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Abstract

Recent unsupervised anomaly detection methods often rely
on feature extractors pretrained with auxiliary datasets or on
well-crafted anomaly-simulated samples. However, this might
limit their adaptability to an increasing set of anomaly de-
tection tasks due to the priors in the selection of auxiliary
datasets or the strategy of anomaly simulation. To tackle this
challenge, we first introduce a prior-less anomaly generation
paradigm and subsequently develop an innovative unsuper-
vised anomaly detection framework named GRAD, grounded
in this paradigm. GRAD comprises three essential compo-
nents: (1) a diffusion model (PatchDiff) to generate contrastive
patterns by preserving the local structures while disregarding
the global structures present in normal images, (2) a self-
supervised reweighting mechanism to handle the challenge
of long-tailed and unlabeled contrastive patterns generated
by PatchDiff, and (3) a lightweight patch-level detector to
efficiently distinguish the normal patterns and reweighted con-
trastive patterns. The generation results of PatchDiff effec-
tively expose various types of anomaly patterns, e.g. structural
and logical anomaly patterns. In addition, extensive experi-
ments on both MVTec AD and MVTec LOCO datasets also
support the aforementioned observation and demonstrate that
GRAD achieves competitive anomaly detection accuracy and
superior inference speed.

Introduction
Image anomaly detection plays a crucial role in various fields,
including industrial product defect detection, medical image
lesion detection, security screening using X-ray images, and
video surveillance (Zheng et al. 2018; Bergmann et al. 2019;
Sato et al. 2018; Kiran, Thomas, and Parakkal 2018; Akcay,
Atapour-Abarghouei, and Breckon 2018). However, securing
real-world anomalous data for training is typically challeng-
ing and scarce due to the inability to cover a sufficiently
diverse range of potential anomaly patterns. Consequently,
the setting of one-class learning, which employs only normal
samples for model training, has proven to be better suited
for most industrial anomaly detection tasks (Bergmann et al.
2019, 2022). In recent years, many high-accuracy industrial
anomaly detection methods heavily rely on ImageNet (Deng
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Figure 1: Anomaly detection performance vs. latency per
image on an NVIDIA Tesla V100 GPU. Each bubble’s area
is proportional to the number of parameters in each detector,
and each AU-ROC value is an average of the image-level
detection AU-ROC values on MVTec LOCO (Bergmann
et al. 2022).

et al. 2009) pretrained feature extractor. Nevertheless, such
reliance may limit their generalization capabilities in sce-
narios (Bergmann et al. 2022) where ImageNet pretrained
features are insufficiently informative, or on other types of
image-like data (Bergmann et al. 2021; Horwitz and Hoshen
2023). Additionally, some methods have achieved promis-
ing results on the MVTec AD (Bergmann et al. 2019) with-
out using pretrained feature extractors. These methods uti-
lize manually-selected external out-of-distribution (OOD)
datasets (Liznerski et al. 2021) or carefully designed anomaly-
simulated data to sample anomaly patterns (Li et al. 2021;
Zavrtanik, Kristan, and Skočaj 2021; Yang et al. 2023). How-
ever, previous anomaly acquisition strategies can be con-
sidered as ad-hoc solutions that overly rely on priors or
visual inspection of test images, such as in MVTec AD,
where most anomalies are low-level structure anomalies
(e.g., scratches, dents, and contaminations). Such reliance
may cause these strategies to fail in detecting other types of
anomalies, such as logical anomalies recently proposed in the
MVTec LOCO (Bergmann et al. 2022). These logical anoma-
lies are represented as violations of logical constraints in
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images, which not only challenges the ananomaly simulation-
based methods but also the pretrained representations by
auxiliary datasets. Therefore, it becomes necessary to devise
image anomaly detection techniques that are independent
of both pretrained Imagenet feature extractors and ad-hoc
anomaly acquisition strategies.

