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Abstract

We propose a Dynamic Context-Guided Upsampling
(DCGU) module for video super-resolution (VSR) that lever-
ages temporal context guidance to achieve efficient and ef-
fective arbitrary-scale VSR. While most VSR research fo-
cuses on backbone design, the importance of the upsam-
pling part is often overlooked. Existing methods rely on
pixelshuffle-based upsampling, which has limited capabili-
ties in handling arbitrary upsampling scales. Recent attempts
to replace pixelshuffle-based modules with implicit neural
function-based and filter-based approaches suffer from slow
inference speeds and limited representation capacity, respec-
tively. To overcome these limitations, our DCGU module pre-
dicts non-local sampling locations and content-dependent fil-
ter weights, enabling efficient and effective arbitrary-scale
VSR. Our proposed multi-granularity location search mod-
ule efficiently identifies non-local sampling locations across
the entire low-resolution grid, and the temporal bilateral filter
modulation module integrates content information with the
filter weight to enhance textual details. Extensive experiments
demonstrate the superiority of our method in terms of perfor-
mance and speed on arbitrary-scale VSR.

Introduction
The task of video super-resolution (VSR) involves recon-
structing high-resolution (HR) videos from low-resolution
(LR) observations. While there have been numerous exist-
ing works (Wang et al. 2019; Isobe et al. 2020b, 2022; Chan
et al. 2020, 2021) proposing different approaches to address
the VSR problem, most of them focus on designing powerful
backbones that incorporate motion alignment and feature ex-
traction components. Interestingly, the upsampling module -
a crucial yet often overlooked final step in generating HR
videos (Wang, Chen, and Hoi 2020; Liu et al. 2022; Willets
et al. 2017; Anwar, Khan, and Barnes 2020) - has received
limited attention in these works.

Existing VSR methods typically employ the pixelshuffle-
based upsampling module (Shi et al. 2016a). While this
module is easy to implement, it can only support super-
resolving features with fixed scale factors (e.g., x4) and can-
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Figure 1: PSNR-Runtime comparison with different
arbitrary-scale upsampling modules, including filter-based
MetaSR (Hu et al. 2019), and implicit neural function-
based LTE (Lee and Jin 2022) and LIIF (Chen, Liu, and
Wang 2021). MetaSR, LTE, LIIF and our DCGU use Ba-
sicVSR++ (Chan et al. 2021) as the backbone.

not handle arbitrary ones. However, in real-world scenar-
ios, scaling up LR videos with user-desired scales has more
practical value. Recent work on arbitrary-scale single-image
super-resolution (Hu et al. 2019; Chen, Liu, and Wang 2021;
Lee and Jin 2022; Cao et al. 2022) has explored the possi-
bility of replacing the pixelshuffle-based upsampling mod-
ule and supporting arbitrary-scale super-resolution. These
methods can be divided into two categories: the implicit neu-
ral function-based (Chen, Liu, and Wang 2021; Lee and Jin
2022; Cao et al. 2022) and the filter-based (Hu et al. 2019)
approaches.

The implicit neural function-based methods utilize im-
plicit neural representations to predict RGB values for spe-
cific coordinates in HR space, resulting in good visual qual-
ity. However, applying such methods directly to the VSR
pipeline can severely impact inference speed due to a heavy
MLP computation for each coordinate in the HR grid, mak-
ing it inefficient for VSR, as shown in Fig. 1. On the other
hand, the filter-based method (Hu et al. 2019) employs an
MLP model to predict dynamic scale-location-dependent
filter weights and then upsamples LR features at arbitrary
scales. While this method has a fast inference speed as the
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filter weights only need to be predicted once for all video
frames, it cannot outperform the implicit neural function-
based methods in terms of result quality due to its lim-
ited representation capacity, as shown in Fig. 1. Therefore,
the question arises: Can an efficient yet effective filter-
based upsampling module for arbitrary-scale VSR be de-
signed?

