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Abstract

Remote physiology, which involves monitoring vital signs
without the need for physical contact, has great potential for
various applications. Current remote physiology methods rely
only on a single camera or radio frequency (RF) sensor to
capture the microscopic signatures from vital movements.
However, our study shows that fusing deep RGB and RF
features from both sensor streams can further improve per-
formance. Because these multimodal features are defined in
distinct dimensions and have varying contextual importance,
the main challenge in the fusion process lies in the effective
alignment of them and adaptive integration of features under
dynamic scenarios. To address this challenge, we propose a
novel vital sensing model, named Fusion-Vital, that combines
the RGB and RF modalities through the new introduction of
pairwise input formats and transformer-based fusion strate-
gies. We also perform comprehensive experiments based on a
newly collected and released remote vital dataset comprising
synchronized video-RF sensors, showing the superiority of
the fusion approach over the previous single-sensor baselines
in various aspects.

Introduction
Human physiological signs, such as respiration and cardio-
grams, are representative indicators that can directly reflect
one’s physical and mental conditions. For example, continu-
ous monitoring of human physiology enables an overall di-
agnosis of general health (Revanur et al. 2021) as well as
mental fatigue (e.g., sleep status (Zhao et al. 2017) or stress
level (Zhang et al. 2012; McDuff et al. 2016)). Traditionally,
cardiopulmonary measurements have relied on information
from contact sensors; however, their constraints for direct
interaction with the skin precipitate great inconvenience to
users, disturbing continuous monitoring in everyday life. To
alleviate this discomfort and achieve ubiquitous sensing, re-
cent approaches have focused on remote solutions that can
extract human vital signs without the need for physical con-
tact.

General non-contact physiology systems typically exploit
the remote photoplethysmography (rPPG) characteristics of
a camera: the RGB spectrum of the skin vibrates along with
the blood volume pulse (BVP), which directly involves the
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human vital signs (Wang, Kao, and Hsu 2019; Lu, Han, and
Zhou 2021). Despite its potentiality for capturing vital mo-
tion, the fundamental weaknesses of RGB-reflected physi-
ology, such as the great variability in surrounding illumi-
nation and vulnerability to dark settings, remain open chal-
lenges. Moreover, the algorithmic necessity for consistent
face tracking (Estepp, Blackford, and Meier 2014; Bobbia
et al. 2019; Revanur et al. 2021; Choi, Kang, and Kim 2022)
incurs degradation in global motion settings.

An effective solution involves the utilization of alterna-
tive sensory systems that maintain functional robustness to
the aforementioned issues. A representative alternative is a
radio frequency (RF) sensor that measures the radial depth
near the chest vibrating in response to the vital cycle of the
individual. Unlike video-based physiology, which relies on
the RGB pixel intensity as a core information source (Zheng
et al. 2020; Park et al. 2019), RF sensors infer radial depth
information through periodic transmission and reception of
electromagnetic signals, inherently mitigating the influence
of surrounding illumination. Nevertheless, RF sensors also
suffer from their own disadvantages, such as poor angular
resolution that makes them susceptible to lateral motions,
or the greater difficulty they pose for data acquisition com-
pared to cameras (Boyer 2011; Choi et al. 2020; Choi, Kim,
and Kim 2022). Consequently, most previous RF physiolog-
ical approaches have depended upon learning-free methods
and have been limited to controlled setups (Li and Lin 2018;
Mercuri et al. 2018, 2019; Obadi et al. 2022).

