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Abstract
Large Vision-Language Models (LVLMs) such as MiniGPT-4
and LLaVA have demonstrated the capability of understand-
ing images and achieved remarkable performance in various
visual tasks. Despite their strong abilities in recognizing com-
mon objects due to extensive training datasets, they lack spe-
cific domain knowledge and have a weaker understanding of
localized details within objects, which hinders their effective-
ness in the Industrial Anomaly Detection (IAD) task. On the
other hand, most existing IAD methods only provide anomaly
scores and necessitate the manual setting of thresholds to dis-
tinguish between normal and abnormal samples, which re-
stricts their practical implementation. In this paper, we ex-
plore the utilization of LVLM to address the IAD problem
and propose AnomalyGPT, a novel IAD approach based on
LVLM. We generate training data by simulating anomalous
images and producing corresponding textual descriptions for
each image. We also employ an image decoder to provide
fine-grained semantic and design a prompt learner to fine-
tune the LVLM using prompt embeddings. Our AnomalyGPT
eliminates the need for manual threshold adjustments, thus
directly assesses the presence and locations of anomalies. Ad-
ditionally, AnomalyGPT supports multi-turn dialogues and
exhibits impressive few-shot in-context learning capabilities.
With only one normal shot, AnomalyGPT achieves the state-
of-the-art performance with an accuracy of 86.1%, an image-
level AUC of 94.1%, and a pixel-level AUC of 95.3% on the
MVTec-AD dataset.

Introduction
Large Language Models (LLMs) like GPT-3.5 (Ouyang
et al. 2022) and LLaMA (Touvron et al. 2023) have demon-
strated remarkable performance on a range of Natural Lan-
guage Processing (NLP) tasks. More recently, novel meth-
ods including MiniGPT-4 (Zhu et al. 2023), BLIP-2 (Li et al.
2023), and PandaGPT (Su et al. 2023) have further extended
the ability of LLMs into visual processing by aligning vi-
sual features with text features, bringing a significant revolu-
tion in the domain of Artificial General Intelligence (AGI).
While LVLMs are pre-trained on amounts of data sourced
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Figure 1: Comparison between our AnomalyGPT, existing
IAD methods and existing LVLMs. Existing IAD methods
can only provide anomaly scores and need manually thresh-
old setting, while existing LVLMs cannot detect anomalies
in the image. AnomalyGPT can not only provide informa-
tion about the image but also indicate the presence and loca-
tion of anomaly.

from the Internet, their domain-specific knowledge is rela-
tively limited and they lack sensitivity to local details within
objects, which restricts their potentiality in IAD task.

IAD task aims to detect and localize anomalies in indus-
trial product images. Due to the rarity and unpredictability
of real-world samples, models are required to be trained only
on normal samples and distinguish anomalous samples that
deviate from normal samples. Current IAD methods (Jeong
et al. 2023; Huang et al. 2022; You et al. 2022) typically only
provide anomaly scores for test samples and require manu-
ally specification of thresholds to distinguish between nor-
mal and anomalous instances for each class of items, which
is not suitable for real production environments.

As illustrated in Figure 1 and Table 1, neither existing
IAD methods nor LVLMs can address IAD problem well,
so we introduce AnomalyGPT, a novel IAD approach based
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Methods Few-shot learning Anomaly score Anomaly localization Anomaly judgement Multi-turn dialogue

Traditional IAD methods ✓ ✓
Few-shot IAD methods ✓ ✓ ✓

LVLMs ✓ ✓
AnomalyGPT (ours) ✓ ✓ ✓ ✓ ✓

Table 1: Comparison between our AnomalyGPT and existing methods across various functionalities. The “Tradi-
tional IAD methods” in the table refers to “one-class-one-model” methods such as PatchCore (Roth et al. 2022), InTra (Pirnay
and Chai 2022), and PyramidFlow (Lei et al. 2023). “Few-shot IAD methods” refers to methods that can perform few-shot
learning like RegAD (Huang et al. 2022), Graphcore (Xie et al. 2023), and WinCLIP (Wang et al. 2023). “LVLMs” represents
general large vision-language models like MiniGPT-4 (Zhu et al. 2023), LLaVA (Liu et al. 2023), and PandaGPT (Su et al.
2023). “Anomaly score” in the table represents just providing scores for anomaly detection, while “Anomaly judgement” indi-
cates directly assessing the presence of anomaly.

on LVLM. AnomalyGPT can detect the presence and loca-
tion of anomalies without the need for manual threshold set-
tings. Moreover, our method can provide information about
the image and allows for interactive engagement, enabling
users to ask follow-up questions based on their needs and
the provided answers. AnomalyGPT can also perform in-
context learning with a small number of normal samples,
enabling swift adaptation to previously unseen objects.

