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Abstract

Automatic polyp segmentation from colonoscopy videos is a
critical task for the development of computer-aided screen-
ing and diagnosis systems. However, accurate and real-time
video polyp segmentation (VPS) is a very challenging task
due to low contrast between background and polyps and
frame-to-frame dramatic variations in colonoscopy videos.
We propose a novel embedding-unleashing framework con-
sisting of a proposal-generative network (PGN) and an
appearance-embedding network (AEN) to comprehensively
address these challenges. Our framework, for the first time,
models VPS as an appearance-level semantic embedding pro-
cess to facilitate generate more global information to counter-
act background disturbances and dramatic variations. Specif-
ically, PGN is a video segmentation network to obtain seg-
mentation mask proposals, while AEN is a network we spe-
cially designed to produce appearance-level embedding se-
mantics for PGN, thereby unleashing the capability of PGN in
VPS. Our AEN consists of a cross-scale region linking (CRL)
module and a cross-wise scale alignment (CSA) module. The
former screens reliable background information against back-
ground disturbances by constructing linking of region seman-
tics, while the latter performs the scale alignment to resist
dramatic variations by modeling the center-perceived mo-
tion dependence with a cross-wise manner. We further in-
troduce a parameter-free semantic interaction to embed the
semantics of AEN into PGN to obtain the segmentation re-
sults. Extensive experiments on CVC-612 and SUN-SEG
demonstrate that our approach achieves better performance
than other state-of-the-art methods. Codes are available at
https://github.com/zhixue-fang/EUVPS.

Introduction
Colorectal cancer (CRC), a gastrointestinal malignancy, is
the leading cause of cancer-related deaths worldwide (Cen-
ter et al. 2009). Fortunately, regular screening for polyps,
which are precursors to CRC, is an effective CRC prevention
method. Colonoscopy is a commonly used technique to as-
sist doctors in screening and removing polyps. However, the
entire diagnostic process largely relies on the doctor’s expe-
rience, and lack of experience may lead to missed screening
of precancerous lesions. Therefore, accurate and real-time
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Figure 1: Challenges in VPS, including background distur-
bances (a)-(c) and dramatic variations (d)-(f). (a)-(c) low
contrast between background and polyps. (d) position vari-
ation. (e) size variation. (f) shape variation. Note that (a)-(f)
are strictly adjacent two frames from SUN-SEG.

automatic polyp segmentation from colonoscopy videos is
highly demanded in clinical practice.

Recently, many deep learning methods have achieved re-
markable success in image polyp segmentation (IPS) (Fan
et al. 2020; Wu et al. 2021b,a, 2022; Zhou et al. 2023). How-
ever, these methods still struggle to localize the exact loca-
tion of polyps due to the low contrast between the polyp and
the background (Li et al. 2022; Wu et al. 2023), as shown
in Figure 1 (a-c). In addition, real-world clinical diagnosis
is a dynamic procedure, which presents dramatic variations
of polyps in consecutive frames in a video, as shown in Fig-
ure 1 (d-f). The existing image-based methods cannot effec-
tively deal with these variations in a real-time manner. To the
end, recently, some video polyp segmentation (VPS) meth-
ods (Puyal et al. 2020; Ji et al. 2021a, 2022; Li et al. 2022)
have been proposed, aiming at capturing both static seman-
tics and frame-to-frame dynamic semantics to improve the
segmentation performance.

These VPS methods employ hybrid 2D/3D architectures
(Puyal et al. 2020) or normalized self-attention mechanisms
(Ji et al. 2021a, 2022) to highlight temporal information be-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

1744



tween frames. By incorporating temporal consistency, these
methods surpass traditional IPS approaches in VPS perfor-
mance. However, prevalent VPS methods model both static
and dynamic semantics at pixel-level with dense features,
limiting their effectiveness in addressing background distur-
bances and dramatic variations among frames.