In this paper, we introduce a novel framework named
GRAD (Generating and Reweighting dense contrastive pat-
terns for unsupervised Anomaly Detection), which achieves
SOTA performance in both anomaly detection accuracy and
inference runtime, as depicted in Fig. 1. We first put forward
a novel anomaly generation paradigm: retaining the struc-
ture information within each small patch of the image while
disregarding the global structure information of the whole
image. Based on this paradigm, we design an anomaly gen-
erator called PatchDiff. This generator enforces a constraint
on the receptive field size of the diffusion model (Ho, Jain,
and Abbeel 2020) and removes the attention layers (Dong,
Cordonnier, and Loukas 2021), thus ensuring that only the
local structure within each patch is retained, while the global
structure is discarded. As illustrated in Fig. 2, with different
sizes of the receptive field, PatchDiff can generate diverse
dense contrastive patterns that cover a range of anomaly types,
e.g., the structural and logical anomalies proposed in MVTec
LOCO. Subsequently, we expect to utilize the generated lo-
cal anomaly patterns to learn a patch-level anomaly detector.
However, the contrastive patterns generated by PatchDiff may
also be normal and we cannot provide patch-wise ground
truth for them. Consequently, the generated contrastive pat-
terns are unlabeled. Furthermore, the local patterns in both
normal and generated data could often be long-tailed. Consid-
ering the previous two points, we introduce a self-supervised
reweighting mechanism to mitigate the negative impacts of
fake anomalous patches (patches without effective anomaly
patterns) and imbalanced distribution. The mechanism uti-
lizes density information of the features extracted by the de-
tector during the training phase to assign different weights to
the contrastive patches. It filters the fake anomalous patches
and rebalances the distribution of the contrastive patches. Fi-
nally, to obtain high-throughput anomaly detection models
better applied in practical industrial scenarios, we design a
lightweight Fully Convolutional Network (FCN)-based patch-
level detector with a pure encoder architecture. It consists of
only 8 convolutional layers but performs on par with larger
models in industrial anomaly detection. Furthermore, to deal
with tasks that involve mixed-level anomalies, we can also
integrate multiple detectors with different receptive fields.
We empirically find that a single-level detector is enough to
achieve competitive accuracy on MVTec AD dataset, while
three detectors can be integrated to handle both structural and
logical anomalies in MVTec LOCO.

The main contributions of this paper can be summarized
as follows:

• We propose a novel paradigm for generating anomaly pat-
terns without scenario-specific priors. Based on this, we
develop PatchDiff which can effectively expose a range
of local anomaly patterns.

• We introduce a self-supervised reweighting mechanism

171395normal

Structural Anomaly Logical Anomaly

Figure 2: Anomaly contrastive images generated by our
PatchDiff on MVTec LOCO. The number n above the im-
ages indicates that this column is generated based on the
corresponding n× n receptive field size. We show that em-
ploying varying sizes of limited receptive fields effectively
enables the PatchDiff to expose anomalies at different lev-
els: generators with smaller sizes tend to expose structural
anomalies, while generators with larger sizes tend to expose
logical anomalies.

for the generated contrastive data to rebalance them and
filter out the fake anomalous patches. This mechanism
enables we can efficiently use the unlabeled and long-
tailed contrastive patterns for anomaly detection.

• We design a lightweight encoder-based patch-level de-
tector trained with only the normal data and generated
contrastive data, which relies on no external dataset, heavy
pretrained backbone, or memory-consuming decoder ar-
chitecture.

Related Works
Reconstruction-based. A well-trained autoencoder (AE) on
normal data is supposed to produce lower reconstruction
errors on the normal data than the anomalous data (Baur
et al. 2018; Andrews, Morton, and Griffin 2016; An and
Cho 2015). However, in practice, it may also reconstruct
anomalies very well or even better (Pidhorskyi, Almohsen,
and Doretto 2018). To alleviate this problem, recent works
developed many advanced variants of AE by using generative
priors or novel architectures (Perera et al. 2019; Gong et al.
2019; Hou et al. 2021; Zavrtanik, Kristan, and Skoaj 2021;
Pirnay and Chai 2022; Ristea et al. 2022; You et al. 2022).
Pretrained feature-based. State-of-the-art methods for in-
dustrial anomaly detection tend to use features of a deep
network pretrained on external datasets (e.g., ImageNet).
These methods (Defard et al. 2020; Rudolph, Wandt, and
Rosenhahn 2021; Gudovskiy, Ishizaka, and Kozuka 2022;
Roth et al. 2022; Hyun et al. 2023; Zhang et al. 2023) effec-
tively utilize the general low-level visual features encoded
by the pretrained network to do the anomaly detection and
achieve appealing performance on MVTec AD (Bergmann
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Figure 3: An illustration of the proposed anomaly generator, PatchDiff. Compared with usual Diffusion models, PatchDiff limits
the receptive field of the U-Net used to denoise, which preserves only the local structures rather than the global structures.
PatchDiff can effectively produce higher-level novel visual structures coming from the recombinations of specific-level local
structures. We can use PatchDiffs with various receptive filed sizes to generate multilevel dense contrastive patterns, which are
useful for exposing the multilevel anomalies like the structure anomaly and the logical anomaly in MVTec LOCO.

