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Abstract

Recent advances in event-based research prioritize sparsity
and temporal precision. Approaches learning sparse point-
based representations through graph CNNs (GCN) become
more popular. Yet, these graph techniques hold lower perfor-
mance than their frame-based counterpart due to two issues:
(i) Biased graph structures that don’t properly incorporate
varied attributes (such as semantics, and spatial and temporal
signals) for each vertex, resulting in inaccurate graph repre-
sentations. (ii) A shortage of robust pretrained models. Here
we solve the first problem by proposing a new event-based
GCN (EDGCN), with a dynamic aggregation module to inte-
grate all attributes of vertices adaptively. To address the sec-
ond problem, we introduce a novel learning framework called
cross-representation distillation (CRD), which leverages the
dense representation of events as a cross-representation aux-
iliary to provide additional supervision and prior knowledge
for the event graph. This frame-to-graph distillation allows us
to benefit from the large-scale priors provided by CNNs while
still retaining the advantages of graph-based models. Exten-
sive experiments show our model and learning framework are
effective and generalize well across multiple vision tasks.

Introduction
Event cameras hold high dynamic range, low power con-
sumption, and high temporal resolution while maintain-
ing data non-redundancy advantages. However, the effective
representation and learning of event data (as shown in Fig.
1) is still a topic of ongoing research.

Event data representation methods can be divided into two
categories: frame-based methods that sacrifice data spar-
sity and motion precision to make event data compatible
with pre-trained CNNs, and point-based methods that pro-
tect the sparsity and temporal structure of event streams.
However, due to discrepancies among different event at-
tributes (i.e., spatial, temporal coordinates, and semantics)
and limited labeled data, existing point-based methods suf-
fer from biased graph representation or inadequate training.

To fully leverage the inherent advantages of event cam-
eras, we aim to address two key problems of current point-
based solutions: (1) how to deal with diverse attributes (se-
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Figure 1: (a) Visual comparison between outputs from tradi-
tional cameras and event cameras. (b) Recognition accuracy
vs model complexity (#Params) of our approach (EDGCN
w/o and w/ CRD) on the N-Caltech dataset. The circle areas
are proportional to the computational complexity (FLOPs).

mantic, space distance, and temporal cues) to determine ver-
tices’ neighbors. (2) How to facilitate event graph learning
without relying on additional data.

Properly handling the neighborhood relations of vertices
is key to achieving accurate event graph representations.
Previous works in this direction usually follow traditional
3D vision methods and try to define neighborhoods by better
handling spatio-temporal coordinates, such as unifying the
value ranges of spatial-temporal coordinates (Bi et al. 2020;
Deng et al. 2022; Li et al. 2021) or dynamically updating co-
ordinates (Xie et al. 2022; Chen et al. 2020a). Fig. 2 shows
that these methods have difficulty in effectively modeling
discontinuous event streams caused by motion stagnation or
occlusion. To this end, we introduce a simple yet effective
graph construction strategy that define vertex neighborhoods
considering all attributes in a learnable manner. We intro-
duce an Event-based Dynamic Aggregation Layer (EDAL)
that has multi-attribute joint learning branches for defining
neighborhood integration strategies. We also include a re-
balanced design that uses only coordinates for vertices’ at-
tentive aggregation, allowing the model to better judge the
motion state of vertices.

To enhance the learning of event-based graph models,
we borrow the valuable prior knowledge in well-pretrained
CNNs to facilitate the event graph model. We propose
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Figure 2: Event-based representations for left-hand wav-
ing action. (a) Images integrated by events with different
time intervals. Event stream (b) breaks in the fourth inter-
val due to motion stagnation. Coordinate-defined neighbor-
hoods can find temporally and semantically related neigh-
bors for vertices (⋆) in ideal cases. However, motion stagna-
tion and occlusion problems make it hard to find highly re-
lated neighbors based on coordinates only (e.g., purple ver-
tex before motion stagnation). Thus, it is necessary to incor-
porate semantic information into neighborhood definition.

a cross-representation (frame-to-graph) distillation frame-
work with a hybrid distillation structure, combining an in-
termediate feature-level contrastive loss (Chen et al. 2020b)
and an inference-level distillation loss (Hinton, Vinyals, and
Dean 2015; Romero et al. 2015). This framework trans-
fers multi-level semantics and handles frame-graph discrep-
ancies across layers. Compared to previous frame-to-frame
transfer learning methods, our method uses only event sig-
nals without extra data, while holding better learning and
graph model advantages. Our framework also shows better
generalization despite the large representation discrepancy.