In this paper, we propose a novel embedding-unleashing
framework consisting of a proposal-generative network
(PGN) and an appearance-embedding network (AEN). To
our knowledge, our method for the first time models VPS
as an appearance-level semantic embedding process in order
to obtain richer semantic information to tackle background
disturbances and dramatic variations in colonoscopy videos.
Specifically, the PGN, as a video segmentation network, pro-
vides mask proposals, while the AEN is harnessed to pro-
duce appearance-level embedding semantics for the PGN.
Our designed AEN consists of a CRL module and a CSA
module. The former screens reliable background semantics
against background disturbances in a frame by construct-
ing global linking between region semantics, while the latter
achieves the cross-wise scale alignment to resist dramatic
variations by modeling the center-perceived motion depen-
dence. Relying on static and dynamic appearance-level em-
bedding semantics generated from AEN, parameter-free se-
mantic interaction embeds the semantics of AEN into PGN
to obtain the final segmentation results. Extensive experi-
ments on CVC-612 (Bernal et al. 2015) and SUN-SEG (Ji
et al. 2022) demonstrate that our approach achieves better
performance than other state-of-the-art methods. Our major
contributions are summarized as follows:

• We propose a novel embedding-unleashing framework
consisting of a PGN and an AEN to formulate the VPS as
an appearance-level semantic embedding process, aim-
ing at fully unleashing the capability of PGN in VPS task.

• Our specially designed AEN (CRL+CSA) not only re-
sists background disturbances through the linking of
region but also resists dramatic variations via center-
perceived cross-wise scale alignment.

• Our method achieves state-of-the-art performance on two
benchmark datasets and outperforms other competitors
on three metrics with a real-time inference speed.

Related Works
Polyp Segmentation
With the development of deep learning, remarkable progress
has been made in IPS. FCN-based methods (Brandao et al.
2017; Akbari et al. 2018) and U-Net-based methods (Zhou
et al. 2019; Zhang et al. 2020; Wu et al. 2021b) are used to
extract accurate semantic information. However, the above
methods are limited by fuzzy boundaries. To alleviate the
above problem, some methods (Fan et al. 2020; Cheng et al.
2021) based on boundary constraints are used to achieve
finer segmentation. Furthermore, some Transformer-based
methods (Li et al. 2021; Park and Lee 2022; Ren et al.
2023) also achieve better performance in IPS. However,
these image-based methods still suffer from low contrast be-
tween background and polyps. Furthermore, these methods

ignore the frame-to-frame temporal information and fail to
capture the dramatic variations in colonoscopy videos, thus
performing poorly in VPS task.

Different from IPS methods, VPS methods need to con-
sider frame-to-frame temporal information. To this end, a
hybrid 2/3D CNN (Puyal et al. 2020) is proposed to con-
sider the aggregation of spatial-temporal correlation. PNS-
Net (Ji et al. 2021a) proposed a normalized self-attention
module to obtain temporal information. Based on PNS-Net,
PNS+ (Ji et al. 2022) incorporated a global-to-local learning
strategy to balance short-term and long-term dependencies.
TC-Net (Xu et al. 2022) are proposed to model temporal cor-
relations based on original video and captured frames. How-
ever, modeling static and dynamic semantics from dense fea-
tures directly using pixel-level manners limits these meth-
ods. Different from the above methods, we propose a novel
embedding-unleashing framework to address challenges in
VPS via the linking of region semantics and the center-
perceived cross-wise scale alignment, which for the first
time models the VPS as an appearance-level semantic em-
bedding to obtain powerful spatial-temporal semantics.

