to peo-
ple from different states describe objects and concepts in dis-
tinct manners. We conduct an intriguing experiment in Table
1, in which different text descriptions (templates) show in-
credibly distinct performances. We observe that the previous
SOTA TIRG model (Vo et al. 2019) shows significantly lim-
ited performance. This is due to noisy supervision from dif-
ferent templates and existing training objectives often overfit
the noisy data. The relevance between the visual appearance
and the text description can thus vary across diverse scenar-
ios. Last but not least, the inherent modality gaps affect-
ing the synergistic understanding of multiple modalities are
overlooked in training objectives. Actually, the image-text
modality gap makes feature combination challenging, while
the mixed-modality gap makes similarity learning difficult.

To tackle the inherent modality importance disparity
problem, an intuitive idea is directly assigning different
weights for different modalities. We conduct an experiment
as shown in Fig. 2 (b), by following (Zhao, Song, and Jin
2022), which uses direct weighting of image-only and text-
only models. We find that direct weighting hardly improves
the concatenation of two modality features. This is due to
that this naive weighting does not delve deeper into the
modality features, easily amplifying the error information
implied in the dominant modality. Therefore, we suggest
editing and purifying the features of different modalities to
remove potential error information and dynamically weight-
ing modalities. To tackle the inherent data bias and labeling
noise, it is intuitive to enrich the training set with more di-
verse image and text descriptions, which, however, is labor-
intensive. We suggest relaxing the noisy hard labels and ex-
ploring dynamic soft similarity labels to fully mine valuable
information. Table 1 shows the potential of our proposal.
Additionally, in training objectives, we propose to utilize
large models (e.g., CLIP (Radford et al. 2021)) and enforce
mutual enhancement training to bridge modality gaps.

Based on above critical findings and motivations, we pro-
pose a Dynamic Weighted Combiner (DWC), composed of
an editable modality de-equalizer (EMD), a dynamic soft-
similarity label generator (SSG), and a mixture modality-
image modality contrastive loss. EMD contains two modal-
ity editors and an adaptive weighted combiner to purify
modality features and unequally treat different modalities,

Text description TIRG Our model
R@1 R@10 R@1 R@10

Template 1 14.10 42.50 18.24 48.69
Template 2 18.10 52.40 33.95 60.83
Template 3 (ours) 24.50 49.60 36.49 63.58

Table 1: Impact of different text descriptions on MMIR per-
formance, which unveils the biased labeling noise in the
Fashion200k datasets.

such that modality importance disparity is amended. SSG
aims to relax the biased hard labeling in text description by
generating soft-similarity labels, which facilitates full uti-
lization of valuable information in datasets, such that noisy
supervision is improved. In order to bridge modality gaps
and facilitate similarity learning, we introduce a CLIP-based
mutual enhancement module alternately trained by a mixed-
modality contrastive loss. Experiments on Fashion200K,
Shoes, and FashionIQ datasets show the outstanding perfor-
mances. The main contributions are as follows.
• We propose a Dynamic Weighted Combiner (DWC) to

solve the inherent modality importance disparity, biased
labeling noises, and modality gaps. Fig. 3 depicts the
overall architecture.

• We introduce an Editable Modality De-equalizer (EMD),
a dynamic soft-similarity label generator (SSG), and a
CLIP-based mixed-modality contrastive training loss to
meet the above challenges.

Related Work
Mixed-Modal Image Retrieval (MMIR) aims to incor-
porate a query image and text describing the users’ inten-
tions to navigate the visual search. Previous approaches for
MMIR can be categorized into two types. First, (Vo et al.
2019; Yang et al. 2021b; Shin et al. 2021; Hou et al. 2021;
Wen et al. 2021; Tian, Newsam, and Boakye 2022) focus on
designing complex components for multi-modal fusion of
text and image queries. (Wen et al. 2021) propose a CLVC-
Net, which combines local-wise and global-wise composi-
tion modules. (Huang and Zhang 2023) propose a Language
Guided Local Infiltration (LGLI), which consists of a LPVL
module and a TILA module. (Huang et al. 2022) propose
a plugged-and-played gradient augmentation (GA) module
to improve the generalization of MMIR models. Second,
(Nam, Kim, and Kim 2018; Tautkute and Trzcinski 2021)
focus on generating images similar to the target. Tautkute
et al. propose a SynthTripletGAN for image retrieval with
synthetic query expansion.