In this study, we aim to explore the potential for enhanc-
ing cardiopulmonary measurements through the multimodal
fusion of video and RF reflections. Our fundamental premise
is that the RGB and radio data can serve as complementary
information, particularly in terms of physiological monitor-
ing. Video and RF sensors capture human vital signs based
on disparate physical signatures (RGB intensity and radial
distance) that emanate from different body regions (facial
skin and upper front of the body), respectively. More im-
portantly, while cameras can maintain high resolution in
the lateral direction but lack depth information (Long et al.
2021b), RF sensors have a fine depth resolution but suffer
from poor lateral resolution (Fogle and Rigling 2012; Choi,
Kim, and Kim 2021), meaning that the strengths of each
sensor can compensate for the weaknesses of the other. To
fully exploit such complementarity between RGB and RF
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data, we present a novel model, called Fusion-Vital, which
combines video and RF reflections for advanced physiolog-
ical measurement. We first introduce new input modalities
for RGB and RF to project them in a shared time-difference
domain, wherein the minute physiological signature can ef-
fectively be captured while avoiding the interference from
global motions. They are subsequently fed into our end-
to-end network, comprising parallel encoding branches that
leverage two different pipelines matching the specific do-
main knowledge of each sensor. In addition, we introduce
a novel transformer-based multi-level fusion strategy that
aligns domain discrepancies while guaranteeing a comple-
mentary/adaptive fusion of both sensory branches.

To the best of our knowledge, this is the first attempt for
deep multimodal fusion of video and RF data to implement
advanced remote physiology. Given the lack of a video-RF
calibrated dataset for vital measurement, we created the first
video-RF rPPG dataset, which will be publicly available to
support future research. We validated the effectiveness of
the Fusion-Vital model for respiration and BVP estimation
tasks. The experimental results indicate that the proposed
method can predict both respiration and BVP more accu-
rately than current state-of-the-art approaches. Furthermore,
we demonstrate that the combination of RGB and RF modal-
ities brings great robustness in challenging scenarios, such
as darkness or occlusions.

Related Work
Video-Based Remote Physiology. Given that the re-
flectance spectrum of the human skin vibrates along with vi-
tal movements (Verkruysse, Othar Svaasand, and Stuart Nel-
son 2008), human physiology can remotely be reconstructed
using RGB sequences reflected from exposed skin, particu-
larly those from the facial area. However, such vital motions
are subtle and often contaminated by external factors, such
as global movements and illumination changes (Xu, Sun,
and Rohde 2014; Chen and McDuff 2018). Traditional ap-
proaches have relied upon signal decomposition methods,
such as principal component analysis (PCA) (Balakrish-
nan, Durand, and Guttag 2013) and independent component
analysis (ICA) (Poh, McDuff, and Picard 2010; Monkaresi,
Calvo, and Yan 2014), to restore the desired vital signals un-
der such a low signal-to-noise ratio (SNR) condition. With
the advent of deep learning, some approaches have exploited
its nonlinear modeling capability to train direct mappings
from RGB sequences to gold-standard signals (Chen and
McDuff 2018; Spetlik et al. 2018; Yu et al. 2019; Wang,
Kao, and Hsu 2019; Lu, Han, and Zhou 2021). More re-
cent techniques have introduced inverse attention (Nowara,
McDuff, and Veeraraghavan 2021) or temporal shift mod-
ules (Liu et al. 2020) to effectively suppress the interference
caused from head movements.
RF-Based Remote Physiology. RF sensor is characterized
by offering superior depth resolvability as well as Doppler
information (see supplementary materials for details), allow-
ing it to capture even microscopic oscillations modulated by
human physiology (Jiang et al. 2020; Zhang et al. 2022).
Since such depth vibration is most prominent in the vicin-
ity of the chest, RF-based approaches track vital movements