The main contributions are summarized as follows: (1) It
is the first cross-representation distillation (frame-to-graph
distillation) work for event data with no extra data required.
We carefully analyze the variant discrepancy between frame
and graph representation in different layers and use corre-
sponding constraints to distill different layers. (2) We intro-
duce a graph construction strategy with customized learning
model for events, where the cross-vertex dependency is de-
termined by the joint representation from all attributes of
vertices in an unbiased and dynamic way. (3) Extensive ex-
periments validate the efficacy of our proposed event graph
and learning strategy on various downstream tasks, verifying
the high generalization ability of our model.

Related Work
Event-Based Learning. Frame-based methods in event-
based processing integrate events into dense representations,
adapting them to CNNs for tasks like event-based recogni-
tion (Deng, Li, and Chen 2020; Deng, Chen, and Li 2021;
Baldwin et al. 2022), video reconstruction (Rebecq et al.
2019; Zhu et al. 2022) and optical flow estimation (Hu et al.
2022). However, these methods sacrifice the sparsity and
temporal precision of event data (Mitrokhin et al. 2020;
Schaefer, Gehrig, and Scaramuzza 2022), resulting in re-
dundant computation and high model complexity. Instead,
point-based methods, popular for their low model complex-

ity and quick inference, exploit event sparsity. Initially, Spik-
ing Neural Networks (SNNs) (Orchard et al. 2015; Sironi
et al. 2018) were used for event data due to their sparse
and asynchronous nature. However, their training proved
challenging. Combining SNNs with CNNs has been an ap-
proach (Wu et al. 2022; Yao et al. 2021) to solve this, but it
introduces more computations. Then, PointNet-like models
(Wang et al. 2019b; Sekikawa, Hara, and Saito 2019) are de-
veloped but face challenges in adaptively aggregating local
features. Graph-based approaches (Mitrokhin et al. 2020; Bi
et al. 2020; Li et al. 2021; Schaefer, Gehrig, and Scaramuzza
2022; Chen et al. 2020a) emerge to tackle the issue of defin-
ing neighborhoods based on event properties, proving to be
more lightweight than frame-based methods with promising
results in various applications. Current research has intro-
duced new representations (Deng et al. 2022; Xie et al. 2022)
or investigated spatial proximity of events (Li, Asif, and Ma
2022) to close the performance gap to frame-based meth-
ods. However, unbiased neighborhood definitions and graph
model learning with limited labels remain unexplored. In
this work, we propose a dynamic joint representation learn-
ing approach (EDGCN) with a cross-representation distilla-
tion training framework (CRD) to address both problems.

Transfer Learning on Event Data. Transfer learning has
been extensively explored to ease the training of event-
based models. Several studies (Rebecq et al. 2019; Tulyakov
et al. 2022) transform events into RGB images to align with
pretrained CNNs. Yet, these conversions increase compu-
tational costs. Cross-modality transfer approaches, as pre-
sented in (Hu, Delbruck, and Liu 2020; Deng et al. 2021;
Sun et al. 2022; Messikommer et al. 2022), introduce ex-
tra supervision to aid event-based learning, but these addi-
tional visual modalities aren’t consistently available. Some
research (Gehrig et al. 2020; Rebecq, Gehrig, and Scara-
muzza 2018) supplements event datasets by simulating data
from traditional videos, but this often results in artifacts.
Contrarily, our cross-representation distillation method taps
into the shared knowledge from various deep models trained
on diverse event data representations, eliminating the need
for extra data. This method broadens applicability and en-
hances the learning of the event graph branch via a frame-
to-graph distillation loss.

Approach
In this work, we devise a novel event-based dynamic graph
CNN (EDGCN) and a cross-representation distillation strat-
egy (CRD) to boost its learning sufficiency further. The
pipeline of our proposed method is illustrated in Fig. 3,
which contains the following key steps: (1) Representation
construction of events for both the graph model and tradi-
tional CNNs. (2) Gradual aggregation of contexts using suc-
cessive event-based dynamic aggregation layers (EDALs).
(3) Parallel to the event graph branch, we map the origi-
nal events to a frame-based branch as the teacher to pro-
mote EDGCN branch learning via the proposed cross-
representation distillation framework. (4) The EDGCN is
appended with different inference heads for various tasks.
The following sections will clarify detailed designs and im-
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Figure 3: The pipeline of our proposed method takes two different representations of events as inputs for the frame-based model
(A) and the point-based model (B), i.e., EDGCN. A ResNet-like structure is chosen for the frame-based model. “MLP” stands
for multi-layer perceptron, with numbers in brackets indicating layer sizes. Losses in blue are used for frame-based model
training, while those in red are imposed when optimizing the EDGCN with CRD. Only EDGCN is used at the inference stage.

plementations in these steps.