Vision-and-Language Pre-training (VLP) (Radford
et al. 2021; Zhang et al. 2021; Li et al. 2021; Dou et al.
2022) aims to learn multi-modal representations from large-
scale image-text pairs, which has proven to be highly ef-
fective on various downstream tasks. Recently, VLP mod-
els attract attention to solve the MMIR problem. (Zhao,
Song, and Jin 2022) propose a three-stage progressive learn-
ing method based on CLIP to acquire complex knowledge
progressively, and fully exploit the open-domain and open-
format resources. (Baldrati et al. 2021, 2022b,a) propose
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Figure 3: Overview of Dynamic Weighted Combiner (DWC), consisting of two mutually-enhanced streams.

a fine-tuning scheme for conditioned image retrieval using
CLIP-based features. (Goenka et al. 2022) propose a Fash-
ionVLP that brings the prior knowledge contained in large
image-text corpora to the domain of fashion image retrieval.
However, most previous approaches usually achieve limited
performance due to the inherent modality importance dis-
parity and biased labeling noises in datasets. Based on our
findings, we propose a DWC to solve these overlooked prob-
lems in MMIR.

Dynamic Weighted Combiner
Problem Definition and Model Architecture
In MMIR, given a mixed-modal query involving a query
image Ir and a text T , the objective is to learn image-text
combination features to retrieve the target image It. In other
word, given an input pair (Ir, T ), we aim to learn mixed-
modal query features fcomb = C(Ir, T ; Θ) that are well-
aligned with the target image feature ftgt = F(It; Θ) by
maximizing their similarity as,

max
Θ

κ(C(Ir, T ; Θ),F(It; Θ)), (1)

where C(·) and F(·) denote the mixed-modal feature com-
poser and the image feature extractor, respectively. κ(·, ·)
denotes the similarity kernel, implemented as dot product.
Θ denotes the learnable parameters.

The proposed Dynamic Weighted Combiner (DWC) is il-
lustrated in Fig. 3, which consists of two mutually-enhanced
streams. Each stream is basically composed of four parts:
(1) feature encoder to extract the visual and text feature, (2)
Editable Modality De-equalizer (EMD) to edit and purify
the modality features and unequally combine them with dif-
ferent contributions, (3) dynamic soft-similarity labels gen-
erator (SSG) to improve noisy supervision, and (4) mixed-
modality contrastive loss to reduce the modality gaps and
facilitate similarity learning.

Feature Encoder
As is shown in Fig. 3, the first stream adopts CNN and
LSTM as the backbone to train the image encoder and
text encoder, respectively. fref ∈ RC×H×W and ftgt ∈
RC×H×W denote the feature maps of the query image and

target image extracted by CNN, respectively, where C×H×
W is the shape of the feature maps. ftxt ∈ RD×L represents
the text feature extracted by LSTM, where D × L is the
shape of the text feature and L is the length of the text (i.e.,
the number of words in the text). To exploit the prior knowl-
edge of large-scale web data and reduce the modality gap,
the other stream adopts the large CLIP model as the feature
encoder, pre-trained on a large-scale dataset with 400 mil-
lion image-text pairs scraped from the web. fCLIP

ref , fCLIP
tgt

and fCLIP
txt denote the feature vectors of the query image,

target image and query text extracted by pre-trained CLIP,
respectively. For convenience, we name the two streams as
CNN stream and CLIP stream.

Editable Modality De-equalizer
Since the contributions of image and text modalities are dif-
ferent in diverse real-world scenarios, an intuitive idea is
assigning different weights. However, as discussed in the
introduction, direct weighting will unavoidably amplify the
error information in the dominant modality and lead to ad-
verse performance. We therefore propose to purify the image
and text features before assigning weights to reduce the in-
terference of redundant error information, which gives rise
to the EMD, formalized by two functionally symmetrical
modality-feature editors and an adaptive weighted combiner,
as shown in Fig. 4.