based primarily on sequential radial ranges detected around
the torso (Mercuri et al. 2019; Ha, Assana, and Adib 2020;
Choi et al. 2021). Given the difficulty in interpreting radio
signals and acquiring data, most RF physiology techniques
rely on learning-free frameworks, using signal decomposi-
tion methods such as frequency analysis (Li and Lin 2008;
Tu, Hwang, and Lin 2016), wavelet decomposition (Li and
Lin 2018; Mercuri et al. 2018, 2019), and fuzzy logic (Choi
et al. 2021). However, recent approaches have achieved im-
proved performance by leveraging the capability of learn-
ing schemes, triggering the use of deep learning in the area
of RF-based physiology. Ha et. al. (Ha, Assana, and Adib
2020) proposed an encoder-decoder architecture that recon-
structs vital signatures from raw RF phase reflections, and
Zheng et. al. (Zheng et al. 2021) adopted a variational infer-
ence approach. Furthermore, (Choi, Kang, and Kim 2022)
succeeded in extracting respiration from a moving person
by introducing a multi-task adversarial learning framework.
Unlike conventional techniques relying solely on a single
modality for vital estimation, this study explores advanced
physiological measurements by fusing RGB and RF data in
a complementary manner.
RGB-RF Fusion. To enhance robustness in dark or adverse
weather conditions (Qian et al. 2021), several studies have
investigated the fusion of RGB and RF modalities (Long
et al. 2021b,a; Bijelic et al. 2020; Nabati and Qi 2021;
Cheng, Xu, and Liu 2021; Hwang et al. 2022). Most of these
studies have focused on outdoor sensing applications, such
as autonomous driving (Nabati and Qi 2021; Cheng, Xu,
and Liu 2021; Dong et al. 2021; Hwang et al. 2022), where
RGB images and 2D RF bird-eye-view (BEV) images have
been spatially fused. Early fusion models were based on
object-level fusion, which coupled RGB and RF modalities
through the fusion of independent object-level outputs de-
tected from each modality, using statistical association algo-
rithms (Ji and Prokhorov 2008; Janda et al. 2013; Wang et al.
2016). With the emergence of deep learning, there has been
a recent surge in research on deep-level RGB-RF fusion.
Some works (Nabati and Qi 2021; Dong et al. 2021) have
proposed deep feature-level fusion of convolutional repre-
sentations encoded from RGB and RF BEV images for ad-
vanced object detection in autonomous vehicles. Cheng et.
al. (Cheng, Xu, and Liu 2021) developed an attention-based
camera-radar fusion architecture for small object detection,
whereas Long et. al. expanded the RGB-RF fusion scheme
to pixel-wise depth (Long et al. 2021b) or velocity (Long
et al. 2021a) completion tasks. However, previous methods
have mainly focused on the spatial fusion of RGB and RF
data. In contrast, our module is designed specifically towards
the temporal fusion of RGB and RF, along with newly pro-
posed temporal input formats.

Methodology
Preliminaries
Reflection Model in RGB Modality. In this section, we
present a mathematical model for RGB spatiotemporal vari-
ations induced from human physiology (Wang et al. 2017;
Chen and McDuff 2018). Let the RGB intensity of the m-th
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image pixel at time t be defined as

C(RGB)
m (t) = I(t) (vd(t) + vs(t)) + n(RGB)(t), (1)

where I(t) denotes the luminance level, vd(t) and vs(t) the
diffuse and specular reflections, respectively, and n(RGB)(t)
the quantization noise. I(t), vd(t), and vs(t) can further be
decomposed into static and time-varying components as

I(t) = I0 (1 + Φ (g(t), p(t))) , (2)
vd(t) = d0ud + p(t)up, (3)

vs(t) = (s0 +Ψ(g(t), p(t)))us, (4)

where I0, d0, and s0 are the stationary components of the
luminance intensity, diffuse reflection, and specular reflec-
tion, respectively; Φ (g(t), p(t)) and Ψ(g(t), p(t)) refer to
the time-dependent components nonlinearly modulated both
by non-physiological variations (e.g., facial expressions or
global movements) g(t) and desired vital source p(t). ud

and us are the unit color vectors for the skin tissue and
light source spectrum, respectively, and up is the relative
pulsatile change induced by hemoglobin and melanin ab-
sorption. Since the products of time-varying terms are much
smaller than the static components (Chen and McDuff 2018;
Liu et al. 2020), Eq. (1) can be simplified by disregarding
such terms:

C(RGB)
m (t) ≈ c0I0uc + c0I0Φ (g(t), p(t))uc+

I0Ψ(g(t), p(t))us + I0p(t)up + n(RGB)(t). (5)

where c0uc = s0us + d0ud with uc representing the unit
color vector for skin reflection.
Reflection Model in RF Modality. Unlike cameras, which
involve reflected RGB light, RF sensors emit a periodic elec-
tromagnetic signal that bounces off the human body and
returns back to spatially-separated receiver channels. After
pre-processing, the channel-wise RF reflection C(RF)(t) is
expressed as follows (see supplementary for details):