Event-Based Representation
Each event ei holds three properties: the occurred loca-
tion ((xi, yi)), the triggered timestamp (ti), and the po-
larity (pi ∈ {−1, 1}). Particularly, the positive p denotes
the brightness increase and vice versa. In this work, we
directly adopt the voxel-wise representation (Deng et al.
2022) of events as our input. In specific, event streams
({ei}N = {xi, yi, ti, pi}N ) is firstly partitioned into vox-
els with the voxel size (vx, vy, vt). Then, Nv voxels con-
taining the largest number of events are reserved as vertices
(V) of the event-based graph (G). Here, we denote the left-
upper location of a vertex (Vi) as its coordinate attribute
(Ui = (xv

i , y
v
i , t

v
i )). Finally, the semantics (Fi ∈ RDinp )

of the i-th vertex (Vi) is obtained through event-wise inte-
gration formulated by the function Ω, where Dinp = vxvy .

EDGCN
We address the challenge of modeling dependencies of three
attributes (spatial position, triggered time, and local seman-
tics) in measuring cross-vertex edges with proposed graphs
and dynamic aggregation layers. Our approach includes
neighborhood definition, attentive aggregation, and coordi-
nate attribute update. The dynamically updated graph im-
proves neighborhood definition accuracy and feature aggre-
gation efficacy by continuously refining vertex attributes.

Dynamic Aggregation Layer (EDAL). The main compo-
nent of our EDGCN, namely EDAL, is schematized in Fig.
4. Its workflow is detailed successively as follows.

Neighborhood Definition. We suppose that the i-th ver-
tex Vi is an input vertex to an EDAL with coordinate and
semantic attributes Attr(Vi) : (Ui ∈ RDin

u ,Fi ∈ RDin
f ).

The goal of EDAL is to define neighborhood space for each

vertex by considering all its attributes and aggregating at-
tributes from its neighbors attentively. Considering the large
discrepancy in spatial position, triggered time, and features
of local semantics, we argue that projecting the Attr(Vi) to
a unified feature space with Eq. 1 is required.

PF
i = MF (Fi), PU

i = MU (Ui), (1)

where MF and MU are MLPs for feature projection. The
obtained representations PF

i and PU
i ∈ RDin

f in the same
feature space can then be fused as a joint representation
Pfuse
i for vertex Vi. Notably, we achieve the Pfuse

i ∈ RDout
f

through a fusion module (F) consisting of an addition op-
eration followed by a MLP. Next, we adopt the K-Nearest
neighbor algorithm (KNN) on this joint representation to
find the most relevant Nn neighbors of Vi in the G. Here,
we denote the set of edges between vertex Vi and its neigh-
bors as Enei

i ∈ RNn .
A direct approach to aggregating vertices’ features is to

follow the methods in (Veličković et al. 2018; Wang et al.
2019a), which achieve attentive aggregation by obtaining
similarity or relative matrices of features (i.e., Pfuse) that
define neighborhoods. However, there is one point that must
be considered in our work. As shown in Fig. 2, in scenar-
ios with complex motion states, vertices and their neighbors
may be distant but semantically strongly related. We aim for
the model to fully consider the motion correlation between
neighbors and the central vertex when aggregating for such
vertices rather than just global semantics. To this end, we
enhance the contribution of coordinate attributes in graph
representation for more accurate motion description by cal-
culating aggregation weights using only coordinate clues.
Further, we update the coordinate attributes with spatio-
temporal relations in the neighborhood to enlarge their ca-
pability in motion description layer-by-layer. The ablations
in Tab. 6 verify the efficacy of our intuitive design.
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Figure 4: The detail structure of the EDAL.
⊕

: element-
wise addition.

Attentive Aggregation. We calculate attention scores
w.r.t the coordinate attribute as formulated in Eq. 2.