Embedding-based Semantic Segmentation
The concept of embedding semantics is widely used in var-
ious semantic segmentation tasks, which are usually based
on multi-network or multi-branch designs. In particular,
DED-Net (Galdran, Carneiro, and Ballester 2021) uses two
cascaded networks to provide embedding semantics, while
AuxNet (Zhang et al. 2022) and SAN (Xu et al. 2023)
are proposed to assist another network via providing auxil-
iary information as embedding semantics. Moreover, multi-
branch methods (Zhang, Liu, and Hu 2021; Xu, Xiong,
and Bhattacharyya 2023; Su et al. 2023) usually assign dif-
ferent tasks to different branches to obtain embedding se-
mantics with special meaning. However, above embedding-
based methods still use pixel-level manners to achieve seg-
mentation from dense features, which is sensitive to back-
ground disturbances and dramatic variations in VPS. There-
fore, these methods cannot be directly transferred to the
VPS task. Different with above methods, we introduce an
AEN for the challenges in VPS to model the VPS task as an
appearance-level semantic embedding process for the first
time. In fact, the appearance-level embedding of AEN can
fully unleash the capability of PGN in VPS.

Methods
Overview
The architecture of our proposed method is illustrated in
Figure 2, which is a novel embedding-unleashing frame-
work where semantic embedding process is realized be-
tween a PGN and an AEN. To resolve background dis-
turbances caused by the low contrast between background
and polyps, we propose a CRL module to enhance the
static semantics by constructing global linking of region se-
mantics, thereby improving the ability to resist background
disturbances. Furthermore, considering that the impact of
frame-to-frame dramatic variations of polyps, we propose
a CSA module to enhance the dynamic semantics through
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Figure 2: Overview of our proposed embedding-unleashing framework, which consists of a PGN and an AEN (CRL + CSA)
for VPS. Our method exploits the mask proposals of PGN and the special embedding semantics of AEN to model VPS as
an appearance-level semantic embedding process for the first time. Moreover, our method abandons the previous up-sampling
predictor, and the segmentation result is only realized through a parameter-free semantic interaction.

the center-perceived cross-wise scale alignment, thus mod-
eling robust temporal consistency. In this way, our AEN
(CRL + CSA) can fully unleash the capability of PGN in
VPS by appearance-level embedding semantics. With this
embedding-unleashing framework, our proposed method
models the VPS as an appearance-level semantic embedding
process to learn powerful spatial-temporal information, and
achieves promising segmentation accuracy.

Embedding-unleashing Perspective
Before introducing our technical details, we discuss the
embedding-unleashing perspective to help readers better un-
derstand our method. As discussed above, video polyp se-
mantics include background information (static semantics)
and polyp motion information (dynamic semantics), both of
which play a crucial role in the performance of VPS. Some
early attempts (Puyal et al. 2020; Ji et al. 2021a, 2022) to
learn static and dynamic semantics via pixel-level manners
from dense features. However, the pixel-level criterion is
limited by background disturbances and dramatic variations
in VPS due to poor appearance perception.

Modeling the VPS as an appearance-level semantic em-
bedding process improves appearance perception due to
both the region linking and the center-perceived scale align-
ment force the model to understand the VPS task in an ap-
pearance view. To reach this goal, we introduce a PGN and
an AEN to compose our novel design, called embedding-
unleashing framework. In this way, the VPS task can be
described as three steps: (1) PGN provides mask propos-
als; (2) AEN utilizes the features provided by PGN and
backbone to generate appearance-level embedding informa-
tion; (3) parameter-free interaction utilizes mask propos-
als and embedding information to obtain segmentation re-
sults. Different from the previous methods, with the perspec-
tive of embedding-unleashing, our method fully leverages
the appearance-level embedding semantics of AEN to un-
leash the capability of PGN in VPS, thus modeling powerful

spatial-temporal information.
Specifically, our embedding-unleashing design can be de-

scribed as three sets of learnable embedding semantics (e1,
e2 and e3) and a parameter-free semantic interaction θ.
Hence, our segmentation can be expressed as follows:

P = θ(e1, e2, e3), (1)

where P represents segmentation results. Currently, the def-
inition of e1 can be given:

e1 = τ(F ) ∈ RL×q×H×W , (2)

where τ denotes PGN, and F represents features obtained by
backbone, L is the clip length, q is the number of channels,
and H ×W is the resolution of the feature map.