et al. 2019). However, they are hard to directly apply in other
image-like domains (e.g. the depth map) (Bergmann et al.
2021; Horwitz and Hoshen 2023) or to cover the higher-level
anomaly type, logical anomalies (Bergmann et al. 2022).
Anomaly simulation-based. To overcome the limitations of
pre-trained features and ensure that the model produces well-
defined and expected results outside the normal distribution,
several anomaly simulation methods (Liznerski et al. 2021;
Li et al. 2021; Zavrtanik, Kristan, and Skočaj 2021; Yang et al.
2023) are proposed. They employ various ad-hoc strategies
to simulate specific types of anomaly patterns tailored to
different datasets. Most of them heavily rely on human priors
and can only expose specific anomaly patterns, making them
also challenging to generalize to different scenarios.

Approaches
Our method can be primarily divided into two stages: (1)
Generating diverse contrastive images based on our novel
proposed anomaly generation paradigm to cover the anomaly
patterns at interest levels. (2) Training lightweight patch-level
detectors with our proposed reweighting mechanism to fully
utilize the unlabeled and long-tailed generated contrastive
patterns. In the following, we will describe the key parts of
GRAD in detail.

Generating Anomaly Contrastive Images
In contrast to previous ad-hoc anomaly acquisition strate-
gies (Li et al. 2021; Zavrtanik, Kristan, and Skočaj 2021;
Yang et al. 2023), we introduce a novel and prior-less anomaly
generation paradigm: preserving the structure information
within each small image patch while disregarding the global
structure information of the entire image. To implement this,
we propose a diffusion model (Ho, Jain, and Abbeel 2020)
based generator called PatchDiff. As shown in Fig. 3, the
diffusion and denoise process is very similar to DDPM, the
differences mainly come from the U-Net architecture in the
following aspects:

(1) To prevent the U-Net from utilizing long-range infor-
mation for recovering global structures during denoising, we
deliberately remove self-attention used in DDPM (Ho, Jain,
and Abbeel 2020). Self-attention is a powerful tool for cap-
turing long-range contextual information, but for our specific
task, it is unnecessary (Dong, Cordonnier, and Loukas 2021),
since local consistency is all we need.

(2) To further ensure that the U-Net focuses on recovering
the local patterns within the corresponding patches during
denoising, we directly reduce the depth of both the encoder
and decoder of the U-Net. In this way, each latent neuron
of the bottleneck has a limited receptive field, and thus it
denoises using only the local content and retaining only local
structures.

(3) To enable the U-Net to effectively model position-
dependent cues, we incorporate a 2-channel coordinate map
as additional information alongside the input. This coordinate
map is a tensor with dimensions matching that of the input
image, where each element represents the coordinate of the
corresponding pixel. Noteworthy, the output of our U-Net
is still a 3-channel image as same as the original U-Net in
DDPM.

Then we modify the training loss of original Diffusion
models by introducing a global tiny noise ϵg during the noise
injection process. It is motivated by the observation that there
is a tendency for overall color deviation in the generated re-
sults. Consequently, to avoid the color deviation, the training
loss of PatchDiff at each denoising step t becomes

Eϵ1,ϵg

∥∥ϵ1 − ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ1 + ϵg, t

)∥∥2,
where ϵ1 ∼ N (0, I), ϵθ and ᾱt are the same as in DDPM. As
depicted in Fig. 2, the images generated by PatchDiff effec-
tively avoid the presence of low-level anomalous cues that
often occur in simulation strategies, easily noticeable edges
when tailoring two images together. Instead, PatchDiff fo-
cuses more on the slightly higher-level anomaly patterns. By
setting multiple receptive filed sizes to the U-Net, PatchDiff
can efficiently expose both structural and logical anomalies
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Figure 4: Schematic overview of two components during
training patch-level detectors. The left portion is the training
set which consists of one type of positive patch and two types
of negative patches. The right portion is the reweighting
mechanism which comprises mechanism (a) to filter the fake
anomaly patterns and mechanism (b) to rebalance the long-
tailed training data.