C(RF)(t) = α(t) exp (jθ(t)) + n(RF)(t). (6)

The amplitude α(t) and phase θ(t) components of the signal
are further decomposed into

α(t) ≈

√
PTxGσλ2

(4π)
3
(Θ (g(t), p(t)))

4 , (7)

θ(t) =
4π

λ
Θ (g(t), p(t)) , (8)

where PTx, G, σ, and λ, all of which are approximately
static over time, denote the radio transmission power, an-
tenna gain, electromagnetic reflectivity of the human body,
and signal wavelength, respectively. Note that the non-
physiological fluctuations g(t) and the desired vital motions
p(t) are also involved in the RF magnitude and phase, which
are modulated by the radial projection function Θ {·} (Li
and Stoica 2008).

Motivation
Our Fusion-Vital network is motivated by the distinctive
domain properties of the RGB and RF modalities, where

the physiological signal of interest, p(t), is shared in the
same time domain but is involved through different media
(light and electromagnetic waves), with different informa-
tion sources (RGB intensity and radial range). Moreover,
since the camera projects the surrounding reflections onto
a 2D plane that is perpendicular to the RF LoS dimension,
whereas the RF sensor captures signals along the LoS di-
mension itself, their fusion enables the multidimensional
analysis of human movements, leading to enhanced analy-
sis of p(t) in the presence of undesired g(t).

Fusion-Vital Model
Overview. Fig. 1 illustrates the overall pipeline of the pro-
posed Fusion-Vital model. The model firstly projects raw
RGB and RF reflections into a shared time-difference do-
main. Subsequently, a two-branch parallel architecture cou-
pled with multi-level feature fusion modules is adopted to
effectively utilize the complementary signatures of the RGB
and RF modalities. One branch encodes the RGB modality,
which is further split into two sub-branches for facial and
motional modeling, respectively. The other branch is respon-
sible for electromagnetic extraction from the RF modality.
The physiological sequences are finally reconstructed based
on the adaptive temporal fusion of the multimodal represen-
tations.
Time-Difference Alignment of RGB-RF. For successful
extraction of micro-scale p(t) from the input in the pres-
ence of contamination from g(t), an effective solution is
to process the input to involve the time-difference do-
main of g(t) and p(t) (i.e., g′(t) and p′(t)) instead of di-
rect use of it (Chen and McDuff 2018). Namely, given
a video clip

{
C(RGB)(t), · · · ,C(RGB)(t+ T )

}
in the case

of RGB branch, we can generate the motional sequence
{M(t), · · · ,M(t+ T − 1)} ∈ RT×3×Hin×W in

in the
time-difference domain, where M(t) = (C(RGB)(t + 1) −
C(RGB)(t))/(C(RGB)(t+ 1) +C(RGB)(t)), and adopt it as a
basical RGB input. However, the problem lies in RF modal-
ity, where p(t) is intertwined in non-linear and ambigu-
ous manners within the raw RF reflections (see supplemen-
tary material), rendering it challenging to directly project
C(RF)(t) to associate the time-difference domain of g(t) and
p(t). This, in turn, yields temporal misalignment between
RGB and RF, as well as unstable vital tracking in RF branch.

As an effective solution for this, we focus on the Doppler
characteristics of RF signals (see supplementary for details):
the level of Doppler frequency shift in RF reflection can
serve as an alternative indicator linearly representing the
time-difference domain of g(t) and p(t). Specifically, un-
like the previous approaches, which tries to directly extract
p(t) from C(RF ) (t) using a series of heuristic and compli-
cated processes (Mercuri et al. 2019), we perform a short-
time Fourier transform (STFT) on α (t) and exp(jθ (t)) to
form pairwise time-frequency images Fα ∈ CNRx×T×F and
Fθ ∈ CNRx×T×F , where NRx is the number of receiver
channels. Note that this time-frequency modality follows
time-difference trajectory of each body part as 2D format,
maintaining superiority in the context of robustness from the
burden of non-linear estimation as well as time-difference
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Figure 1: Overall Fusion-Vital architecture. The input RGB and RF streams are first transformed into motional clips and RJTF
maps under the shared time-difference domain, which are then fed into parallelized video and RF encoders, respectively. During
training, our novel fusion transformer modules adaptively integrate the RGB and RF modalities to generate the final respiratory
or BVP signals.