In training stage, we define ei = fi(πi), where fi and
πi represent the generation process of ei and the parameters
used respectively, and i ∈ {1, 2, 3}. In this way, the learning
objective of our proposed framework is defined as:

min
P

L1 + L2 + · · ·+ Ln, (3)

where Lj (1 ≤ j ≤ n) represents loss function used, and P
is the set of {πi}3i=1.

Cross-scale Region Linking
The quality of background information can be muddied by
background disturbances present in polyp frames. To miti-
gate these disturbances, we propose a CRL module to model
reliable background information. Some methods use atten-
tion mechanism to establish pixel-to-pixel global connec-
tions to model background information (Ji et al. 2021a,
2022; Fan et al. 2020). However, modeling background in-
formation under pixel-to-pixel manner is limited by the low
contrast between background and polyps. Considering the
great pixel similarity of background and polyp at the static
semantic level, different from previous methods, we estab-
lish region linking semantics with a cross-scale manner, and
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use this global linking of region to require the model to view
the feature map at the appearance-level instead of pixel-
level, thereby resisting background disturbances.

Our CRL module takes as input the stage features F
′
=

{F ′

1, F
′

2, F
′

3, F
′

4} output by PGN and the original features
F = {F1, F2, F3, F4} output by backbone. For brevity
of description, we only illustrate F

′

i ∈ RL×C×H×W and
Fi ∈ RL×C×H×W because of similar operations on other
features, where C is the channel number of stage features.
To augment F

′

i at the static semantic level, we first add Fi

as the augmentation source to F
′

i with element-wise man-
ner. Then, we use the 1 × 1 convolutional layer to expand
the information in the class dimension, and two 3 × 3 con-
volutional layers to share spatial information for a group of
pixels to model region-sharing background information. To
remove the disturbance caused by the low contrast between
the background and the polyp, we can model the sharing-to-
sharing global linking between regions to require the model
to view the feature map at appearance level. Specifically, we
leverage a simple MLP project to pull this inter-region shar-
ing into the same embedding space. In this way, a spatial
point in the embedding space can represent the sharing of
multiple regions, and of course the entire embedding vector
can establish the linking of all regions.

Reviewing features under this appearance-level perspec-
tive, the low-contrast disturbance between background and
polyps can be effectively reduced. In this way, we can get
and define our second set of embedding semantics called the
region-linking semantics, which are described as follows:

ei2 = {ei2(s) ∈ RL×c×D}Ss=1, (4)

where S is the number of region linking semantics, D de-
notes the size of embedding space, and c is the number of
classes. Finally, we concatenate ei2 into e2 as follows:

e2 = Concat[ei2] ∈ RL×c×q×D, (5)

where i ∈ {1, 2, 3, 4}, and q = 4S.
To sum up, e2 contains the background information,

which is used to refine the static semantic. It resists back-
ground disturbances by region linking of visual features
at the appearance level and learns to screen reliable back-
ground semantics by forcing the model to focus on appear-
ance semantics. Furthermore, as a cross-scale connection, e2
has the ability to achieve background refinement.

Cross-wise Scale Alignment
In our task, continuous polyp frame information has two
import implications. Firstly, the information across frames
enhances perception and tracking, and reduces temporal in-
consistency. Secondly, the information allows us to accu-
rately define the motion state of polyps, which is benefi-
cial to lock more reliable semantics. To comprehensively
exploit the information between consecutive frames, previ-
ous attention-based methods (Ji et al. 2021a, 2022) which
model the global connection by viewing the pixel in fea-
ture map of each frame as visual token. However, due to
the pixel-level similarity of the same polyp between con-
secutive frames, directly modeling dependencies from dense

features creates redundancy. Furthermore, dramatic varia-
tions resulting in long spatial distances between associated
tokens require those methods to model dense features into
long sequences, which may limit the performance of atten-
tion mechanisms as demonstrated in (Chu et al. 2021; Heo
et al. 2021; Liu et al. 2021). Compared with above methods,
we propose a CSA module which leverages a set of learnable
polyp-center semantics for scale alignment to model center-
perceived motion dependencies. By this way, our method is
able to more stably capture the motion state of polyps be-
cause the center-perceived dependence is more friendly to
dramatic variations than the pixel-perceived dependence.