in MVTec LOCO. This enables PatchDiff to produce more
comprehensive local abnormalities without using any prior
knowledge of test anomalies. Additionally, the reduction in
the depth of architecture and the removal of attention layers
contribute to a decrease in the model’s complexity and calcu-
lation cost, leading to improved training and sampling speed.
Furthermore, it is worth noting that the training process of
PatchDiff uses only fitting loss like DDPM(Ho, Jain, and
Abbeel 2020), which is very stable and easy to implement.
In summary, PatchDiff is a prior-less, easy-to-implemented,
relatively-fast multilevel local anomaly pattern generation
method.

Training Patch-level Detector
A naive idea to utilize the contrastive images generated by
PatchDiff is directly labeling them as the anomalous class
and training image-level detectors. But it does not fully ex-
ploit the dense and local anomaly patterns nor provide use-
ful anomaly scores for localization. Instead, we opt to train
patch-level anomaly detectors that detect level-specific local
anomalies by patch-wisely classifying the normal images and
contrastive images. Our patch-level detector is implemented
with an 8-layer Fully Convolutional Network, FCN (Long,
Shelhamer, and Darrell 2015), in a pure encoder way. At the
training stage, the detector takes input patches of a fixed size,
precisely 34 × 34 pixels, and produces an output anomaly
score corresponding to each individual patch. To address
local anomalies of multiple concerned levels (e.g., both struc-
tural and logical anomalies in MVTec LOCO), we choose
to maintain the detector architecture but resize the original
images into lower resolutions, which indirectly achieves the
adjustment of the receptive field sizes. This approach enables
us to train additional detectors capable of capturing higher-
level anomaly patterns without redesigning the detector’s
architecture and further reduces the computational cost. In
the following, we will introduce how to train the patch-level
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Figure 5: The reweighted map to show the effects of reweight-
ing mechanism. (a) and (b) respectively displays the origin
images and the generated contrastive images. (c) and (d) re-
spectively depicts the effects when filtering fake anomaly pat-
terns and rebalancing long-tailed training data. Our reweight-
ing mechanism learns to identify patterns to be disregarded,
indicated by the blue regions, and patterns to be emphasized,
represented by the red regions, through a self-supervised ap-
proach

detector.

Preparing the Training set Similar to the input during
the generation phase, we use a 2-channel coordinate map
F as an additional input. As illustrated in the left portion of
Fig. 4, we prepare three types of 5-channel patches as training
inputs, including one type of positive patch and two types of
negative patches. Let I denote an image data, and I+ and I−

represent sets of normal samples and generated samples from
PatchDiff, respectively. Subsequently, the positive patches
set C+ and negative patches set C− are defined as

C+ =
{
c | c = RandCrop(I ⊕ F ), I ∈ I+

}
,

C− =
{
c | c = RandCrop(I)⊕ RandCrop(F ), I ∈ I+

}
∪
{
c | c = RandCrop(I ⊕ F ), I ∈ I−} ,

where ⊕ denotes concatenation along the channel axis. The
negative patches are constructed in two ways: (1) the patches
from generated samples along with their corresponding coor-
dinate maps, and (2) the patches from normal samples with
incorrect coordinate maps. Specifically, the patches from the
latter way are believed to provide examples that break the de-
pendence between patch content and position. This explicitly
enhances the detector’s utilization of the auxiliary informa-
tion from the coordinate maps and improves its ability to
capture position-aware cues.

Reweighting the Contrastive Patches There are two po-
tential challenges during training the patch-level detector D:
(1) The images generated by PatchDiff are pixel-unlabeled,
leading to the presence of fake anomaly patterns (e.g. the
background region in the generated images) among the nega-
tive patches, which will mislead the detector. (2) Some impor-
tant anomaly patterns may appear more rarely and lie in the
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low-density regions of the data manifold, causing the detec-
tor to overlook such patterns during the training process. To
mitigate these challenges, we propose a feature density-based
reweighting mechanism that incorporates two reweighting
strategies, as shown in the right part of Fig. 4. This mecha-
nism relies on the feature distributions extracted from the last
latent layer of our patch-level detector on both positive and
negative samples. Let us denote M+ and M− as the feature
sets of positive and negative samples, respectively. Then the
two reweighting strategies can be performed as follows:

(1) Filtering the fake anomaly patterns. As depicted in
Fig. 4(a), we introduce a reweighting factor wnoisy-

i for each
given negative patch c−i , to assign smaller weights to the
patches whose features are too close to or even within normal
features set M+. The reweighting factor can be formulated
as

wnoisy-
i =

1∑
z∈M+ exp(βdensitysim(z, z−

i ))
, (1)

where z−
i is the feature vector of the negative patch c−i ,

sim(z, z′) := z · z′/∥z∥∥z′∥ is the density kernel based on
the cosine similarity and βdensity > 0 is a hyper-parameter for
controlling kernel bandwidth.