Image feature editor. To purify the image features, using
image features as a template, we regard the image feature
as H×W features of different spatial entities and propose a
cross-modal spatial attention mechanism to assign different
weights for these features. Specifically, we first get a text
representation vector by the GeM pooling layer (Radenovic,
Tolias, and Chum 2019). Then the spatial attention Asp is
formulated as

Asp = Reshape(Softmax(Ssp)),

Ssp
i,j = κ(fref (:, i, j), GeM(ftxt)),

(2)

where Asp ∈ R1×H×W and Ssp
i,j indicate the similarity be-

tween the image feature of the (i, j)th spatial entity and the
text feature. Accordingly, we can derive a coarse-modified
image feature:

f̂ref = Asp ⊗ fref , (3)

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

2305



Word 
attention

Spatial
attention

Conv

Conv

Concatenate

Concatenate Conv

Conv Sigmoid

Sigmoid

Concatenate
&FC

Text feature 

Image feature 

Text feature editor 

Image feature editor Adaptive weighting module

Sigmoid 𝜶
1-𝜶

txtf

reff

combf

txtf


reff


edt
txtf

edt
reff

GeM

GeM
GeM

GeM

Figure 4: Overview of our Editable Modality De-equalizer (EMD) module, which contains an image feature editor, a text feature
editor, and an adaptive weighted combiner.

⊗
and

⊕
stand for the Hadamard product and element-wise addition, respectively.

In order to further refine the image feature, we transform the
feature map through element-level global attention, which
can be formulated as

Agl
ref = Sigmoid(Conv([f̂ref , fref ])), (4)

where Agl
ref ∈ RC×H×W . Conv(·) and [·, ·] denote 1 ×

1 convolution layer and concatenation, respectively. Ulti-
mately, the purified image features can be obtained as

fedt
ref = (Agl

ref ⊗ Conv(f̂ref ))⊕ fref , (5)

Text feature editor. Similarly, to eliminate the error in-
formation from the text, we introduce a text feature editor.
Using text features as a template, we propose a cross-modal
word attention mechanism to assign weights for different
words. Specifically, the word attention Aw is formulated as

Aw = Reshape(Softmax(Sw)),

Sw
l = κ(ftxt(: l), GeM(fref )),

(6)

where Aw ∈ R1×L and Sw
l indicate the similarity between

the text feature of the lth word and the image feature. Ac-
cordingly, we can derive a coarsely-modified text feature:

f̂txt = Aw ⊗ ftxt, (7)

In order to further refine the text feature, we transform the
feature through element-level global attention, which can be
formulated as

Agl
txt = Sigmoid(Conv([f̂txt, ftxt])), (8)

where Agl
txt ∈ RD×L. Ultimately, the purified text features

can be obtained as

fedt
txt = (Agl

txt ⊗ Conv(f̂txt))⊕ ftxt, (9)

Adaptive weighting module. After obtaining the refined
features, we introduce an adaptive weighting module to as-
sign different modality weights for the query image and text
according to their contributions. Specifically, we use α to
represent the importance of the image and 1−α, the impor-
tance of the text. α is computed as

α = Sigmoid(FC([GeM(fedt
ref ), GeM(fedt

txt )])), (10)

where FC denotes fully-connected layers. The final combi-
nation feature is formulated as

fcomb = α · fedt
ref + (1− α) · fedt

txt . (11)

Intuitively, the feature editors purify the feature maps in
two steps, i.e., coarsely modifying via spatial/word atten-
tion and refining via global attention. For the CLIP stream,
to reduce the computation cost, we adopt lightweight global
attention to edit the CLIP features only in one step (see Sup-
plementary Material).

Soft-Similarity Labels Generation
Most previous approaches overfit the biased noisy data dur-
ing training, as discussed in the introduction, because the
original one-hot (hard) similarity labels are usually impre-
cise. For example, as shown in Fig. 5 (a), the hard label
for positive sample, i.e., (Ir, T ) and It in the same triplet
< Ir, T, It >, otherwise is 0 (i.e., negative sample). In fact,
some negative samples can also serve as the target for some
users, but re-labeling is undoubtedly a labor-intensive task.