Specifically, we focus on fine-tuning the LVLM us-
ing synthesized anomalous visual-textual data, integrating
IAD knowledge into the model. However, direct training
with IAD data presents numerous challenges. The first is
data scarcity. Methods like LLaVA (Liu et al. 2023) and
PandaGPT (Su et al. 2023) are pre-trained on 160k images
with corresponding multi-turn dialogues. However, existing
IAD datasets (Bergmann et al. 2019; Zou et al. 2022) contain
only a few thousand samples, rendering direct fine-tuning
easy to overfitting and catastrophic forgetting. To address
this, we use prompt embeddings to fine-tune the LVLM in-
stead of parameter fine-tuning. Additional prompt embed-
dings are added after image inputs, introducing supplemen-
tary IAD knowledge into the LVLM. The second challenge
relates to fine-grained semantic. We propose a lightweight,
visual-textual feature-matching-based decoder to generate
pixel-level anomaly localization results. The decoder’s out-
puts are introduced to the LVLM along with the original
test images through prompt embeddings, which allows the
LVLM to utilize both the raw image and the decoder’s out-
puts to make anomaly determinations, improving the accu-
racy of its judgments.

Experimentally, we conduct extensive experiments on the
MVTec-AD (Bergmann et al. 2019) and VisA (Zou et al.
2022) datasets. With unsupervised training on the MVTec-
AD dataset, we achieve an accuracy of 93.3%, an image-
level AUC of 97.4%, and a pixel-level AUC of 93.1%. When
one-shot transferred to the VisA dataset, we achieve an ac-
curacy of 77.4%, an image-level AUC of 87.4%, and a pixel-
level AUC of 96.2%. Conversely, after unsupervised training
on the VisA dataset, one-shot transferred to the MVTec-AD
dataset result in an accuracy of 86.1%, an image-level AUC
of 94.1%, and a pixel-level AUC of 95.3%.

Our contributions are summarized as follows:

• We present the pioneering utilization of LVLM for ad-

dressing IAD task. Our method not only detects and lo-
cates anomaly without manually threshold adjustments
but also supports multi-round dialogues. To the best of
our knowledge, we are the first to successfully apply
LVLM to the domain of industrial anomaly detection.

• The lightweight, visual-textual feature-matching-based
decoder in our work addresses the limitation of the
LLM’s weaker discernment of fine-grained semantic and
alleviates the constraint of LLM’s restricted ability to
solely generate text outputs.

• We employ prompt embeddings for fine-tuning and train
our model concurrently with the data utilized during
LVLM pre-training, thus preserving the LVLM’s inher-
ent capabilities and enabling multi-turn dialogues.

• Our method retains robust transferability and is capa-
ble of engaging in in-context few-shot learning on new
datasets, yielding outstanding performance.

Related Work
Industrial Anomaly Detection Existing IAD methods
can be categorized into reconstruction-based and feature
embedding-based approaches. Reconstruction-based meth-
ods primarily aim to reconstruct anomalous samples to their
corresponding normal counterparts and detect anomalies
by calculating the reconstruction error. RIAD (Zavrtanik,
Kristan, and Skočaj 2021), SCADN (Yan et al. 2021), In-
Tra (Pirnay and Chai 2022) and AnoDDPM (Wyatt et al.
2022) employ different reconstruction network architec-
tures, ranging from autoencoder and Generative Adversarial
Network (GAN) to Transformer and diffusion model.

Feature embedding-based methods focus on modeling the
feature embeddings of normal samples. Approaches such as
PatchSVDD (Yi and Yoon 2020) aim to find a hypersphere
that tightly encapsulates normal samples. Cflow-AD (Gu-
dovskiy, Ishizaka, and Kozuka 2022) and PyramidFlow (Lei
et al. 2023) use normalizing flows to project normal samples
onto a Gaussian distribution. PatchCore (Roth et al. 2022)
and CFA (Lee, Lee, and Song 2022) establish a memory
bank of patch embeddings from normal samples and detect
anomalies by measuring the distance between a test sample
embedding and its nearest normal embedding.