The fact that videos can be represented by a set of vectors
represented by object centers rather than pixel-level infor-
mation as demonstrated in (Heo et al. 2022, 2023), which
encourages us to directly align spatial points on the embed-
ding space to map the motion state of polyps. Therefore, we
directly exploit e2 to establish temporal consistency.

As shown in Figure 2, taking e2 as input, we first model
dynamic information as center-perceived polyp motion in-
formation. We also use the Transformer (Vaswani et al.
2017) layers like (Heo et al. 2022, 2023) to center polyp mo-
tion information. In addition, we introduce a pixel-decoder
(Cheng et al. 2022) to generate learnable per-position em-
bedding bias for the embedding space to cope with the dra-
matic variations in VPS. In this way, centralized motion in-
formation is anti-redundant, and friendly to dramatic varia-
tions. Finally, we express the process of polyp motion infor-
mation centralization as follows:

ec = D2(e2,D1(E(e2))), (6)

where E represents Transformer encoder, D1 denotes pixel-
decoder, and D2 is Transformer decoder, respectively.

Given ec rich in polyp-center motion information, we fur-
ther introduce the joint attention and memory mechanism to
model center-to-center alignment instead of pixel-to-pixel.
Specifically, to obtain long-term motion perception, we first
use a series of matrix operations to implant clip-level mem-
ory information M ∈ Rm×L×c×q×D into ec as follows:

e
′

c = ϕ(M(ec,M)) ∈ RL×c×q×D, (7)

where m is the memory length, M is a combination of dot
product and dimension summation, and ϕ is the Softmax
function used to normalize the memory information. Then
we use cross-attention to establish clip-wise center align-
ment between memory information and current information
(Ke et al. 2021; Han et al. 2022; Heo et al. 2022, 2023). In
this way, clip-wise center alignment enables our model to
perceive the motion state of the entire video, thereby resist-
ing dramatic variations in VPS. In addition, considering the
overall perception of the video as the only motion informa-
tion reference leads to many uncertainties due to the harsh
motion state will cause the current clip to be irrelevant to
the memory information soon. Therefore, we also introduce
a simple but effective self-attention mechanism (Sun et al.
2022; Su et al. 2023) to model frame-wise center alignment.
With this frame-wise center alignment, our model is able to
mine effective temporal information from adjacent frames
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rather than the entire video, thus also being robust against
dramatic variations in VPS.

To summarize, two different alignments (clip-wise and
frame-wise) enable our model to obtain robust temporal
consistency. For long-term temporal consistency, the clip-
wise center alignment represents the perception of the entire
video, and for short-term temporal consistency, the frame-
wise center alignment enables the segmentation results to be
smooth across consecutive frames. So far, we can express
the alignment process of the polyp-center, while giving the
definition of e3 = e3,m ∈ RL×c×q×D via m iterations:

e3,k = Fffn(Fsa(Fca(e3,k−1, ec))), e3,0 = e
′

c, (8)

where Fca is cross-attention, Fsa is self-attention, Fffn is
feed-forward network, and k ∈ {1, 2, · · · ,m}. Note that be-
cause CRL and CSA are decoupled, e3 not only has reliable
background information, but also has temporal information
that is resistant to dramatic variations in VPS.

Parameter-free Semantic Interaction
Finally, we introduce the parameter-free semantic interac-
tion process θ. After obtaining e3 enriched with background
refinement and accurate polyp motion state, we employ a
straightforward yet effective dot product and dimension-
wise addition to embed the rich semantics from e3 into e1,
thereby completing our final semantic interaction. In this
way, the VPS performance of PGN can be fully unleashed
by the special embedding semantics of AEN. The entire se-
mantic interaction process can be described as follows:

P = φ(
D∑

d=1

e1 · e3) ∈ RL×c×H×W , (9)

where · represents the dot product, and φ is the Sigmoid
function. Different with previous methods, we do not require
an additional up-sampling predictor.