Since different language descriptions result in different
similarity scores between the query and the target, we pro-
pose to relax the hard-similarity labels with soft-similarity
labels, to avoid overfitting and simultaneously fully mine
the valuable information in datasets, which gives rise to
the soft-similarity labels generator. Specifically, we generate
nonzero dynamic soft-similarity labels on-the-fly for neg-
ative pairs only. The soft-similarity label between the ith

query and jth target in a mini-batch is generated by

ysij =

{
1, if i = j,

exp(κ(fi
tgt,f

j
tgt)/τ)∑B

j=1 exp(κ(fi
tgt,f

j
tgt)/τ)

, if i ̸= j,
(12)

where τ is a temperature factor. Finally, let Ys =

{ysij}
B,B
i=1,j=1 ∈ [0, 1] denote all soft-similarity labels, and

B is the batch size. A toy example of the soft-similarity la-
bels is shown in Fig. 5 (b).

Mixed-modality Contrastive Loss
To facilitate similarity learning, we introduce a mixed-
modality contrastive loss between the combined features and
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the target image features based on the soft-similarity labels.
Specifically, for each mixed-modal query and target, we first
compute the softmax-normalized similarity as:

pij =
exp(κ(f i

comb, f
j
tgt)/τ)∑B

j=1 exp(κ(f
i
comb, f

j
tgt)/τ)

, (13)

where P = {pij}B,B
i=1,j=1 represents the predicted proba-

bility. Let Yh denote the noisy hard ground-truth similar-
ity. The cross-entropy based mixed-modality contrastive loss
with soft-similarity guidance is written as

Lmmc = λE[H(Yh,P)] + (1− λ)E[H(Ys,P)]

= − λ

B

B∑
i=1

log
exp(κ(f i

comb, f
i
tgt)/τ)∑B

j=1 exp(κ(f
i
comb, f

j
tgt)/τ)

− (1− λ)

B2

B∑
i=1

B∑
j=1

exp(κ(f i
tgt, f

j
tgt)/τ)∑B

j=1 exp(κ(f
i
tgt, f

j
tgt)/τ)

· log
exp(κ(f i

comb, f
j
tgt)/τ)∑B

j=1 exp(κ(f
i
comb, f

j
tgt)/τ)

,

(14)

where λ ∈ (0, 1) is a trade-off parameter and H(·) is the
cross-entropy loss.

Model Training
Inspired by the idea of mutual learning (Zhang et al. 2018),
we introduce a mutual enhancement strategy to train two
streams alternately, between which the knowledge is shared
via a vanilla KL-divergence based distillation loss. Specifi-
cally, we first compute the similarity between the ith query
and jth target of both CNN and CLIP streams as follows

pzij =
exp(κ((f i

comb)
z, (f j

tgt)
z)/τ)∑B

j=1 exp(κ((f
i
comb)

z, (f j
tgt)

z)/τ)
, (15)

where z ∈{CNN, CLIP}. In this way, we can get the simi-
larity distribution of the ith query as pzi = [pzi1, p

z
i2, ..., p

z
iB ].

Then the distillation loss is

Lz
d =

1

B

B∑
i=1

DKL(p
z̄
i ||pzi ) =

1

B2

B∑
i=1

B∑
i=1

pz̄ij log
pz̄ij
pzij

.

(16)
Taking the optimization of the CNN stream as an exam-
ple, we use LCNN

d to transfer the knowledge from the CLIP

Mixed-modal query Retrieval results𝜶 
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Figure 6: Qualitative results on Fashion200k.

stream to the CNN stream, and there is

LCNN
d =

1

B2

B∑
i=1

B∑
i=1

pCLIP
ij log

pCLIP
ij

pCNN
ij

. (17)

The total loss of the CNN stream is formulated as:

LCNN
all = LCNN

mmc + LCNN
d . (18)

Lz
all = Lz

mmc + Lz
d. (19)

Notably, the total loss of the CLIP stream can be derived
similarly. In the training phase, we alternately optimize the
two streams to achieve mutual enhancement. Finally, the
combination features of the two streams are integrated to
evaluate the similarity and rank the gallery images.