These methods typically follow the “one-class-one-
model” learning paradigm, requiring plentiful normal sam-
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ples for each object class to learn its distribution, making
them impractical for novel object categories and less suit-
able for dynamic production environments. In contrast, our
method facilitates in-context learning for novel object cate-
gories, enabling inference with only few normal samples.

Zero-/Few-Shot Industrial Anomaly Detection Recent
efforts have focused on methods utilizing minimal normal
samples to accomplish IAD task. PatchCore (Roth et al.
2022) constructs a memory bank using only a few normal
samples, resulting in a noticeable performance decline. Re-
gAD (Huang et al. 2022) trained an image registration net-
work to align test images with normal samples, followed
by similarity computation for corresponding patches. Win-
CLIP (Jeong et al. 2023) leveraged CLIP (Radford et al.
2021) to compute similarity between images and textual
descriptions representing normal and anomalous seman-
tics, distinguishing anomalies based on their relative scores.

However, these methods can only provide anomaly scores
for test samples during inference. To distinguish normal
samples from anomalous ones, it’s necessary to experimen-
tally determine the optimal threshold on a test set, which
contradicts the original intent of IAD task that only uti-
lize normal data. For instance, while PatchCore (Roth et al.
2022) achieves an image-level AUC of 99.3% on MVTec-
AD in unsupervised setting, its accuracy drops to 79.76%
when using a unified threshold for inference. Our method, in
contrast, enables the LVLM to directly assess test samples
for the presence of anomalies and pinpoint their locations,
demonstrating enhanced practicality.

Large Vision-Language Models LLMs, traditionally
successful in NLP, are now explored for visual tasks. BLIP-
2 (Li et al. 2023) leverages Q-Former to input visual features
from Vision Transformer (Dosovitskiy et al. 2020) into the
Flan-T5 (Chung et al. 2022) model. MiniGPT-4 (Zhu et al.
2023) connects the image segment of BLIP-2 and the Vi-
cuna (Chiang et al. 2023) model with a linear layer, perform-
ing a two-stage fine-tuning process using extensive image-
text data. PandaGPT (Su et al. 2023) establishes a connec-
tion between ImageBind (Girdhar et al. 2023) and the Vi-
cuna (Chiang et al. 2023) model via a linear layer, allowing
for multi-modal input. These approaches showcase the po-
tential of LLM-based polymathic models.

However, as mentioned earlier, these models are trained
on general data and lack domain-specific expertise. In this
paper, through the utilization of simulated anomaly data, im-
age decoder and prompt embeddings, AnomalyGPT is in-
troduced as an novel approach that achieves IAD task with-
out the need for manually specified thresholds, while also
enabling few-shot in-context learning. Table 1 illustrates a
comparison between AnomalyGPT and existing methods
across various functionalities.

Method
AnomalyGPT is a novel conversational IAD vision-
language model, primarily designed for detecting anoma-
lies in images of industrial artifacts and pinpointing their
positions. We leverage a pre-trained image encoder and a

LLM to align IAD images and their corresponding textual
descriptions via simulated anomaly data. We introduce a
decoder module and a prompt learner module to enhance
IAD performance and achieve pixel-level localization out-
put. Employing prompt tuning and alternate training with
pre-training data preserves the LLM’s transferability and
prevents catastrophic forgetting. Our method exhibits robust
few-shot transfer capability, enabling anomaly detection and
localization for previously unseen items with merely one
normal sample provided.

Model Architecture
Figure 2 illustrates the comprehensive architecture of
AnomalyGPT. Given a query image x ∈ RH×W×C , the fi-
nal features Fimg ∈ RC1 extracted by the image encoder
are passed through the linear layer to obtain the image em-
bedding Eimg ∈ RCemb , which is then fed into the LLM.
In unsupervised setting, the patch-level features extracted
by intermediate layers of image encoder are fed into the
decoder together with text features to generate pixel-level
anomaly localization results. In few-shot setting, the patch-
level features from normal samples are stored in memory
banks and the localization result can be obtained by calcu-
lating the distance between query patches and their most
similar counterparts in the memory bank. The localization
results is subsequently transformed into prompt embeddings
through the prompt learner, serving as a part of LLM input.
The LLM leverages image input, prompt embeddings, and
user-provided textual input to detect anomalies and identify
their locations, thus generating responses for the user.