Loss Functions
For the supervised learning of the model, we adopt the bi-
nary cross-entropy loss Lbce like (Ji et al. 2022) to guide the
convergence process of the model. Furthermore, the Dice
loss Ldice (Milletari, Navab, and Ahmadi 2016) becomes
another part of our loss, given the irregularity in the dis-
tribution of polyps across sequences. In summary, we can
formulate the total loss with two components as follows:

Ltotal =
1

L

L∑
i=1

α · Lbce(Pi, Gi) + β · Ldice(Pi, Gi), (10)

where Pi represents the prediction, and Gi represents the
corresponding ground truth (GT).

Experiments
Datasets and Evaluation Metrics
We evaluated our method on two public datasets, including
CVC-612 (Bernal et al. 2015) and SUN-SEG (Ji et al. 2022).

• CVC-612 contains 612 frames from 31 colonoscopy se-
quences with a resolution of 384 × 288. However, it is
not strictly a video dataset because most frames from the
same sequence are not really adjacent.

• SUN-SEG is the latest large-scale dataset for VPS, which
contains 158, 690 frames from 1, 013 sequences. In fact,
the data used is 49, 136 frames from 285 sequences, in-
cluding a training dataset with 19, 544 frames from 112
sequences and two test datasets (SUN-SEG-Easy with
17, 070 frames from 119 sequences and SUN-SEG-Hard
with 12, 522 frames from 54 sequences).

In our experiments, we introduced three widely used metrics
to evaluate our method, including structure measure (Sα,
α = 0.5), maximum intersection over union (maxIoU), and
maximum dice coefficient (maxDice) like (Ji et al. 2021a).

Implementation Details
Our proposed method is designed on top of detectron2 (Wu
et al. 2019) with a single NVDIA GeForce RTX 3090TI
GPU. Res2Net-50 (R2-50) (Gao et al. 2019) and HRNet-
W48 (H-W48) (Sun et al. 2019; Wang et al. 2020) are used
as our backbones, which are all pre-trained on ImageNet.
The input is an arbitrary number of post-processed clips of
length 3 that compose a complete colonoscopy video. All
frames are unified to a resolution of 320×448. The AdamW
and poly learning rate schedule are used for optimizing pa-
rameters, with an initial learning rate = 0.0001 and a weight
decay = 0.1. In training stage, we set the number of iter-
ations 30K and 3K for SUN-SEG and CVC-612, respec-
tively. We set m = 3 for Equation 8. The total loss Ltotal

is balanced with α = 5 and β = 2. For SUN-SEG, we
separate 20% from the training set as the validation set. For
CVC-612, we split the training set, validation set, and test
set with a ratio of 6 : 2 : 2.

Ablation Studies
All ablation experiments were designed on the SUN-SEG.
We apply CFFM (Sun et al. 2022) and Res2Net-50 as the
PGN and backbone, respectively, while training the model
using the parameters in the implementation details.

Stability of AEN. To verify the stability of AEN, we
composed different embedding-unleashing designs by re-
placing PGN. As shown in Table 1, each of the embedding-
unleashing frameworks achieves improvements in all met-
rics compared to segmentation using PGN alone, showing
that our AEN can indeed provide useful semantic infor-
mation for PGN. We also verify the effectiveness of AEN
through the visualization of t-SNE. As shown in Figure 3,
our AEN is able to achieve a clear division between lesion
regions and the opposite.