To answer this question, we revisit the filter-based method
and identify two key factors that limit its representation abil-
ity: fixed local sampling locations and content-irrelevant fil-
ter weights. Specifically, the existing methods only sample
local points centered at the corresponding projected coor-
dinate in the LR grid for upsampling, which ignores long-
range contextual information that can facilitate the genera-
tion of clearer structures for super-resolution. Additionally,
given a scale factor and coordinate, the filter weights are the
same for different contents without considering the texture
similarity among them, resulting in blurry results. Solving
these limitations is not straightforward and presents a sig-
nificant challenge due to the absence of information in the
HR grid.

Our proposed method is built upon the filter-based ap-
proach but incorporates temporal information in a video
sequence to overcome the aforementioned challenges, in-
spired by the effectiveness of temporal information in pre-
vious work (Huang et al. 2022, 2023; Li, Li, and Lu
2022, 2023). We introduce the Dynamic Context-Guided
Upsampling (DCGU) module, which is both efficient and
effective, aligning with the filter-based method’s principles
while utilizing natural video content coherence to address
its limitations. Instead of relying solely on fixed coordinate-
based sampling locations and content-irrelevant filter weight
prediction, DCGU dynamically guides sampling content-
dependent points and generates content-dependent weights
using the temporal HR context. Specifically, we propose a
confidence-guided context generation module to efficiently
generate reliable HR context from temporal HR features and
current LR features. Then, we propose the Multi-Granularity
Locations Search (MGLS) module to identify the corre-
lated points across the entire LR grid by leveraging feature
similarities for each point in the HR grid. MGLS divides
the whole-grid search into two granularity levels of search,
global patch search and local pixel search, allowing it to ef-
ficiently benefit from both global and local receptive fields.
Lastly, we propose the Temporal Bilateral Filter Modulation
(TBFM) module to adaptively predict the filter weights us-
ing the similarity between the HR context and the LR fea-
ture points. The normalized similarity computed in MGLS
can be reused in TBFM to modulate filter weights, making
TBFM almost cost-free to enhance textual details.

The proposed method outperforms the filter-based
method MetaSR (Hu et al. 2019) while maintaining com-
parable efficiency, as demonstrated in Fig.1. Moreover, the
proposed method surpasses both implicit neural function-
based methods LIIF (Chen, Liu, and Wang 2021) and
LTE (Lee and Jin 2022) in terms of both performance and
speed, highlighting its superiority.

The contributions of this paper are three-fold:
• We propose a novel dynamic context-guided upsampling

module that achieves efficient and effective arbitrary-
scale VSR. Unlike previous methods that rely solely on
fixed coordinate-based location sampling and content-
irrelevant filter weight prediction, our method leverages
context guidance to learn to predict non-local sampling
locations and content-dependent filter weights. This al-
lows us to explicitly integrate content information, im-
proving the representation ability of the filter-based
method.

• We introduce the Multi-Granularity Location Search
(MGLS) module that efficiently exploits long-range con-
textual information via a divide-and-conquer paradigm.
Additionally, the Temporal Bilateral Filter Modulation
(TBFM) can integrate content information into the filter
weights, improving visual quality at a low cost.

• We conduct extensive experiments that demonstrate the
superiority of our method in terms of performance and
speed at arbitrary scales. Particularly, our method is
better and several times faster than the implicit neural
function-based method LTE.

Related Work
Video Super-Resolution
Existing VSR methods can be generally divided into two
categories: the sliding window-based model and the recur-
rent model. The sliding window-based methods directly take
several adjacent frames as input for each frame. Some meth-
ods (Caballero et al. 2017; Kappeler et al. 2016; Shi et al.
2016b; Tao et al. 2017) compute the optical flow to warp
the adjacent frames to the center frame as the temporal
context. EDVR (Wang et al. 2019) proposes cascaded de-
formable convolutions to align the adjacent frames in the
feature space. MuCAN (Li et al. 2020) utilizes a tempo-
ral multi-correspondence aggregation strategy to boost the
alignment accuracy. TGA (Isobe et al. 2020b) splits adja-
cent frames into groups with different temporal dilation and
proposes temporal group attention.