Decoder and Prompt Learner
Decoder To achieve pixel-level anomaly localization, we
employ a lightweight feature-matching-based image de-
coder that supports both unsupervised IAD and few-shot
IAD. The design of the decoder is primarily inspired by
PatchCore (Roth et al. 2022), WinCLIP (Jeong et al. 2023),
and APRIL-GAN (Chen, Han, and Zhang 2023).

As illustrated in the upper part of Figure 2, we partition
the image encoder into 4 stages and obtain the intermedi-
ate patch-level features extracted by every stage F i

patch ∈
RHi×Wi×Ci , where i indicates the i-th stage. Following
the idea from WinCLIP (Jeong et al. 2023), a natural ap-
proach is to compute the similarity between F i

patch and
the text features Ftext ∈ R2×Ctext respectively represent-
ing normality and abnormality, such as A photo of a nor-
mal bottle and A photo of an abnormal capsule. However,
since these intermediate features have not undergone the
final image-text alignment, they cannot be directly com-
pared with text features. To address this, we introduce addi-
tional linear layers to project these intermediate features to
F̃ i
patch ∈ RHi×Wi×Ctext , and align them with text features

representing normal and abnormal semantics. The localiza-
tion result M ∈ RH×W can be obtained by Eq. (1):

M = Upsample

(
4∑

i=1

softmax(F̃ i
patchF

T
text)

)
. (1)
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Figure 2: The architecture of AnomalyGPT. The query image is passed to the frozen image encoder and the patch-level features
extracted from intermediate layers are fed into image decoder to compute their similarity with normal and abnormal texts to
obtain localization result. The final features extracted by the image encoder are fed to a linear layer and then passed to the
prompt learner along with the localization result. The prompt learner converts them into prompt embeddings suitable for input
into the LLM together with user text inputs. In few-shot setting, the patch-level features from normal samples are stored in
memory banks and the localization result can be obtained by calculating the distance between query patches and their most
similar counterparts in the memory bank.

For few-shot IAD, as illustrated in the lower part of Fig-
ure 2, we utilize the same image encoder to extract inter-
mediate patch-level features from normal samples and store
them in memory banks Bi ∈ RN×Ci , where i indicates the
i-th stage. For patch-level features F i

patch ∈ RHi×Wi×Ci ,
we calculate the distance between each patch and its most
similar counterpart in the memory bank, and the localization
result M ∈ RH×W can be obtained by Eq. (2):

M = Upsample

(
4∑

i=1

(
1−max(F i

patch ·BiT )
))

. (2)

Prompt Learner To leverage fine-grained semantic from
images and maintain semantic consistency between LLM
and decoder outputs, we introduce a prompt learner that
transforms the localization result into prompt embeddings.
Additionally, learnable base prompt embeddings, unrelated
to decoder outputs, are incorporated into the prompt learner
to provide extra information for the IAD task. Finally, these
embeddings, along with the original image information, are
fed into the LLM.

As illustrated in Figure 2, the prompt learner consists of
the learnable base prompt embeddings Ebase ∈ Rn1×Cemb

and a convolutional neural network. The network converts
the localization result M ∈ RH×W into n2 prompt em-
beddings Edec ∈ Rn2×Cemb . Ebase and Edec form a set of

n1+n2 prompt embeddings Eprompt ∈ R(n1+n2)×Cemb that
are combined with the image embedding into the LLM.

Data for Image-Text Alignment
Anomaly Simulation We primarily adopt the approach
proposed by NSA (Schlüter et al. 2022) to simulate anoma-
lous data. The NSA (Schlüter et al. 2022) method builds
upon the Cut-paste (Li et al. 2021) technique by incorpo-
rating the Poisson image editing (Pérez, Gangnet, and Blake
2003) method to alleviate the discontinuity introduced by
pasting image segments. Cut-paste (Li et al. 2021) is a com-
mon technique in IAD domain for generating simulated
anomaly images. This method involves randomly cropping
a block region from an image and then pasting it onto a ran-
dom location in another image, thus creating a simulated
anomalous portion. Simulated anomaly samples can signif-
icantly enhance the performance of IAD models, but this
procedure often results in noticeable discontinuities, as il-
lustrated in Figure 3. The Poisson editing method (Pérez,
Gangnet, and Blake 2003) has been developed to seamlessly
clone an object from one image into another image by solv-
ing the Poisson partial differential equations.