Mutual information maximization perspective. Mini-
mizing the first term of Lmmc (Eq. 14) can be seen as max-
imizing the lower bound on the mutual information (MI)
between the mixed-modal query and the target, i.e., maxi-
mizing a symmetric version of InfoNCE (van den Oord, Li,
and Vinyals 2018). Therefore, the proposed Lmmc can not
only learn the mixed-modal similarities for MMIR, but also
reduce the modality gaps.

Experiments
To evaluate our model, we chose three real-world datasets:
Fashion200K (Han et al. 2017), Shoes (Guo et al. 2018),
and FashionIQ (Wu et al. 2021). We compare our DWC
with many SOTA MMIR methods, such as TIRG (Vo
et al. 2019), JAMMAL (Zhang et al. 2020), LBF (Hos-
seinzadeh and Wang 2020), JVSM (Chen and Bazzani
2020), SynthTripletGAN (Tautkute and Trzcinski 2021),
VAL (Chen, Gong, and Bazzani 2020), DCNet(Kim et al.
2021), JPM (Yang et al. 2021b), DATIR (Gu et al. 2021),
ComposeAE (Anwaar, Labintcev, and Kleinsteuber 2021),
CoSMo (Lee, Kim, and Han 2021), CLVC-Net (Wen et al.
2021), ARTEMIS (Delmas et al. 2022), SAC (Jandial et al.
2022), GA (Huang et al. 2022), CIRPLANT (Liu et al.
2021), Combiner w/ CLIP (Baldrati et al. 2022b), and Fash-
ionVLP (Goenka et al. 2022), where the methods in italic are
based on VLP models.

Experimental Results
Quantitative Results. Table 2 shows comparisons with ex-
isting methods on the FashionIQ dataset. We observe that
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Method Dress Shirt Toptee Average
R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50 Mean

TIRG 14.87 34.66 18.26 37.89 19.08 39.68 17.40 37.41 27.41
VAL 22.53 44.00 22.38 44.15 27.53 51.68 24.15 46.61 35.38
ComposeAE 14.03 35.10 13.88 34.59 15.80 39.26 14.57 36.32 25.44
JVSM 10.70 25.90 12.00 27.10 13.00 26.90 11.90 26.63 19.27
SynthTripletGAN 22.60 45.10 20.50 44.08 28.01 52.10 23.70 47.09 35.40
CoSMo 25.64 50.30 24.90 49.18 29.21 57.46 26.58 52.31 39.45
JPM 21.38 45.15 22.81 45.18 27.78 51.70 23.99 47.34 35.67
DATIR 21.90 43.80 21.90 43.70 27.20 51.60 23.67 46.37 35.02
CLVC-Net 29.85 56.47 28.75 54.76 33.50 64.00 30.70 28.41 44.56
ARTEMIS 27.34 44.18 21.05 49.87 24.91 48.59 24.43 47.55 35.99
SAC 26.13 52.10 26.20 50.93 31.16 59.05 27.83 54.03 40.93
CIRPLANT 17.45 40.41 17.53 38.81 21.64 45.38 18.87 41.53 30.20
Combiner w/ CLIP 26.82 51.31 31.80 53.38 33.40 57.01 30.67 53.90 42.29
FashionVLP 32.42 60.29 31.89 58.44 38.51 68.79 34.27 62.51 48.39
DWC 32.67 57.96 35.53 60.11 40.13 66.09 36.11 61.39 48.75

Table 2: Interactive image retrieval performance (%) on the FashionIQ dataset. The best results are in bold.