(2) Rebalancing the long-tailed training patches. As de-
picted in Fig. 4(b), we introduce a reweighting factor wtail-

i

for each given negative patch c−i to downweight the patches
whose features are in the high-density regions. Empirically,
we find introducing a reweighting factor wtail+

j for each posi-
tive patch c+j is also helpful. Therefore we have the following
two additional reweighting factors for the training patches

wtail-
i =

1∑
z∈M− exp(βdensitysim(z, z−

i ))
,

wtail+
j =

1∑
z∈M+ exp(βdensitysim(z, z+

j ))
.

(2)

The effects of our reweighting mechanism are shown in
Fig 5. By incorporating these two kinds of reweighting fac-
tors, our reweighted binary classification loss LRBCE can be
formulated as

LRBCE = − 1

λ+

|C+|∑
j=1

wtail+
j log(1− f(c+j ))

− 1

λ−

|C−|∑
i=1

wtail-
i wnoisy-

i log(f(c−i )),

(3)

where λ+ and λ− are the normalization constants to keep the
total weights of each class equal to 1:

λ+ =

|C+|∑
j=1

wtail+
j , λ− =

|C−|∑
i=1

wtail-
i wnoisy-

i . (4)

In practice, the M+ and M− are both implemented with
a memory bank that store the features of previous training
steps in a queue.

Regularization on Features and Gradients We further uti-
lize a classical unsupervised representation learning method
named denoising autoencoder (Vincent et al. 2008) to reg-
ularize the learned feature by detector D. To achieve that,
we introduce a simple MLP-based network R that recovers
the original input patches from the feature vectors extracted
from the last latent layer of D. Let fZ denote the function
extracting features from input patches, fR denote the func-
tion recovering input patches from features, and C denote
the collection of all training patches C+∪C−. The feature
regularization loss can be formulated as

Lfeat =
1

|C|
∑
c∈C

∥fR(fZ(c+ ϵc) + ϵz)− c∥2 , (5)

where ϵc and ϵz are respectively the noise perturbations
added to the feature layer and the input layer. The auxiliary
denoising task regularizes the last hidden layer of the detector
to extract informative and robust representations. We high-
light the auxiliary network R will be dropped in the inference
stage so that will not increase the inference runtime.

Additionally, we propose a gradient regularization loss
to smooth the learned decision function f , which further
discourages the detector from learning imperceptible distinc-
tions between normal patterns and fake anomaly patterns.
The gradient regularization loss can be formulated as

Lgrad =
1

|C+|
∑
c∈C+

∥∇cf(c)∥2 . (6)

It penalizes the gradient norms of the decision scores with
respect to the input data, which is often used to improve the
Lipschitz smoothness and robustness, and thus the general-
ization performance of decision functions (Dai et al. 2023;
Arjovsky and Bottou 2017; Ross and Doshi-Velez 2018).

The Overall Training Loss We calculate the overall train-
ing loss for the patch-level anomaly detector by aggregating
the aforementioned three types of losses as

L = LRBCE + α1Lfeat + α2Lgrad, (7)

where α1 and α2 are hyper-parameters to adjust the impact
of Lfeat and Lgrad.

Experiments
In this section, we first briefly introduce the experimental
details (See Appendix for more details). Then we report the
anomaly detection accuracies and the ablation study on each
component.