For the recurrent model, each frame takes the feature
or HR result from the previous or future frame as input.
FRVSR (Sajjadi, Vemulapalli, and Brown 2018) is a pio-
neering work that uses the optical flow to warp the estimated
HR result to the current frame. RLSP (Fuoli, Gu, and Timo-
fte 2019) designs a fully convolutional recurrent network to
propagate the hidden state that contains abstract information
without explicit warping. To improve the temporal propaga-
tion efficiency, RSDN (Isobe et al. 2020a) divides the con-
tent into structure and detail components. BasicVSR (Chan
et al. 2020) is a strong benchmark by redesigning the es-
sential components therein and leveraging the bi-directional
propagation. BasicVSR++ (Chan et al. 2021) further im-
proves the performance via the second-order grid propaga-
tion and the flow-guided deformable alignment. However,
above methods all use the pixelshuffle-based upsampling
module and could not handle arbitrary-scale VSR.

Arbitrary-Scale Super-Resolution
Arbitrary-scale super-resolution methods aim to super-
resolve LR images with arbitrary scales in a single model,
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Figure 2: The overall framework of the proposed DCGU. Context generation produces the refined HR context from LR features
and temporal context. With guidance of HR context, multi-granularity location search identifies sampling locations from the
entire LR grid and temporal bilateral filter modulation predicts content-dependent filter weights to aggregate LR feature points.

which is convenient for practical usage. The earliest
learning-based method is MetaSR (Hu et al. 2019) that
uses a two-layer MLP to predict scale-dependent kernel
weights to upsample the feature. The following method
ArbSR (Wang et al. 2021) improves MetaSR via introducing
the scale-independent attention into the backbone. Rather
than predicting the scale-dependent kernel weights, the re-
cent work LIIF (Chen, Liu, and Wang 2021) uses implicit
neural representations to process the feature maps, coordi-
nates, and scaling factor via the MLP to obtain RGB val-
ues at specific coordinates. Following LIIF, LTE (Lee and
Jin 2022) proposes a dominant-frequency estimator to en-
able the implicit function to capture fine details. Although
above methods support the arbitrary-scale super-resolution,
directly applying them to VSR is sub-optimal, suffering
from slow inference speeds or limited representation capac-
ity. Recently, VideoINR (Chen et al. 2022) investigates the
application of LIIF for space-time VSR while adapting it to
the space VSR we focus on in this paper, also encounters
limitations in terms of slow inference speed.

Method
Preliminary and Motivation
Given the LR video clip of size h×w×c×t and an arbitrary
scale r, our target is to reconstruct an HR video clip of size
rh×rw×c×t. Specially, at time t, with the current LR fea-
tures Flr extracted by the backbone and the 2D coordinate
p = (x, y) in the HR grid, the filter-based arbitrary-scale
upsampling method generates the HR feature point Fhr(p)
as:

Fhr(p) =
∑

∆p∈R(p,r)

fwp(p, r,∆p)Flr(∆p) (1)

where fwp(p, r,∆p) is the filter weights and wp stands for
weight prediction. R(p, r) is the fixed local sampling loca-
tions centered at the corresponding LR coordinate.

As explicated in the introduction, the effectiveness of the
filter-based method is hindered by the fixed local sampling
locations and content-irrelevant filter weights. To address
these limitations while sustaining efficiency, our method in-
corporates temporal information from video sequences. We

propose the dynamic context-guided upsampling (DCGU)
module that introduces the context guidance to identify more
informative global sampling locations, and generate content-
dependent filter weights to enhance the texture detail. In spe-
cific, DCGU module could be formulated as:

Fhr(p) =
∑

∆p∈R(p,r,Flr,Fc)

fwp(p, r,∆p, Flr, Fc)Flr(∆p)

(2)
We not only integrate LR features Flr in both R(·) and
fwp(·) to enhance their content-awareness but also intro-
duce the HR context Fc, which effectively encompasses the
essential contextual information needed for upsampling, to
guide the utilization of Flr. In particular, we exploit the cor-
relation between Flr and Fc, enabling DCGU to aggregate
more informative global sampling locations with more accu-
rate content-dependent filter weights to yield superior per-
formance.