Question and Answer Content To conduct prompt tun-
ing on the LVLM, we generate corresponding textual queries
based on the simulated anomalous images. Specifically, each
query consists of two components. The first part involves a
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Figure 3: Illustration of the comparison between cut-paste
and poisson image editing. The results of cut-paste exhibit
evident discontinuities and the results of poisson image edit-
ing are more natural.

description of the input image, providing information about
the objects present in the image and their expected attributes,
such as This is a photo of leather, which should be brown
and without any damage, flaw, defect, scratch, hole or bro-
ken part. The second part queries the presence of anoma-
lies within the object, namely Is there any anomaly in the
image? The LVLM firstly responds to whether anomalies
are present. If anomalies are detected, the model continues
to specify the number and location of the anomalous areas,
such as Yes, there is an anomaly in the image, at the bottom
left of the image. or No, there are no anomalies in the im-
age. We divide the image into a grid of 3×3 distinct regions
to facilitate the LVLM in verbally indicating the positions
of anomalies, as shown in Figure 4. The descriptive con-
tent about the image furnishes the LVLM with foundational
knowledge of the input image, aiding in the model’s bet-
ter comprehension of the image contents. However, during
practical applications, users may opt to omit this descriptive
input, and the model is still capable of performing IAD task
based solely on the provided image input.

Prompts fed to the LLM typically follow the format:
### Human: <Img>Eimg</Img>Eprompt[Image De-

scription]Is there any anomaly in the image?###Assistant:
Eimg ∈ RCemb represents the image embedding be-

ing processed through the image encoder and linear layer,
Eprompt ∈ R(n1+n2)×Cemb refers to the prompt embeddings
generated by the prompt learner, and [Image Description]
corresponds to the textual description of the image.

Loss Functions
To train the decoder and prompt learner, we primarily
employed three loss functions: cross-entropy loss, focal
loss (Lin et al. 2017), and dice loss (Milletari, Navab, and
Ahmadi 2016). The latter two are primarily utilized to en-
hance the pixel-level localization accuracy of the decoder.

Cross-Entropy Loss Cross-entropy loss is commonly em-
ployed for training language models, which quantifies the
disparity between the text sequence generated by the model
and the target text sequence. The formula is as follows:

Lce = −
n∑

i=1

yilog(pi), (3)

where n is the number of tokens, yi is the true label for token
i and pi is the predicted probability for token i.

Figure 4: Illustration of the 3×3 grid of image, which is used
to let LLM verbally indicate the abnormal position.

Focal Loss Focal loss (Lin et al. 2017) is commonly used
in object detection and semantic segmentation to address the
issue of class imbalance, which introduces an adjustable pa-
rameter γ to modify the weight distribution of cross-entropy
loss, emphasizing samples that are difficult to classify. In
IAD task, where most regions in anomaly images are still
normal, employing focal loss can mitigate the problem of
class imbalance. Focal loss can be calculated by Eq. (4):

Lfocal = − 1

n

n∑
i=1

(1− pi)
γ log(pi), (4)

where n = H × W represents the total number of pixels,
pi is the predicted probability of the positive classes and γ
is a tunable parameter for adjusting the weight of hard-to-
classify samples. In our implementation, we set γ to 2.

Dice Loss Dice loss (Milletari, Navab, and Ahmadi 2016)
is a commonly employed loss function in semantic segmen-
tation tasks. It is based on the dice coefficient and can be
calculated by Eq. (5):

Ldice = −
∑n

i=1 yiŷi∑n
i=1 y

2
i +

∑n
i=1 ŷ

2
i

, (5)

where n = H ×W , yi is the output of decoder and ŷi is the
ground truth value.

Finally, the overall loss function is defined as:
L = αLce + βLfocal + δLdice, (6)

where α, β, δ are coefficients to balance the three loss func-
tions, which are set to 1 by default in our experiments.

Experiments
Datasets We conduct experiments primarily on the
MVTec-AD (Bergmann et al. 2019) and VisA (Zou et al.
2022) datasets. The MVTec-AD dataset comprises 3629
training images and 1725 testing images across 15 different
categories, making it one of the most popular datasets for
IAD. The training images only consist of normal images,
while the testing images contain both normal and anoma-
lous images. The image resolutions vary from 700×700 to
1024×1024. VisA, a newly introduced IAD dataset, con-
tains 9621 normal images and 1200 anomalous images
across 12 categories, with resolutions approximately around
1500×1000. Consistent with previous IAD methods, we
only use the normal data from these datasets for training.
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Setup Method MVTec-AD VisA