Dataset
To validate the effectiveness and generalizability of
our approach, we perform experiments on both MVTec
AD (Bergmann et al. 2019) and MVTec LOCO (Bergmann
et al. 2022). There are 15 sub-datasets in MVTec AD and 5
sub-datasets in MVTec LOCO and each sub-dataset presents
a diverse set of anomalies. Particularly, the training sets
among them contain only normal images, while the test sets
contain both normal and various types of industrial defects.
Pixel-level annotations are provided in the test set.
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Category SPADE
(2020)

PaDiM
(2020)

S-T
(2020)

PatchCore
(2022)

GCAD
(2022)

DADF
(2023)

SINBAD
(2023)

GRAD
(Ours)

breakfast box 78.2 65.7 68.6 81.3 83.9 75.3 92.0 81.2
juice bottle 88.3 88.9 91.0 95.6 99.4 98.6 94.9 97.6
pushpins 59.3 61.2 74.9 72.3 86.2 81.0 78.8 99.7
screw bag 53.2 60.9 71.2 64.9 63.2 77.3 85.4 76.6

splicing connectors 65.4 67.8 81.1 82.4 83.9 86.4 92.0 85.4

average 68.8 68.9 77.3 79.3 83.3 83.7 86.8 87.5

Table 1: Image-level AU-ROC performance for anomaly detection of different methods on MVTec LOCO (Bergmann et al.
2022). The best results are in bold.

Figure 6: Defect localization results of GRAD on MVTec LOCO (Bergmann et al. 2022).

Training Settings
We simply define level-n PatchDiff as the PatchDiff with a
receptive field of n×n pixels, and the images generated by it
belong to level-n. Similarly, we define level-n detector as the
patch-level detector with an indirect receptive field of n× n
pixels.
PatchDiff. For each sub-dataset in MVTec AD, we train 3
levels of PatchDiffs (level-5, 9, 13). For each sub-dataset
in MVTec LOCO, we need to train 3 different levels of de-
tectors, and consequently, we train 4 levels of PatchDiffs
(level-5, 9, 13, 17). In particular, 2 of them use level-5, 9,
and 13 PatchDiffs and another one uses level-9, 13, and 17
PatchDiffs. For all PatchDiffs, we generally train them for
a total of 10,000 training steps. For each sub-dataset, we
sample 1,000 images for each level-n.
Patch-level Detector. Each sub-dataset in MVTec AD and
MVTec LOCO contains limited training images. To train
competitive detectors from scratch for each small sub-dataset,
we adopt general data augmentations on both normal and
generated images like previous works(Bergmann et al. 2019,
2022). For level-34, 68, and 136 detectors, the images are
respectively resized into 256× 256, 128× 128, and 64× 64.
We train the detector on batches of size 128 × (k + 2) for
2,000 epochs and report the accuracy of the final epoch. Each
batch contains 128 randomly cropped positive patches from
4 normal images and 128 × (k + 1) negative patches from

4 normal images and 4k contrastive images, where k equals
the number of levels of used generated contrastive images.
Specifically, we use k = 3 for all experiments as mentioned
before.

Evaluation Settings
The image-level anomaly score directly takes the max value
of a score map from the patch-based anomaly detector, and
the pixel-level detection result is obtained by up-sampling the
score map and then applying a Gaussian blur with a kernel
size of 16. Consistent with existing methods (Bergmann et al.
2019, 2022), we use AU-ROC as the evaluation metric for the
evaluation of image-level anomaly detection and pixel-level
anomaly localization.

Main Results
The anomaly detection results. We compare GRAD with
different methods on MVTec LOCO and MVTec AD, as
shown in Table 2. For both datasets, GRAD has the best
average image-level AU-ROC score, demonstrating the ef-
fectiveness of GRAD in anomaly detection. In table 1, it is
important to note that the fairness of the comparison might
be compromised to some extent, as all the compared meth-
ods utilize ImageNet pretrained feature extractors. However,
GRAD still achieves superior performance by 0.7% even
without such advantages, which shows that ImageNet pre-
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Method Pixel-level
AU-ROC

Image-level
AU-ROC

IGD (2022) 93.1 93.4
PSVDD (2020) 92.5 93.2
FCDD (2021) 92.1 95.7
CutPaste (2021) 95.2 96.0
NSA (2022) 96.3 97.2
DRAEM (2021) 97.3 98.0
DSR (2022) - 98.2
GRAD (Ours) 96.8 98.7

Table 2: Anomaly detection performance on MVTec AD
dataset (Bergmann et al. 2019). The best results are in bold.