As shown in Fig. 2, DCGU can be divided into three key
components. Firstly, the context generation module estab-
lishes a connection between the LR grid and the HR grid
by generating the HR context denoted as Fc. Secondly, the
multi-granularity location search module obtains the sam-
pling location set R(p, r, Flr, Fc) from the entire LR grid
for each point within the HR grid. Finally, the temporal bi-
lateral filter modulation module produces content-dependent
filter weights fwp(p, r,∆p, Flr, Fc).

Context Generation
The context generation module is responsible for generat-
ing the HR context that establishes a connection between
the LR grid and the HR grid. However, directly deriving an
accurate HR context from LR features is a challenging task
that significantly increases the computational cost. To ensure
both efficiency and effectiveness, we exploit the HR tempo-
ral context that is propagated from the previous time step.
By adaptively fusing it with LR features, we generate Fc that
captures the necessary context information for upsampling.

The context generation module in Fig. 2 contains two
steps: warping and confidence-guided context generation.
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Figure 3: (a) The coarse temporal context suffers from mis-
alignment. (b) The confidence-guided context module com-
pensates for the misaligned region and generates a more ac-
curate refined HR context.
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Figure 4: The visual analysis for global patch search.

The warping step aligns the temporal context from the previ-
ous time step to the current one. Since obtaining HR motion
information is challenging, we utilize the motion informa-
tion mvi computed from LR frames in the backbone to per-
form motion alignment. However, as shown in Fig. 3 (a),
the coarse HR temporal context T̃i after warping may still
suffer from misalignment, despite having clear texture de-
tails. To address this issue, we introduce confidence-guided
context generation to generate the refined HR context Fc by
adaptively fusing T̃i with the current LR feature Flr. The
misaligned regions of T̃i are compensated for by Flr, as fol-
lows:

Fc = M · ↑ Flr + (1−M) · T̃i (3)
where M is the confidence map that indicates the misaligned
degree and is estimated via a confidence estimation model
fce(·) as M = fce(↑ Flr, T̃i). ↑ Flr means the bicubic-
upsampled LR feature. As shown in Fig. 3 (b), the refined
HR context Fc gets rid of the distorted structures and en-
joys more accurate details. In the ablation study, we inves-
tigate the impact of different contexts and demonstrate that
the context generated by our proposed module achieves bet-
ter performance at a lower computational cost.

Multi-Granularity Location Search
The multi-granularity location search (MGLS) module in
DCGU aims to efficiently identify the sampling locations
from the entire LR grid, guided by the refined HR context
Fc. Naive non-local search methods can be used to obtain
R(p, r, Flr, Fc), but the computational complexity of such
methods is O(rh × rw × h × w), which poses a signifi-
cant burden on efficiency. To overcome this challenge, we
leverage the inherent correlation between HR context Fc and
LR features Flr, specifically the strong association between
point Fc(p) and the points within the local patch centered
at p′ = (⌊x

r ⌋, ⌊
y
r ⌋), where ⌊⌋ denotes the floor function in

Flr. By initially calculating the non-local patch correlation

in Flr once, the subsequent search for point p in the HR grid
can be efficiently conducted within the corresponding local
patch and its globally correlated patches, thereby reducing
computational redundancy.