Impact of CRL module. To verify the importance of
CRL in the AEN, we explore the performance by removing
the CRL module. In fact, we replace the CRL with a linear
layer to ensure that features can be processed by CSA mod-
ule. As shown in Table 2 and Figure 4, the improvement in
metrics and the optimization in visualization prove that the
global linking of region semantics is effective.
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Method Class Backbone SUN-SEG-Easy SUN-SEG-Hard CVC-612
Sα maxDice maxIoU Sα maxDice maxIoU Sα maxDice maxIoU

PIDNet NIS - 0.798 0.710 0.642 0.776 0.703 0.626 0.883 0.861 0.788

FSNet NVS R2-50 0.781 0.729 0.646 0.768 0.722 0.633 0.878 0.851 0.777
GenVIS NVS R2-50 0.812 0.768 0.685 0.798 0.743 0.649 0.893 0.751 0.783
CFFM NVS R2-50 0.817 0.772 0.692 0.810 0.747 0.657 0.898 0.857 0.792

PraNet IPS R2-50 0.778 0.683 0.605 0.752 0.654 0.562 0.882 0.848 0.778
META-UNet IPS R2-50 0.803 0.763 0.678 0.796 0.741 0.645 0.905 0.864 0.793

PNSNet VPS R2-50 0.793 0.711 0.638 0.781 0.703 0.624 0.892 0.855 0.786
PNS+ VPS R2-50 0.823 0.774 0.698 0.812 0.753 0.663 0.903 0.863 0.794

AEN + GenVIS VPS R2-50 0.834 0.792 0.711 0.821 0.773 0.674 0.905 0.866 0.795
AEN + PNS+ VPS R2-50 0.836 0.794 0.714 0.820 0.772 0.676 0.912 0.872 0.802
AEN + CFFM VPS R2-50 0.847 0.810 0.728 0.823 0.786 0.686 0.916 0.878 0.805
AEN + CFFM VPS H-W48 0.869 0.830 0.746 0.832 0.804 0.694 0.924 0.882 0.812

Table 1: Quantitative comparison with different state-of-the-art methods on SUN-SEG and CVC-612 test sets.

CRL CSA SUN-SEG-Easy SUN-SEG-Hard
maxDice maxIoU maxDice maxIoU

0.772 0.692 0.747 0.657

✓ 0.786 0.704 0.766 0.671
✓ 0.793 0.716 0.774 0.682

✓ ✓ 0.810 0.728 0.786 0.686

Table 2: Statistical comparison of our ablation studies over
different components on SUN-SEG test set.

Figure 3: t-SNE visualization of features. Green represents
lesion regions, while red represents the opposite.

Ablation of CSA module. To demonstrate the effective-
ness of CSA module, we also explore performance changes
by means of deletion. As shown in Table 2, the improve-
ment on all metrics indicates that our CSA module can pro-
vide powerful and stable temporal information. Figure 4 also
visually demonstrates that our CSA module can optimize
mask proposals to provide more accurate segmentation re-
sults. Moreover, we also consider the impact of the two
alignments (clip-wise and frame-wise) on performance. As
shown in Table 3, both manner lead to performance gains,
suggesting that the center-perceived motion dependence can
provide more reliable motion semantics by modeling clip-
wise and frame-wise scale alignments.

Comparison with State-of-the-art Methods
We compared our method with eight state-of-the-art com-
petitors over the datasets SUN-SEG and CVC-612, includ-
ing PraNet (Fan et al. 2020), FSNet (Ji et al. 2021b), PN-

Figure 4: Visualization of module ablation on SUN-SEG-
Hard test set. (a) Frame. (b) GT. (c) CFFM. (d) Ours only
w/ CRL. (e) Ours only w/ CSA. (f) Ours w/ (CRL + CSA).
Red, green and yellow represent the GT, prediction and their
overlapping regions, respectively.

Alignment SUN-SEG-Easy SUN-SEG-Hard
maxDice maxIoU maxDice maxIoU

w/o alignment 0.790 0.702 0.771 0.672

only frame-wise 0.798 0.713 0.778 0.679
only clip-wise 0.803 0.716 0.776 0.676

cross-wise 0.810 0.728 0.786 0.686

Table 3: Ablation studies of different scale alignments on
SUN-SEG test set. We perform different alignments by re-
moving the attention layer with specific capabilities.