Method latency (ms↓) FPS↑
S-T (2020) 82.2 12.2
FastFlow (2021) 26.1 38.3
DSR (2022) 24.8 40.3
GCAD (2022) 12.9 77.5
PatchCore (2022) 47.1 21.2
GRAD (Ours) 0.799 1251.6

Table 3: Inference speed on NVIDIA Tesla V100. The data
of our method is obtained on MVTec LOCO dataset with
three patch-level detectors (patch size: 34, input size: 256,
128, and 64).

trained features inadequately address the intricacies of logical
anomaly detection within MVTec LOCO, and further demon-
strates that our contrastive images generated by PatchDiff
do expose both structural and logical anomalies effectively.
In particular, GRAD achieves excellent results (+13.5%) on
the sub-dataset of pushpins, which exactly fits our observa-
tion that the generated images for pushpins perfectly expose
several abnormal logical situations in the testing set, e.g.,
the additional pushpin in the top left compartment and no
pushpins in the top right compartment, as shown in level-17
generated pushpin image of Fig. 2. In addition, we show
the defect localization results in Fig. 6. In table 2, all the
methods we compared do not rely on pretrained features and
external data. Although GRAD does not achieve the best
result for anomaly localization (pixel-level AUROC), it is
still competitive among them.
Inference runtimes. We compare with different methods and
report the inference latency and FPS in Table 3. Obviously,
GRAD achieves a remarkable throughput performance due to
its extremely lightweight architecture, and thereby, GRAD’s
inference speed is more than 16 times faster than GCAD’s.

Ablation Study
We first perform an extensive ablation study to validate the ef-
fectiveness of two reweighting factors and the regularization
technique on MVTec LOCO. The results are shown in Ta-
ble 4. More details and comprehensive ablation results can be
found in Appendix. We utilize the baseline as the beginning
and then add regularization, noisy reweighting and long-tail
reweighting one by one.

Effects of regularization techniques. One of the novel
contributions presented in this paper is the regularization on

AUROC
Level-34 Level-68 Level-136

baseline† 78.2 77.8 64.3
+ Regularization 81.6 80.9 65.2
+ Noisy Reweighting 82.5 82.5 72.1
+ Long-tail Reweighting 85.2 85.4 75.1

Table 4: Ablation study on components. Detection AUROC
results on MVTec LOCO dataset of three patch-level detec-
tors are presented. †The baseline setting uses no regulariza-
tion techniques and reweighting strategies.

features and gradients, which helps our encoder-based detec-
tor extract an informative and robust representation and build
a smooth decision boundary for the data manifold. As demon-
strated in Table 4, the integration of these techniques trans-
lates into improvements of +3.4/+3.1/+0.9 on the MVTec
LOCO dataset.

The effect of reweighting mechanism. Our reweight-
ing mechanism comprises two essential components: (1)
noisy reweighting, which aims to filter fake anomaly patches,
and (2) long-tail reweighting, designed to rectify the im-
balanced distribution of input data. When integrating the
noisy reweighting, our detectors display enhancements of
+0.9/+1.6/+6.9 on the MVTec LOCO dataset, as presented
in Table 4. Furthermore, with the incorporation of long-
tail reweighting, our detectors achieve improvements of
+2.7/+2.9/+3.0, as shown in the same table. These outcomes
underscore the disruptive influence of fake anomaly patches
and the presence of long-tail distributions on detector perfor-
mance. It is evident that our reweighting mechanism adeptly
mitigates these challenges from both fronts, offering substan-
tial advantages to our detectors.

Particularly, in Table 4, Level-136 detectors exhibit rel-
atively poorer performance in anomaly detection. This re-
sult can be attributed to their input size, which is merely
64× 64, resulting in insufficient resolution to offer informa-
tive structural anomaly details. However, this is in line with
our intentions, as the purpose of Level-136 detectors is not
to emphasize minute details, but rather to capture the logical
relationships among components within the receptive fields
of size 136× 136.

Conclusion

In this paper, we propose a novel unsupervised anomaly
detection framework, GRAD, by generating and reweight-
ing dense contrastive patterns. The proposed generation
method PatchDiff is able to generate multilevel contrastive
patterns which exposes a range of local anomaly patterns. The
proposed reweighting strategies fully utilize the unlabeled
and long-tailed contrastive patterns and help the patch-level
anomaly detector better learn the exposed local anomaly
patterns. GRAD requires no scenario-specific prior, exter-
nal datasets, or heavy pretrained feature extractor. It achieves
competitive anomaly detection and localization accuracy with
a superior inference speed.
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