In light of this, we propose a novel MGLS to efficiently
exploit the long-range contextual information. MGLS fol-
lows the divide-and-conquer paradigm, dividing the whole-
grid search between Flr and Fc into two levels of granular-
ity: global patch search (GPS) in Flr and local pixel search
(LPS) between Flr and Fc, as illustrated in Fig. 2. GPS aims
to capture the global correlations in the LR feature Flr, while
LPS estimates R(p, r, Flr, Fc) in several local windows in
Flr based on the result of GPS. MGLS achieves a signif-
icant reduction in computational complexity by exploiting
the global receptive field efficiently, decreasing the complex-
ity of the naive non-local search from O(rh× rw× h×w)
to O(rh× rw × s× s), where s is the patch size and much
smaller than h or w.

Global patch search The global patch search (GPS) mod-
ule aims to identify global patch correlations throughout the
entirety of Flr. However, previous pair-wise non-local atten-
tion used in super-resolution method (Dai et al. 2019) intro-
duces quadratic complexity along the input resolution, re-
sulting in significant computational costs. Recently, sparse
non-local attention-based approaches (Lee et al. 2022; Mei,
Fan, and Zhou 2021) have utilized locality-sensitive hash-
ing (Andoni et al. 2015) (LSH) to reduce these expenses.
While being effective, these methods sort patches accord-
ing to the hash code and split them into fixed-size chunks,
potentially causing dissimilar patches to drop in the same
chunk, as illustrated in Fig. 4 (b). This reliance on dissimilar
patches could lead to sub-optimal performance.

To efficiently find accurate global patch correlation, we
combine pair-wise non-local attention and sparse non-local
attention, taking advantage of both approaches. Specifically,
we first use LSH in the sparse non-local attention to obtain
the initial global patch correlation. LSH works by hashing
similar patches to the same bucket with high probability,
thus avoiding the need to compute pair-wise attention across
the entire Flr. We split Flr into non-overlapping patches,
Flr = {fi|i = 0, 1, ...., N − 1}, and map these patches to
one-dimensional vectors using a random rotation matrix R,
with hash codes calculated as

H(fi) = argmax([R · fi
||fi||

,−R · fi
||fi||

]) (4)

where [·, ·] denotes the concatenation. Similar patches will
be hashed into the same bucket with the same hash code with
high probability, but the bucket may have an unbalanced
amount of patches. We sort the patches according to hash
codes and split them into fixed-sized chunks. Next, to filter
out dissimilar patches in each chunk, we introduce pair-wise
attention. The attention score for fi in a chunk is computed
as:

GAi,· = { ϕ(fi)θ(fj)∑
j ϕ(fi)θ(fj))

|j ∈ Nc} (5)

where ϕ and θ are the projection matrix, and Nc is the set of
patch indices of the chunk that fi belongs to.
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Figure 5: The paradigm overview of local pixel search.
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Figure 6: Visualization of the input frame and the corre-
sponding learned threshold for LPS. The threshold changes
with the frequency of image content.

Using the attention scores, we obtain globally-connected
patches, P (fi), for each patch fi by selecting the top k
patches with the highest attention scores. As illustrated in
Fig. 4 (c), similar patches have higher attention scores com-
pared to their dissimilar counterparts, allowing us to filter
out dissimilar patches effectively. In our experiments, set-
ting k to 1 results in a substantial improvement.

Local pixel search After knowing the global patch cor-
relation, the sampling location search is carried out in sev-
eral local windows in Flr, namely LPS. Specially, in LPS,
we introduce a dynamic gating function that utilizes simi-
larity scores to distinguish informative points. As shown in
Fig. 5, given a point Fc(p) in the HR grid with spatial po-
sition p(x, y), we first project its position into the LR grid
as p′ = (⌊x

r ⌋, ⌊
y
r ⌋) and locate the LR feature patch Flr,p′

and its globally-connected patch P (Flr,p′). We calculate the
similarity score sp,j between Fc(p) and each point LPj in
Flr,p′ ∪ P (Flr,p′) as :

sp,j =
ϕ

′
(Fc(p))θ

′
(LPj)∑

j ϕ
′(Fc(p))θ

′(LPj)
(6)

Instead of using a fixed threshold, the dynamic gating func-
tion adaptsively predicts the threshold using an MLP as
Tp = MLP(sp,·). Then, sampling locations are generated
by collecting points with attention scores exceeding Tp.