Image-AUC Pixel-AUC Accuracy Image-AUC Pixel-AUC Accuracy

1-shot

SPADE 81.0 ± 2.0 91.2 ± 0.4 - 79.5 ± 4.0 95.6 ± 0.4 -
PaDiM 76.6 ± 3.1 89.3 ± 0.9 - 62.8 ± 5.4 89.9 ± 0.8 -

PatchCore 83.4 ± 3.0 92.0 ± 1.0 - 79.9 ± 2.9 95.4 ± 0.6 -
WinCLIP 93.1 ± 2.0 95.2 ± 0.5 - 83.8 ± 4.0 96.4 ± 0.4 -

AnomalyGPT (ours) 94.1 ± 1.1 95.3 ± 0.1 86.1 ± 1.1 87.4 ± 0.8 96.2 ± 0.1 77.4 ± 1.0

2-shot

SPADE 82.9 ± 2.6 92.0 ± 0.3 - 80.7 ± 5.0 96.2 ± 0.4 -
PaDiM 78.9 ± 3.1 91.3 ± 0.7 - 67.4 ± 5.1 92.0 ± 0.7 -

PatchCore 86.3 ± 3.3 93.3 ± 0.6 - 81.6 ± 4.0 96.1 ± 0.5 -
WinCLIP 94.4 ± 1.3 96.0 ± 0.3 - 84.6 ± 2.4 96.8 ± 0.3 -

AnomalyGPT (ours) 95.5 ± 0.8 95.6 ± 0.2 84.8 ± 0.8 88.6 ± 0.7 96.4 ± 0.1 77.5 ± 0.3

4-shot

SPADE 84.8 ± 2.5 92.7 ± 0.3 - 81.7 ± 3.4 96.6 ± 0.3 -
PaDiM 80.4 ± 2.5 92.6 ± 0.7 - 72.8 ± 2.9 93.2 ± 0.5 -

PatchCore 88.8 ± 2.6 94.3 ± 0.5 - 85.3 ± 2.1 96.8 ± 0.3 -
WinCLIP 95.2 ± 1.3 96.2 ± 0.3 - 87.3 ± 1.8 97.2 ± 0.2 -

AnomalyGPT (ours) 96.3 ± 0.3 96.2 ± 0.1 85.0 ± 0.3 90.6 ± 0.7 96.7 ± 0.1 77.7 ± 0.4

Table 2: Few-shot IAD results on MVTec-AD and VisA datasets. Results are listed as the average of 5 runs and the best-
performing method is in bold. The results for SPADE, PaDiM, PatchCore and WinCLIP are reported from (Jeong et al. 2023).

Method Image-AUC Pixel-AUC Accuracy

PaDiM (Unified) 84.2 89.5 -
JNLD (Unified) 91.3 88.6 -

UniAD 96.5 96.8 -
AnomalyGPT (ours) 97.4 93.1 93.3

Table 3: Unsupervised anomaly detection results on MVTec-
AD dataset. The best-performing method is in bold and the
results for PaDiM and JNLD are reported from (Zhao 2023).

Evaluation Metrics Following existing IAD methods, we
employ the Area Under the Receiver Operating Charac-
teristic (AUC) as our evaluation metric, with image-level
and pixel-level AUC used to assess anomaly detection and
anomaly localization performance, respectively. However,
our approach uniquely allows for determining the presence
of anomalies without the need for manually-set thresholds.
Therefore, we also utilize the image-level accuracy to eval-
uate the performance of our method.

Implementation Details We utilize ImageBind-
Huge (Girdhar et al. 2023) as the image encoder and
Vicuna-7B (Chiang et al. 2023) as the inferential LLM,
connected through a linear layer. We initialize our model
using pre-trained parameters from PandaGPT (Su et al.
2023). We set the image resolution at 224×224 and feed
the outputs from the 8th, 16th, 24th, and 32nd layers of
ImageBind-Huge’s image encoder to the image decoder.
Training is conducted on two RTX-3090 GPUs over 50
epochs, with a learning rate of 1e-3 and a batch size of 16.
Linear warm-up and a one-cycle cosine learning rate decay
strategy are applied. We perform alternating training using
both the pre-training data of PandaGPT (Su et al. 2023) and

our anomaly image-text data. Only the decoder and prompt
learner undergo parameter updates, while the remaining
parameters are all kept frozen.