Scorei = MU
A( Γrel

j:(i,j)∈Enei
i

(PU
i ,PU

j )), (2)

where the function Γrel is used for concatenating its two
inputs and stacking them under the constraint (j : (i, j) ∈
Enei
i ). The function MU

A, a MLP with the Softmax activation,
is imposed for mapping the input in RNn×2Din

f to a vector
of attentive scores Scorei ∈ RNn . Next, we can aggregate
features for vertex attentively as described in Eq. 3.

FAggr
i =

∑
(Scorei ∗ ( S

j:(i,j)∈Enei
i

(Pfuse
j ))), (3)

where S works for stacking joint representations (Pfuse
j ∈

RDout
f ) of all vertex’s neighbors and its output is in

RNn×Dout
f . The attentive scores Scorei can then be ap-

plied to re-weight and obtain the aggregated features FAggr
i

∈ RDout
f for vertex Vi through a summation operation.

Coordinate Attribute Update. We depict the derivation
of updating coordinate attributes by Uupd

i = QU
upd(Reli),

where Reli is obtained in Eq. 2 via function Γrel, QU
upd con-

sists of an average pooling followed by a MLP for feature ag-
gregation and feature projection. After these two processes,
the updated coordinate attribute Uupd

i ∈ RDin
f of Vi can be

achieved. By updating the coordinate attribute of each vertex
with local spatio-temporal relations with its neighbors, the
vertex is equipped with spatio-temporal positions and local
motion associations simultaneously, which will be transmit-
ted to the following layer.

Shortcut Connection. In the EDAL, two shortcut connec-
tions are included for both coordinate and feature attributes
of vertices in the graph. In specific, two MLPs (MU

ID and
MF

ID) are applied to input attributes Ui and Fi respectively.
Finally, we add the attained features from MU

ID and MF
ID
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Figure 5: Different choices of distillation between interme-
diate features from frame-based models (Fmid

CNN ) and the
EDGCN (F ). The adapt module is a MLP for dimension
alignment between two feature vectors. We adopt (C) as our
choice and detail the reason in the experiment section.

to our achieved updated coordinate attribute (Uupd
i ) and ag-

gregated features (FAggr
i ) to obtain the final output of an

EDAL, i.e., Uout
i ∈ RDin

f and Fout
i ∈ RDout

f .

Network Structure. The structure of the EDGCN is the
same for all datasets except for the sub-stream task head.
Three EDALs are cascaded to extract discriminative features
from event data sequentially. For object recognition and ac-
tion recognition tasks, we apply a Max pooling operation
followed by a MLP after the third EDAL and then feed the
output of this MLP to a fully connected layer for categorical
prediction. As for the detection task, we follow the setting
provided by (Schaefer, Gehrig, and Scaramuzza 2022) to ap-
ply a YOLO-based detection head (Redmon et al. 2016) to
our extracted event-based contexts for object detection.

Cross-Representation Distillation (CRD)
As shown in Fig. 3, in our CRD framework, the teacher net-
work is a frame-based learning branch with dense event-
based representations as input and learning them starting
from well-trained CNNs, while the student network is our
EDGCN model. Then, a combined distillation constraint
working on different layers is tailored to fulfill this transfer.

Distillation Framework. The key issue in achieving this
challenging frame-to-graph transfer is the design of a distil-
lation structure that carefully considers the varying cross-
representation discrepancy across different layers. To this
end, we propose a hybrid distillation approach that includes
two views. (1) Inference-level distillation of contexts from
final prediction outputs. For instance, we apply the distilla-
tion loss proposed in (Hinton, Vinyals, and Dean 2015) for
classification tasks and the L1 loss (Romero et al. 2015) for
regression-based tasks like position estimating in object de-
tection. (2) Feature-level constraints that transfer hints from
intermediate features of frame-based models. The knowl-
edge transfer of intermediate features has been verified to ef-
fectively improve the training effect of the model to be trans-
ferred. However, for traditional CNNs and our EDGCN,
their learning logic for event data from shallow to deep
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Datasets N-Cal CIF10 N-C DVS128
(vx, vy) (10, 10) (10, 10) (5, 5) (5, 5)

vt 25 ms 60 ms 25 ms 40 ms
Nv 2048 2048 512 512
Nn 20 20 20 20

Table 1: Parameter settings of different datasets.

might be totally different. Thus, hard constraints (e.g., L1/L2
distance) (Isola et al. 2017) would be too strict for our trans-
fer task. For this reason, we exploit the contrastive loss, NT-
Xent (Chen et al. 2020b; Huang et al. 2021), to realize the
transfer by increasing the correlation between intermediate
features from both networks. In specific, three variants to
equip NT-Xent loss in the CRD are proposed in Fig. 5, with
method Fig. 5.(C) being adopted as the final choice.