We visualize the learned threshold map in Fig. 6, which
varies with the frequency of image content, with higher
thresholds in high-frequency regions involving rapid content
change.

Discussion Our proposed method is related to the De-
formable Convolutional Networks (DCN) (Dai et al. 2017)
but is different in several ways. DCN uses deformable con-
volutional layers to predict relative offsets that are used to
construct the sampling location set. While DCN can capture
spatial transformations in the data, the range of offsets is

usually limited to avoid model divergence, making it chal-
lenging for DCN to leverage long-range contextual infor-
mation. Moreover, original DCN uses the same weights to
aggregate the points for all position for all scales, making it
infeasible for arbitrary-scale VSR. In contrast, our proposed
method leverages context information to predict non-local
sampling locations and content-dependent filter weights, en-
abling us to capture long-range dependencies efficiently. In
the ablation study, we explore the effect of using a modified
DCN in our method.

Temporal Bilateral Filter Modulation

In order to generate the final HR feature from the LR points,
it is necessary to estimate filter weights. However, previ-
ous methods have not taken the content information into
account when generating filter weights, resulting in blurred
results. To address this issue, we propose an efficient tempo-
ral bilateral filter modulation (TBFM) that predicts content-
dependent filter weights. Our approach is inspired by the tra-
ditional bilateral filter, which preserves sharp edges in im-
ages by considering range differences, and we extend this
concept to arbitrary-scale VSR.

TBFM module contains two steps: predicting the spa-
tial filter a(∆p, p) and modulating the spatial filter with
the range filter. Firstly, for spatial filter prediction, as il-
lustrated in Fig. 2, we generate the relative position offset
O(p) = (xr − ⌊x

r ⌋,
y
r − ⌊y

r ⌋) and feed it, along with the
scale r, to an MLP model to obtain the spatial filter. The
number of locations in the sampling set is not fixed, so we
introduce a additional fixed rule sp,j ∈ topn(sp,·) to ensure
that the number of locations in the sampling set does not ex-
ceed the size of the spatial filter. Secondly, we modulate the
spatial filter by adding the range filter, which is defined as
the similarity between the HR point and the LR point. Our
motivation is that the LR point, being more similar to the
HR point, should have a larger weight. We generate the final
filter fwp(p, r,∆p, Flr, Fc) by modulating the spatial filter
as:

fwp(p, r,∆p, Flr, Fc) = a(∆p, p) + δ · S(Fc(p), Flr(∆p))
(7)

where δ is a learnable parameter and S is a function that
calculates the similarity. Numerous options exist for S . For
instance, the function that computes the negative Euclidean
distance between Fc(p) and Flr(∆p) could serve as S . How-
ever, the value ranges of Fc(p) and Flr(∆p) vary, leading to
unbalanced value ranges for S and subsequent performance
degradation. We contend that a balanced value range of S
for different content is advantageous. To achieve this, nor-
malizing S among the sampling location set is an appro-
priate choice. Fortunately, we have already computed the
normalized similarity in Eqn. 6, and we can reuse it with-
out re-computation. Our ablation study demonstrates that
our reused normalized similarity yields greater improvement
than the unnormalized distance.
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BI degradation
Params (M) Runtime (ms) REDS4 Vimeo-90K-T Vid4

BasicVSR 6.3 63 31.42/0.8909 37.18/0.9450 27.24/0.8251
BasicVSR DCGU 6.4 61 31.57/0.8937 37.32/0.9468 27.34/0.8273
BasicVSR++ 7.3 77 32.39/0.9069 37.79/0.9500 27.79/0.8400
BasicVSR++ DCGU 7.4 75 32.57/0.9082 37.96/0.9524 27.85/0.8404

Table 1: Quantitative comparison (PSNR/SSIM). All results are calculated on Y-channel except REDS4(RGB-channel).