Method R@1 R@10 R@50 Average
TIRG 14.10 42.50 63.80 40.13
JVSM 19.00 52.10 70.00 47.03
JAMMAL 17.30 45.30 65.70 42.77
LBF 17.80 48.40 68.50 44.90
VAL 22.90 50.80 72.70 48.80
DCNet – 46.90 67.60 –
JPM 19.80 46.50 66.60 44.30
DATIR 21.50 48.80 71.60 47.30
ComposeAE 22.80 55.30 73.40 50.50
CoSMo 23.30 50.40 69.30 47.67
CLVC-Net 22.60 53.00 72.20 49.27
ARTEMIS 21.50 51.10 70.50 47.70
GA 24.00 57.20 75.70 52.30
Combiner w/ CLIP 20.56 52.07 71.35 47.99
FashionVLP – 49.90 70.50 –
DWC 36.49 63.58 79.02 59.70

Table 3: Performance Comparison (%) on Fashion200k.

Method R@1 R@10 R@50 Average
TIRG 12.60 45.45 69.39 42.48
VAL 17.18 51.52 75.83 48.18
SynthTripletGAN – 47.6 73.6 –
ComposeAE 4.37 19.36 47.58 23.77
CoSMo 16.72 48.36 75.64 46.91
DATIR 17.20 51.10 75.60 47.97
DCNet – 53.8 79.3 –
CLVC-Net 17.60 54.40 79.50 50.50
ARTEMIS 17.6 51.05 76.85 48.50
SAC 18.11 52.41 75.42 48.65
Combiner w/ CLIP 8.12 33.28 62.42 34.61
FashionVLP – 49.08 77.32 –
DWC 18.94 55.55 80.19 51.56

Table 4: Performance Comparison (%) on Shoes.

the performance improvement of DWC over the second-best
method is 0.25%, 3.64% and 1.98% on R@10 for three sub-
sets, i.e., dress, shirt, and top-tee, respectively. Our DWC
is slightly lower than FashionVLP in R@50, a more com-
plex model equipped with auxiliary modules such as ob-
ject detection module and landmark module. Table 3 shows
our comparison with existing methods on the Fashion200k
dataset. As can be seen, our model demonstrates com-

Retrieval results

are silver, 
not white

𝜶 

0.74

0.43

0.32

Mixed-modal query

are red with a 
woven top 
pattern

is higher over 
ankle in 
contrasting 
black and red

Figure 7: Qualitative results on the Shoes dataset.

is pink and strapless,  
is bright pink colored 

Mixed-modal query Retrieval results𝜶 

0.67

0.41

0.17

A black tee with a 
green frowning face，  
has a sad face in green

is black with orange 
sleeves and different 
graphic 

Figure 8: Qualitative results on the FashionIQ dataset.

pelling results compared to all other alternatives. The perfor-
mance improvement of DWC over the second-best method
is 12.49% and 7.4% on R@1 and the average, respectively.
Table 4 shows comparisons with existing methods on the
Shoes dataset. Our DWC model still achieves the best per-
formance with improvements of 0.83% and 1.06% on R@1
and the average, respectively.

Qualitative Results and Analysis. Fig. 6, Fig. 7 and
Fig. 8 shows our qualitative results on the Fashion200k,
Shoes and FashionIQ datasets.Fig. 9 provides the attention
visualizations, which show the proposed spatial attention
and word attention are effective.

Ablation Study and Model Analysis
Ablation study of losses. The results are provided in Table
5. DWC w/o Lh

mmc and DWC w/o Ls
mmc represent remove
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is more formal and 

has more pleats，
has a black bow tie 
included

replace blue 
with black and 
get black wide 
leg trousers

is yellow with 
thin straps

has no 
laces

is redder 
in the 
same style

is purple with 
white designs, 
is purple with 
white text

Query 
image

Query 
image

Query 
image

Spatial 
attention

Spatial 
attention

Spatial 
attention

Word  
attention

Word  
attention

Word  
attention

Target Target Target 

Figure 9: Attention visualization of our model on different datasets. Words with high attention value are in red.

Method Dress Shirt Toptee
R@10 R@50 R@10 R@50 R@10 R@50

w/o Lh
mmc 31.82 57.11 34.89 61.19 39.37 65.37

w/o Ls
mmc 31.73 57.80 34.99 59.91 39.42 65.63

w/o Ld 29.74 55.82 32.04 59.13 36.21 65.12
DWC 32.67 57.96 35.53 60.11 40.13 66.09

Table 5: Ablation study of losses.