Optimization. The whole training process of our study
can be divided into two parts. First, the training process
of frame-based models with task-specific loss solely is de-
scribed by Lframe

total =
∑Nt

i Li
task, where Li

task are task-
specific losses. They are applied to multiple prediction lay-
ers individually (Fig. 3). Nt represents the number of in-
termediate features used for cross-representation learning.
Next, we optimize our proposed EDGCN with the loss for
task-specific supervision (Ltask), the loss for inference-level
knowledge transferring (Linf ) and a series of contrastive
losses (Li

feat) for feature-level distillation as described in
Eq. 4.

LEdgcn
total = λLtask + (1− λ)Linf +

Nt∑
i

Li
feat, (4)

where λ control the contribution of the first two components
in the training process and set it as 0.5 for all experiments.

Experimental Results
We evaluate our proposed method on multiple tasks. Be-
sides, we validate the superiority of the EDGCN on the
model complexity (trainable parameters) and the number
of floating-point operations (FLOPs). We compare our ap-
proach to representative methods from both frame-based
(EST (Gehrig et al. 2019), YOLE (Cannici et al. 2019), M-
LSTM, MVF-Net (Deng, Chen, and Li 2021), Asynet (Mes-
sikommer et al. 2020), LIAF-Net (Wu et al. 2022), TA-SNN
(Yao et al. 2021)) and point-based (EventNet (Sekikawa,
Hara, and Saito 2019), RG-CNNs (Bi et al. 2020), Evs-S
(Li et al. 2021), EV-VGCNN (Deng et al. 2022), AEGNN
(Schaefer, Gehrig, and Scaramuzza 2022), VMV-GCN (Xie
et al. 2022)) branches. Finally, the efficacy of the proposed
CRD and its generalizability are validated.

Implementation Details. We choose ResNet as the back-
bone of frame-based models used for applying CRD to ob-
ject classification and object detection tasks and adopt I3D-
R (w/ ResNet50) (Chen et al. 2021) for the action recog-
nition task. We train them using the Adam optimizer with
batch size 32 and an initial learning rate (lr) of 1e-4, which is

Method Type§ N-Cal N-C CIF10
Pretrained on ImageNet

EST F 0.837 0.925 0.749
M-LSTM F 0.857 0.957 0.730
MVF-Net F 0.871 0.968 0.762

Without pretraining
EST F 0.753 0.919 0.634
M-LSTM F 0.738 0.927 0.631
MVF-Net F 0.687 0.927 0.599
EventNet P 0.425 0.750 0.171
RG-CNNs P 0.657 0.914 0.540
EvS-S P 0.761 0.931 0.680
EV-VGCNN P 0.748 0.953 0.670
AEGNN P 0.668 0.945 -
VMV-GCN P 0.778 0.932 0.690
EV-Transformer P 0.789 0.954 0.709
Ours† P 0.801 0.958 0.716
Ours w/ CRD‡ P 0.835 0.963 0.752

Table 2: Comparison of models w.r.t classification accu-
racy. †: Performance of the EDGCN trained solely. ‡: Performance
of the model trained with CRD. § : F:frame-based method; P:point-
based method.

reduced by a factor of 2 after 20 epochs. The dense input of
these frame-based models is VoxelGrid. For the EDGCN, we
keep its network structure (Fig. 3) unchanged for all datasets
except for its task head. We use SGD optimizer with an ini-
tial lr of 1e-1 for object classification and action recogni-
tion, and reduce the lr until 1e-4 using cosine annealing. We
choose Adam optimizer with batch size 32 for detection, and
reduce lr starting from 1e-2 by a factor of 2 after 20 epochs.
The settings are consistent for training the EDGCN solely
and with CRD. We list the statistics of adopted datasets and
their settings in Tab. 1. We average over five runs as our final
results for all experiments.