domain alignment with RGB modality.
RGB Encoding. The holistic RGB branch of our Fusion-
Vital network follows the concept proposed in (Chen and
McDuff 2018), which involves parallel encoding of motional
and spatial features, as well as the bridge network based
on spatial soft attention. Given a time-difference video clip
{M(t), · · · ,M(t+ T − 1)} and the appearance image A,
where A is the average of the clip in the time domain, the
two types of RGB inputs are embedded in parallel using
quasi-symmetric convolutional pipelines.

For appearance modeling, our architecture employs gen-
eral 2D convolutional embedding. Unlike the appearance in-
put A, which incorporates only the spatial features of the
facial area, the motional time-difference sequence involves
both facial and temporal signatures. This property, in turn,
mandates that motional embedding considers spatiotempo-
ral 3D convolutions, which can substantially inflate the com-
putational overhead. Inspired by the encoding of motion rep-
resentations based on the temporal shift module (TSM) (Liu
et al. 2020; Lin et al. 2022), which allows spatiotemporal
modeling even without leveraging 3D operations, our RGB
motional branch leverages 2D convolutions combined with
TSMs. As illustrated in Fig. 1, the TSM is plugged in every
2D convolution, shifting the channel of its input tensor in the
time direction. Specifically, the tensors are subdivided into
three portions across the channel, two of which are shifted
by +1 or −1 frame along the temporal dimension, while the
rest remain unshifted. Additionally, in the case of pooling in
the motional branch, we adopt 3D pooling (in width, height,
and time) such that multi-level temporal resolution can be
contemplated in vital estimation.

A soft-attention module is adopted as a bridge between
the appearance and time-difference branches. The soft-
attention mask, formed from the appearance domain, attends
to the physiology-related pixels (typically the facial area)

within the intermediate motional representations, thereby
focusing the network more on the desired signals while
excluding spurious information induced from the temporal
tensor shift (Liu et al. 2020). Attention masking is intro-
duced right before each pooling layer, which can formally
be achieved through the element-wise product between the
time-difference feature and the corresponding mask as

Ml ⊙
HlWl · γ (ωlAl + bl)

2 ∥γ (ωlAl + bl)∥1
, (9)

where Ml and Al refer to the l-th layer representations from
the time-difference and appearance branches, respectively;
ωl denotes the 1×1 convolution filter and γ (·) is the sigmoid
activation function.
RF Encoding. We concatenate the log-magnitudes of Fα

and Fθ in a channel-wise manner, generating the final RF
input of F ∈ R2NRx×T×F . Considering the 2D format of the
RJTF input and the parallelism with the RGB branch, the RF
embedding branch follows a 2D convolutional architecture
that is equivalent to that of the appearance embedding in the
RGB branch, except for the first convolution module, which
is modified to be compatible with the NRx-channel input.
Multimodal Fusion in Time-Difference Domain. To com-
bine the 3D representations from the RGB branch with the
2D representations from the RF branch, the two modalities
must be coordinated along the same dimension. Noting that
our RGB-RF input modalities share the time-difference di-
mension, we define the temporal fusion between the two
modalities.

For achieving adaptive fusion of the temporal context
within each modality, we proposes to use the capability of
cross-attention (CA) in the temporal fusion of RGB and RF,
whose overall pipeline is illustrated in Fig. 2 Given the in-
termediate representations R(RGB)

l ∈ RCl×T l×Hl×W l

and
R(RF)

l ∈ RCl×T l×F l

from the parallelized RGB-RF encod-
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Figure 2: Transformer block for the temporal fusion of the
RGB and RF signals.

ing branches, we first unfold them on a basis of modality-
wise time-centric patches R̄(RGB)

l ∈ RTl×(ClHlWl) and
R̄(RF)

l ∈ RTl×(ClFl), generating flattened tokens in the
shared time-difference domain. The tokens are then embed-
ded with independent projection f

(RGB)
l (·) and f

(RF)
l (·) for

sensor-wise alignment, followed by normalization and tem-
poral embedding.