Method Dress Shirt Toptee Shoes
DWC w/o EMD 23.55 26.40 29.37 50.72
DWC w/o SSG 31.73 34.99 39.42 55.44
DWC w/o CLIP 24.79 24.48 29.37 52.32
DWC w/o ME 28.01 27.82 31.00 53.41
EMD w/o TFE 30.49 32.34 36.92 52.54
EMD w/o IFE 28.01 30.72 34.12 51.86
EMD w/o FE 27.37 29.39 33.61 49.65
DWC 32.67 35.53 40.13 55.55

Table 6: Ablation study (R@10).

E[H(Yh,P)] and E[H(Ys,P)] from Eq. (14), respectively.
DWC w/o Ld means remove the distillation loss, i.e., Eq.
(16). Results reveal the effectiveness of the losses and mu-
tual enhancement strategy.

Analysis of different components. To demonstrate the
contributions from different components in our proposed
model, we conduct ablation studies in Table 6, in which
DWC w/o EMD, DWC w/o CLIP, DWC w/o SSG and DWC
w/o ME indicate the variants of our DWC by removing
EMD, CLIP stream, SSG and mutual enhancement, respec-
tively. Contribution of different components in EMD is also
evaluated, EMD w/o TFE, EMD w/o IFE and EMD w/o FE
are the variants of DWC by removing text feature editor,
image feature editor and two feature editors from EMD, re-
spectively. Experiments show that each component plays a
significant role in improving the MMIR performance. This
further verifies our intuition to meet the challenges of inher-
ent modality importance disparity, biased labeling noises in
datasets and modality gaps.

Analysis of modality importance disparity. The modal-
ity importance disparity, including its impact and the effec-
tiveness of our EMD, is presented in Table 7. The first two
rows indicate that different modalities play different roles.
The third and fourth rows indicate that mixed-modality fea-
ture fusion (sum. vs. concat.) can effectively improve the
performance. The fifth row shows that naive weighting of
two modalities cannot improve modality importance dispar-

Method Dress Shirt Toptee Shoes
Image Only 7.83 13.74 10.20 31.92
Text Only 18.79 22.52 25.50 15.39
Summation 23.55 26.40 29.37 50.72
Concatenation 28.31 30.52 35.03 50.50
Weighting 28.36 30.30 34.98 50.16
Our EMD 32.67 35.53 40.13 55.55

Table 7: Impact of different combination methods (R@10).

CLIP model Dress Shirt Toptee Shoes
RN50 32.67 35.53 40.13 55.55
RN101 32.42 35.97 39.93 54.25
ViT-B32 31.63 34.99 38.55 56.26
ViT-B16 33.61 37.09 40.80 54.92

Table 8: Impact of pre-trained CLIP models (R@10).

ity because error of the important modality is also amplified.
In contrast, the proposed EMD can significantly improve
the performances to a large margin by taking into account
the purification of mixed-modality features with an adaptive
weighting combiner.

Impact of pre-trained CLIP models under different
backbones. We consider four versions of the pre-trained
CLIP models in the CLIP stream to conduct experiments. As
presented in Table 8, we observe slight differences among
them, which, instead, indicate that the modality gap can be
largely bridged by a vanilla CLIP model.

Notably, the impact of different soft labels and many
other experimental analyses are provided in the supplemen-
tary material at https://arxiv.org/pdf/2312.06179.pdf.

Conclusion
We have two critical findings that are seriously overlooked
in MMIR community. 1) There exists significant modality
importance disparity, leading to degradation of model train-
ing. 2) There exists inherent labeling noises and data bias
due to diverse text descriptions crawled from web scenarios.
Based on the findings, we propose a DWC, which includes
three merits. First, we propose an EMD by taking into ac-
count the contribution disparity between mixed modalities.
Second, we propose a dynamic SSG to relax the biased hard
labeling and implicitly improve noisy supervision. Finally,
to bridge modality gaps and facilitate similarity learning, we
propose a CLIP-based mutual enhancement module alter-
nately trained by a mixed-modality contrastive loss. Experi-
ments and analysis verify the superiority of our approach.
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