Object Classification
Event-based object classification is an essential application
since event cameras can recognize objects more accurately
than traditional cameras in scenarios with severe motion blur
and extreme lighting conditions. In this work, we select three
challenging datasets commonly used for evaluating event-
based object classification, i.e., N-Cal (Orchard et al. 2015),
N-C (Sironi et al. 2018), and CIF10 (Li et al. 2017) (Tab. 1).
The ResNet-18 is the backbone of the frame-based model
that we employed for optimizing EDGCN with CRD, and
its performance on N-Cal, N-C, and CIF10 is 0.868, 0.964,
and 0.757. The cross-entropy loss is utilized as Ltask for the
model’s training.

Classification Accuracy. We compare the proposed
method with SOTA methods falling in both point-based and
frame-based categories. The Tab. 2 presents that methods
with graph-based learning (RG-CNNs, Evs-S, EV-VGCNN,
AEGNN, VMV-GCN, EV-Transformer and ours) are preva-
lent w.r.t classification accuracy over other point-based
methods. Notably, the proposed EDGCN achieves top per-
formance among these graph-based approaches, revealing
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Method Type Accuracy GFLOPs #Params
LIAF-Net F 0.976 13.6 -
TA-SNN F 0.986 - -
RG-CNN (Res.3D) P 0.972 13.72 12.43 M
EV-VGCNN P 0.959 0.46 0.82 M
VMV-GCN P 0.975 0.33 0.84 M
Ours P 0.985 0.14 0.72 M
Ours w/ CRD P 0.983 0.14 0.72 M

Table 3: Comparison of models on the DVS128 dateset.

the effectiveness of our proposed learning model. We at-
tribute these improvements to the EDAL that can aggregate
features for vertices considering all attributes dynamically,
which allows us to efficiently and precisely extract the se-
mantics of events.

Excitedly, the introduced CRD can improve the perfor-
mance of the EDGCN by a large margin. It proves that
our CRD can successfully utilize the pretrained weights of
CNNs to ease the learning of our graph model and improve
its representation ability, even with large image-to-graphs
gaps. However, our model, largely improved by the CRD
scheme, still lags behind some frame-based methods (e.g.,
the MVF-Net) that are with pretraining. We attribute this
to the much smaller discrepancy between image-frame than
our frame-graph, allowing those frame-based methods to di-
rectly use the model weights well-trained with large-scale
datasets. Moreover, Tab. 5 shows that our method holds
large advantages in model complexity and computational
cost over other approaches.

Action Recognition
In this section, we choose the action recognition task to vali-
date the advantages of our model in encoding motions using
the DVS128 (Amir et al. 2017) dataset which contains sam-
ples derived by different gestures. We follow (Bi et al. 2020)
to sample all test data with 0.5s duration. The cross-entropy
loss is utilized as Ltask for the model’s training. The I3D-R
is chosen as the backbone of the frame-based teacher net-
work when performing CRD for optimizing EDGCN and
the performance of the teacher on DVS128 is 0.981.

Recognition Performance. Tab. 3 shows that our model
has significant advantages over other point-based ap-
proaches w.r.t recognition accuracy, model complexity, and
computational cost. Despite using highly sparse input data,
our model achieves accuracy comparable to the state-of-the-
art frame-based method (TA-SNN). Notably, I3D-R shows
weakness in this task compared to EDGCN even with pre-
training and a much heavier model.

These findings suggest that EDGCN can accurately ex-
tract motion cues while preserving the sparsity of event data.
This advantage can be attributed to two reasons. (i) Accurate
neighborhood definition. (ii) Attentive aggregation which
relies only on spatio-temporal relations for augmenting mo-
tion elements in feature representation. We also evaluate our
work with aggregation considering joint features (Pfuse) in-
stead of only coordinates (PU ).

Methods Type N-Cal (mAP↑)
YOLE F 0.398
Asynet F 0.643
NvS-S P 0.346
AEGNN P 0.595
Ours P 0.657
Ours w/ CRD P 0.711

Table 4: Comparison of models w.r.t the eleven-point mean
average precision (mAP) on the object detection task.

Method Type #Params GFLOPs Time
EST F 21.38 M 4.28 6.41 ms
M-LSTM F 21.43 M 4.82 10.89 ms
MVF-Net F 33.62 M 5.62 10.09 ms
EventNet P 2.81 M 0.91 3.35 ms
PointNet++ P 1.76 M 4.03 103.85 ms
RG-CNNs P 19.46 M 0.79 -
EV-VGCNN P 0.84 M 0.70 7.12 ms
AEGNN P 20.4 M 0.75 -
VMV-GCN P 0.86 M 1.30 6.27 ms
Ours P 0.77 M 0.57 3.84 ms

Table 5: Comparison of models on the model complexity
(#Params) and the number of FLOPs.