LR GTBasicVSR BasicVSR++BasicVSR_DCGU BasicVSR++_DCGU

Figure 7: The visual comparison of BasicVSR, BasicVSR DCGU, BasicVSR++ and BasicVSR++ DCGU at x4 scale.

Experiment
Dataset and Evaluation
We train our model on REDS (Nah et al. 2019) and Vimeo-
90K (Xue et al. 2019). For REDS (Nah et al. 2019), we use
REDS4 as testset. For Vimeo-90K (Xue et al. 2019) dataset,
we use Vimeo-90K-T (Xue et al. 2019), Vid4 (Liu and Sun
2013) and UDM10 (Yi et al. 2019) as testset. We use Bicubic
(BI) and Blur Downsampling (BD) to generate LR videos,
separately. PSNR and SSIM are used as evaluation metrics.
The model size and inference time are used to measure the
efficiency. The implementation details and the result about
BD degradation is in the appendix.

Performance Comparison at x4 Scale
Quantitative results As Tab. 1 shows, BasicVSR DCGU
performs better than BasicVSR (Chan et al. 2020) on all
testsets. It is worth noting that although BasicVSR DCGU
has more parameters than BasicVSR, BasicVSR DCGU en-
joys a faster speed. The reason is that most parameters of
DCGU come from the spatial filter prediction module that
infers once for each video. Therefore, the extra parameters
do not affect the speed. Moreover, the pixelshuffle-based up-
sampling module in the original BasicVSR performs convo-
lution twice on HR feature, which slows down the speed.
Besides, BasicVSR++ DCGU also has better performance
and faster speed than BaiscVSR++. These results verify the
superiority of the proposed DCGU.

Qualitative results We also present a qualitative compar-
ison in Fig. 7. The proposed DCGU helps BasicVSR and
BasicVSR++ generate finer details and sharper edges. For
example, BasicVSR++ DCGU produces clearer striped de-
tails than BasicVSR++.

Performance Comparison at Arbitrary Scales
For the comparison at arbitrary scales, we construct three
baselines that utilize BasicVSR++(Chan et al. 2021) as the

backbone. They are created by replacing the pixelshuffle-
based upsampling module with arbitrary-scale upsampling
modules, including MetaSR(Hu et al. 2019), LIIF (Chen,
Liu, and Wang 2021), and LTE (Lee and Jin 2022).

In-distribution evaluation Firstly, we perform an in-
distribution evaluation, where all scale factors are exposed
to the model during training. Tab. 2 reveals that MetaSR,
LIIF, and LTE exhibit inferior performance compared to our
method at all scales, demonstrating the effectiveness of our
approach.

Out-of-distribution evaluation In practical applications,
a wide variety of scales may be encountered, and it is not
feasible to cover all scales during training. As a result, eval-
uating the model’s performance on unseen scales, referred to
out-of-distribution evaluation, is crucial for arbitrary-scale
VSR. We present the results in Tab. 3. Our proposed method
outperforms MetaSR, LIIF, and LTE by leveraging long-
range contextual information. A visual comparison is pro-
vided in Fig. 8, which demonstrates that our method gener-
ates more detailed textures, leading to a more visually pleas-
ing result.

Efficiency analysis We present the number of parame-
ters for the entire model and the runtime (measured at the
x4 scale) in Tab. 2. The runtime in Tab. 2 of MetaSR,
LIIF, LTE and our is the runtime of the backbone of Ba-
sicVSR++ (Chan et al. 2021) plus the runtime of the upsam-
pling module. Compared to MetaSR, LIIF and LTE exhibit
slower speeds, as they require the LR feature, along with
coordinate and scale, to be fed into the MLP at each time
step. In contrast, our proposed method achieves a superior
efficiency-performance trade-off, owing to the novel design
of the dynamic context-guided upsampling module.