Quantitative Results
Few-Shot Industrial Anomaly Detection We compare
our work with prior few-shot IAD methods, selecting
SPADE (Cohen and Hoshen 2020), PaDiM (Defard et al.
2021), PatchCore (Roth et al. 2022), and WinCLIP (Jeong
et al. 2023) as the baselines. The results are presented in
Table 2. Across both datasets, our method notably outper-
forms previous approaches in terms of image-level AUC and
achieves competitive pixel-level AUC and good accuracy.

Unsupervised Industrial Anomaly Detection In the set-
ting of unsupervised training with a large number of nor-
mal samples, given that our method trains a single model
on samples from all classes within a dataset, we selected
UniAD (You et al. 2022), which is trained under the same
setup, as a baseline for comparison. Additionally, we com-
pare our model with PaDiM (Defard et al. 2021) and
JNLD (Zhao 2022) using the same unified setting. The re-
sults on MVTec-AD dataset are presented in Table 3.

Qualitative Examples
Figure 5 illustrates the performance of our AnomalyGPT
in unsupervised anomaly detection, and Figure 6 showcases
the results in the 1-shot in-context learning. Our model is
capable of indicating the presence of anomalies, pinpointing
their locations, and providing pixel-level localization results.
Users can engage in multi-turn dialogues related to image
content. In the 1-shot in-context learning setting, due to the
absence of training, the model’s localization performance is
slightly lower than the unsupervised setting.
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Decoder Prompt learner LLM LoRA MVTec-AD (unsupervised) VisA (1-shot)

Image-AUC Pixel-AUC Accuracy Image-AUC Pixel-AUC Accuracy

✓ - - 72.2 - - 56.5
✓ ✓ - - 73.4 - - 56.6

✓ ✓ - - 79.8 - - 63.4
✓ ✓ 97.1 90.9 72.2 85.8 96.2 56.5
✓ ✓ ✓ 97.1 90.9 84.2 85.8 96.2 64.7
✓ ✓ ✓ ✓ 96.0 88.1 83.9 85.8 96.5 72.7
✓ 97.1 90.9 90.3 85.8 96.2 75.4
✓ ✓ ✓ 97.4 93.1 93.3 87.4 96.2 77.4

Table 4: Results of ablation studies. The ✓ in “Decoder” and “Prompt learner” columns indicate module inclusion. The ✓ in
“LLM” column denotes whether use LLM for inference and the ✓ in “LoRA” column denotes whether use LoRA to fine-tune
LLM. In settings without LLM, the maximum anomaly score from normal samples is used as the classification threshold. In
settings without decoder, due to the sole textual output from the LLM, we cannot compute image-level and pixel-level AUC.

Figure 5: Qualitative example of AnomalyGPT in the un-
supervised setting. AnomalyGPT is capable of detecting
anomaly, pinpointing its location, providing pixel-level lo-
calization results and answering questions about the image.

Ablation Studies
To prove the efficacy of each proposed module, extensive
ablation experiments are conducted on both the MVTec-AD
and VisA datasets. We primarily focus on four aspects: the
decoder, prompt learner, the usage of LLM for inference,
and the utilization of LoRA to fine-tune the LLM. The prin-
cipal results are presented in Table 4. Unsupervised training
and testing are carried out on the MVTec-AD dataset, while
the one-shot performance is evaluated on the visa dataset.
It can be observed that the decoder demonstrates impressive
pixel-level anomaly localization performance. Compared to
manually-set thresholds, the LLM exhibits superior infer-
ence accuracy and provides additional functionality. Further-
more, prompt tuning outperforms LoRA in terms of accu-
racy and transferability.

Conclusion
We introduce AnomalyGPT, a novel conversational IAD
vision-language model, leveraging the powerful capabili-
ties of LVLM. AnomalyGPT can determine whether an im-
age contains anomalies and pinpoint their locations with-
out the need for manually specified thresholds. Further-
more, AnomalyGPT enables multi-turn dialogues focused

Figure 6: Qualitative example of AnomalyGPT in the one-
normal-shot setting. The localization performance is slightly
lower compared to the unsupervised setting due to the ab-
sence of parameter training.

on anomaly detection and demonstrates remarkable perfor-
mance in few-shot in-context learning. The effectiveness of
AnomalyGPT is validated on two common datasets. Our
work delves into the potential application of large visual lan-
guage models in anomaly detection, offering fresh ideas and
possibilities for the field of industrial anomaly detection.
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