Object Detection
Event-based object detection is an emerging topic to simul-
taneously solve object localization and categorization. This
task requires event-based models with powerful semantics
and motion encoding capabilities. We conduct experimen-
tal comparisons for this task on the N-Cal dataset, which
is a single object detection dataset containing 101 classes.
The ResNet-34 is used as the backbone of the frame-based
teacher branch for our CRD, and its performance on N-Cal
is 0.76. Following the setup in (Schaefer, Gehrig, and Scara-
muzza 2022), we use a collection of losses (a weighted sum
of class, bounding box offset and shape as well as prediction
confidence losses) as the Ltask for training.

Detection Performance. We utilize the eleven-point mean
average precision (mAP) to measure our models on the de-
tection task. From results in Tab. 4 and 5, we conclude that
our approach achieves large improvement on mAP over oth-
ers with much fewer parameters and computational costs.
More importantly, the proposed EDGCN trained solely ex-
ceeds other graph-based models such as NvS-S and AEGNN
by a large margin, indicating the superiority of our EDGCN.
Besides, CRD also largely boosts the detection performance
in addition to object and action recognition tasks, suggesting
the well generalizability of our proposed learning scheme.

Complexity Analysis
We compute the complexity and FLOPs of object classi-
fication models on the N-Cal dataset following (Bi et al.
2020; Deng et al. 2022). Results in Tab. 5 show that our
approach holds extremely low model complexity and com-
putational cost, indicating the high efficiency the learning
system holds in extracting representative features from event
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AAU UPD AAfuse PU PF Pfuse N-Cal CIF10 DVS128
A ✓ ✓ ✓ 0.793 0.695 0.954
B ✓ ✓ ✓ 0.790 0.701 0.970
C ✓ ✓ ✓ 0.801 0.716 0.985
D ✓ ✓ 0.783 0.694 0.972
E ✓ ✓ ✓ 0.788 0.703 0.969

Table 6: The ablation study on the effects of different designs
to model’s performance. AAU : attentive aggregation using co-
ordinate attributes. AAfuse: attentive aggregation using the fused
joint representation. UPD: coordinate attribute update module.

EDGCN Linf Lfeat N-Cal CIF10
A B C D

✓ 0.801 0.716
✓ ✓ 0.818 0.724
✓ ✓ ✓ 0.825 0.733
✓ ✓ ✓ 0.830 0.749
✓ ✓ ✓ 0.835 0.752
✓ ✓ ✓ 0.814 0.721

Table 7: Effects of different designs to model’s performance.

data. We measure inference time on the N-C using PyTorch
on an Nvidia RTX 3090 and an Intel i7-13700. Our approach
achieves leading performance with only 3.84 ms processing
time per sample (equivalent to 260 Hz frame-rate), demon-
strating its practical value in high-speed scenarios.

Ablation Study
In this section, we evaluate our method through various set-
tings, where setup in Tab. 6 is for evaluating core modules
of EDAL and Tab. 7 is for verify the contribution of each
constraint in the proposed CRD. A visualization is also pre-
sented to show the benefits of CRD in improving the repre-
sentation ability of EDGCN.

Effectiveness of Learning Modules in EDAL. We in-
vestigate the effectiveness of our neighborhood definition
method through settings A, B, and C in Tab. 6, where A, B,
and C represent defining neighbors using only coordinate at-
tributes (PU ), only semantic features (PF ), and a joint rep-
resentation (Pfuse) of all attributes respectively. The results
show that our neighborhood definition method consistently
improves model performance across different datasets. In
particular, compared to the method of finding neighbors
using only coordinates as done in (Deng et al. 2022; Li
et al. 2021; Schaefer, Gehrig, and Scaramuzza 2022), our
method achieves significant improvement in action recogni-
tion tasks. This confirms our observation in Fig. 2 that it is
difficult to find neighbors highly related to a vertex’s mo-
tion and semantic information based solely on coordinates
in scenarios where motion states are complex.