SNet (Ji et al. 2021a), PNS+ (Ji et al. 2022), CFFM (Sun
et al. 2022), META-UNet (Wu, Zhao, and Wang 2023), Gen-
VIS (Heo et al. 2023), and PIDNet (Xu, Xiong, and Bhat-
tacharyya 2023). The above methods can be divided into
four categories: (1) natural image segmentation (NIS), (2)
natural video segmentation (NVS), (3) IPS, and (4) VPS. All
controllable training parameters are set to the same value.

The comparison results between our method and above
state-of-the-art methods on the SUN-SEG and CVC-612 are
shown in Table 1. All R2-50-based embedding-unleashing
designs outperform other state-of-the-art methods in all met-
rics, illustrating the robustness of our method. Moreover, the
heavyweight H-W48 also brings reasonable gains.
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Figure 5: Visual comparison with different state-of-the-art methods on the SUN-SEG-Easy and SUN-SEG-Hard test sets. Red,
green and yellow represent the GT, prediction and their overlapping regions, respectively. Ours is AEN+CFFM (Res2Net-50).

Method SUN-SEG-Easy
maxDice Param. (M) GFLOPs FPS

CFFM 0.772 26.49 82.98 45
AEN + CFFM 0.810 33.81 93.48 39

GenVIS 0.768 38.99 95.85 34
AEN + GenVIS 0.792 45.36 107.56 27

PNS+ 0.774 9.79 53.24 65
AEN + PNS+ 0.794 18.71 66.45 56

Table 4: Performance-efficiency comparison with the state-
of-the-art methods on SUN-SEG-Easy test set with 320 ×
448 resolution. Res2Net-50 is selected as the backbone.

The focus of this paper is to improve accuracy. To com-
prehensively analyze the strengths of our method, we also
conduct some analysis between accuracy and efficiency.
In Table 4, all embedding-unleashing designs achieve con-
siderable performance gains with little overhead. In addi-
tion, we also compare the efficiency and performance with
other state-of-the-art methods. As shown in Figure 6, our
embedding-unleashing framework achieves a performance-
efficiency trade-off with small overhead. In fact, since AEN
reuses the features of backbone and PGN in a non-dense-
feature manner, the efficiency of the embedding-unleashing
framework is mainly determined by PGN.

We also perform qualitative comparison with state-of-the-
art methods. Figure 5 shows that our method performs better
segmentation in coping with background disturbances and
dramatic variations. It verifies that our method can obtain
more reliable semantic information for VPS.

Discussions and Limitations
Although we only compose three embedding-unleashing de-
signs in our experiments, we believe our AEN has the po-
tential to form more excellent VPS methods with other
video segmentation networks. Moreover, our method still
has some limitations. As shown in Figure 7, facula interfer-

Figure 6: Performance-efficiency comparison with other
state-of-the-art methods on SUN-SEG-Easy test set.

Figure 7: Failure cases. Red, green and yellow represent the
GT, prediction and their overlapping regions, respectively.

ence (a-b), small polyps with extremely low-contrast (c-d),
and dramatic shape (e-f) may limit our method.

Conclusion
In this paper, we propose a novel embedding-unleashing
framework consisting of a PGN and an AEN, which for the
first time models the VPS task as an appearance-level se-
mantic embedding process to improve segmentation perfor-
mance. PGN serves as a video segmentation network to pro-
vide mask proposals. The AEN (CRL + CSA) we designed
obtains appearance-level embedding semantics to address
the challenges in VPS through region linking and center-
perceived cross-wise scale alignment. Finally, segmentation
results are obtained by a parameter-free semantic interaction
between mask proposals of PGN and embedding semantics
of AEN, thus unleashing the capability of PGN in VPS. Our
method achieves state-of-the-art results on both the CVC-
612 and SUN-SEG test sets with a real-time inference speed.
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