Ablation Study
In this section, we conduct the ablation study on other alter-
native designs in context generation, multi-granularity loca-
tion search, and temporal bilateral filter modulation.
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Figure 8: The visual comparison at out-of-distribution scale (x8).

Params(M) Runtime(ms) x2.0 x2.5 x3.0 x3.5 x4.0
MetaSR 7.4 69 38.04/0.9626 36.60/0.9541 34.87/0.9386 33.37/0.9219 32.15/0.9040
LIIF 7.3 293 38.07/0.9627 36.58/0.9538 34.89/0.9387 33.44/0.9223 32.27/0.9054
LTE 7.4 301 38.10/0.9629 6.67/0.9543 34.92/0.9390 33.46/0.9226 32.31/0.9056
DCGU 7.4 75 38.55/0.9653 37.05/0.9569 35.19/0.9408 33.70/0.9248 32.57/0.9082

Table 2: Comparison for in-distribution scales.

x8.0 x12.0
MetaSR 27.06/0.7544 25.11/0.6617
LIIF 27.19/0.7549 25.17/0.6629
LTE 27.20/0.7550 25.25/0.6631
DCGU 27.46/0.7573 25.46/0.6658

Table 3: Comparison for out of distribution scales.

Ours Bicubic MetaSR
PSNR (dB) 32.57 32.21 32.52

Runtime (ms) 75 71 82

Table 4: Ablation study on HR context generation.

Context generation In this study, we use bicubic and
MetaSR, for upsampling the LR features to generate HR
contexts that guide MGLS and TBFM. As evidenced by
Tab. 4, utilizing bicubic-upsampling for the HR context re-
sults in a significant performance degradation, which under-
scores the criticality of an accurate HR context. Although
the HR context generated by MetaSR exhibits similar per-
formance to our method, it is accompanied by a longer run-
time. Consequently, these findings highlight the advantages
of the proposed context generation module.

Multi-granularity location search As Tab. 5 shows, the
baseline, using local information without search, suffers
from a lower PSNR. Using LPS brings a 0.11 dB improve-
ment in PSNR, while the addition of dynamic gating (DG)
further enhances PSNR by 0.07 dB. These improvements
emphasize the importance of adaptively preserving infor-
mative features for upsampling. Including GPS contributes
to an 0.12 dB improvement, highlighting the advantages of
non-local contextual information. As previously discussed,
DCN (Dai et al. 2017) also could determine sampling loca-
tions by predicting the relative offset. However, when DCN
is employed , PSNR degrades to 32.35 dB, thereby demon-

LPS DG GPS DCN PSNR (dB)
32.27√
32.38√ √
32.45√ √ √
32.57√
32.35

Table 5: Ablation study on multi-granularity location search.

Base Base + negetive L2 Ours
PSNR (dB) 32.48 32.50 32.57

Table 6: Ablation study on TBFM.

strating the superiority of the proposed module .

Temporal bilateral filter modulation As illustrated in
Tab. 6, the base model employing only the spatial filter
achieves PSNR of 32.48 dB. When the negative L2 distance
is utilized as the range filter to modulate the spatial filter,
the improvement is only 0.02 dB. In contrast, the usage of
our normalized similarity results in a more substantial per-
formance enhancement of 0.09 dB.

Conclusion
This paper addresses the arbitrary-scale VSR problem. The
dynamic context-guided upsampling (DCGU) module that
are both efficient and effective is proposed. DCGU over-
comes the limitations of current filter-based methods by ex-
ploiting the content coherence inherent in natural videos.
DCGU introduces the confidence-guided context genera-
tion module, multi-granularity locations search module, and
temporal bilateral filter modulation module to effectively
and efficiently generate reliable HR context, identify corre-
lated points across the entire LR grid and aggregate them in
the content-dependent manner. The extensive experiments
demonstrate the superiority of the proposed method.
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