Additionally, we explore the impact of attentive aggrega-
tion mode on model performance (C & E). By enhancing the
contribution of motion information during aggregation, our
method can obtain more efficient graph representation. This
validates the rationality of our design. Also, we can see that
UPD further brings considerable improvement (C & D), in-
dicating that the coordinate attribute strengthened by UPD

guitar

car_side
chair
laptop
panda
ball
headphone
umbrella

ferry
starfish

(A) EDGCN w/ CRD (B) EDGCN only

Figure 6: The t-SNE visualization on the test set of N-Cal.

can further facilitate the aggregation process.

Designs in the CRD. In Fig. 5, we introduce three inter-
mediate feature-level knowledge transfer designs, A, B, and
C, which all employ the contrastive loss to ensure consis-
tency between teacher and student features. Variant B, how-
ever, differs from A by adding task-specific loss to both stu-
dent and teacher branches. In contrast, C only applies the
task-specific loss to the teacher branch. Moreover, D in Tab.
7 replaces the contrastive loss in A with hard constraints
such as L1 loss (Romero et al. 2015) for feature distillation.

Tab. 7 shows that inference-level distillation outperforms
the EDGCN trained solely. Furthermore, A, B, and C vari-
ants boost EDGCN by supervising intermediate features,
with C being the best. This is due to Ltask on intermedi-
ate features, which makes the teacher represent events more
comprehensively and provide better guidance to the student.
Surprisingly, B is worse than C with extra task loss for the
student, potentially due to the limited power of intermedi-
ate features for reliable prediction. Furthermore, variant D
degrades the entire learning framework, likely because of
different learning logic of two models. This supports our
choice of contrastive loss for frame-to-graph distillation, as
different feature dimensions may have different semantics
and hard constraints are not good for feature consistency.

Visualization for Feature Representation. We further il-
lustrate t-SNE of features on the N-Cal dataset in Fig. 6.
The EDGCN w/o CRD shows weakness in achieving ex-
plicit decision boundaries among some challenging classes
such as car side and ferry due to their similar appearances
(Fig. 6.(B)). This limitation of EDGCN can be mitigated by
CRD, where more discriminative features are obtained (Fig.
6.(A)), indicating the efficacy of CRD in boosting the repre-
sentation ability of EDGCN.

Conclusion
We propose a novel event-based GCN (EDGCN) for defin-
ing each event-based vertex’s neighborhood considering all
its attributes and dynamically updates vertex attributes layer-
by-layer. We also introduce a cross-representation distilla-
tion framework (CRD) for point-based methods that lever-
ages large-scale prior from frame-based models to facilitate
EDGCN training. Comprehensive experiments on various
vision tasks validate the efficacy of our EDGCN and CRD.
Since CRD has potential for migrating to other point-based
methods, we argue that this learning strategy may open new
research avenues for event-based model learning.
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P.; and Bengio, Y. 2018. Graph Attention Networks. In
International Conference on Learning Representations.
Wang, L.; Huang, Y.; Hou, Y.; Zhang, S.; and Shan, J. 2019a.
Graph Attention Convolution for Point Cloud Semantic Seg-
mentation. In 2019 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 10288–10297.
Wang, Q.; Zhang, Y.; Yuan, J.; and Lu, Y. 2019b. Space-
Time Event Clouds for Gesture Recognition: From RGB
Cameras to Event Cameras. In IEEE Winter Conf. on Appl.
of Comput. Vis., 1826–1835.
Wu, Z.; Zhang, H.; Lin, Y.; Li, G.; Wang, M.; and Tang,
Y. 2022. LIAF-Net: Leaky Integrate and Analog Fire Net-
work for Lightweight and Efficient Spatiotemporal Informa-
tion Processing. IEEE Transactions on Neural Networks and
Learning Systems, 33(11): 6249–6262.
Xie, B.; Deng, Y.; Shao, Z.; Liu, H.; and Li, Y. 2022.
VMV-GCN: Volumetric Multi-View Based Graph CNN for
Event Stream Classification. IEEE Robot. Autom. Lett., 7(2):
1976–1983.
Yao, M.; Gao, H.; Zhao, G.; Wang, D.; Lin, Y.; Yang, Z.;
and Li, G. 2021. Temporal-wise attention spiking neural net-
works for event streams classification. In Int. Conf. Comput.
Vis., 10221–10230.
Zhu, L.; Wang, X.; Chang, Y.; Li, J.; Huang, T.; and Tian,
Y. 2022. Event-Based Video Reconstruction via Potential-
Assisted Spiking Neural Network. In IEEE Conf. Comput.
Vis. Pattern Recog., 3594–3604.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

1500