The module conducts CA between x(RGB)
l =

f
(RGB)
l

(
R̄(RGB)

l

)
and x(RF)

l = f
(RF)
l

(
R̄(RF)

l

)
, trying

to capture the contextual dependency between them at each
time instant. This can mathematically be expressed as

q = x(m1)
l Wq, k = x(m2)

l Wk, v = x(m2)
l Wv,

CA
(

x(m1)
l , x(m2)

l

)
= softmax

(
qkT /

√
d/h

)
v,

(10)

where Wq , Wk, and Wv ∈ Rd×d/h are trainable parameters;
d and h are the hidden dimension and the number of heads,
respectively. m1 and m2 represent the selection of sensor
modality: for example, if m1 is selected as RGB, then m2
becomes RF, and vice versa. This CA mechanism is con-
ducted in multiple heads, denoted as multi-head CA (MCA).

The aggregated information is added to the identity short-
cut, and then projected again with sensor-wise normaliza-
tion and feed-forward network (i.e., e(m1)

l (·) or e
(m2)
l (·)).

This MCA cycle can be repeated multiple times throughout
the fusion block. As illustrated in Fig. 2, the fused repre-
sentation is upsampled back with respect to the dimensions
of the original RGB/RF representations, which is reincor-
porated into the primary branch via element-wise summa-
tion. Note that the multimodal fusion of the RGB and RF
branches is performed before every pooling layer, achieving
temporal fusion with multiple resolutions.

Finally, the overall network is optimized based on the L1

distance between the estimated output p̂(t) and the gold-
standard physiological signal p(t).

Experimental Results
Experimental Setup
Datasets. To evaluate the effectiveness of the proposed
model, we performed extensive experiments on two
datasets: the publicly available RRM-static dataset (Choi,
Kang, and Kim 2022) and our newly collected physiological
dataset, named the Multimodal Database for rPPG (MMD-
rPPG). The RRM-static dataset comprises approximately
2.4 h of synchronized video clips captured at a frame rate
of 30 fps, RF reflected signals recorded at 1000 fps, and
ground-truth respiration signals, which correspond to 13 sta-
tionary participants. The MMD-rPPG dataset, which is the
first multimodal dataset in the objective of cardiac estima-
tion, includes 3 h of synchronized video and RF (a fps of
30 for RGB and a fps of 1000 for RF) reflections from 15
participants, complemented with gold-standard BVP signals
recorded using a Neulog BVP sensor (NeuLog 2017). The
dataset also provides reflections registered under challeng-
ing scenarios, such as dark settings for RGB and occluded
scenarios in which a person’s body is blocked by an object
for RF, allowing for more practical evaluations of remote
physiology. The detailed configurations for each dataset can
be found in the supplementary material.
Implementation Details The proposed Fusion-Vital model
was trained using the ADAM optimizer with a batch size
of 64 and a learning rate of 0.0001. The inputs for the RGB
branch consisted of video clips that were center-cropped and
resized to 36×36 pixels to facilitate constant facial track-
ing and reduce camera noise (Chen and McDuff 2018). As
for the RF branch, the received complex radio signals were
transformed to the RJTF format using a STFT with a Hann
window 300 ms long, hop size of 60 ms, and 256-point FFT.
The resulting images were then resized to fit the temporal
dimension of the RGB inputs. To ensure a fair comparison,
all temporal models were configured with a window size of
10 frames.

For the numerical evaluation of the estimated physiologi-
cal signs, we followed the protocols described in (Liu et al.
2020; Choi, Kang, and Kim 2022). We post-processed non-
overlapped 10-s windows from the outputs, followed by
band pass filtering with a passband of [0.08 Hz, 0.6 Hz] for
respiration and [0.75 Hz, 2.5 Hz] for heartbeat. The result-
ing vital rates estimated in beats per minute (BPM) were
compared with the gold-standard using four standard met-
rics: mean absolute error (MAE), root mean squared er-
ror (RMSE), Pearson’s correlation coefficient (ρ), and stan-
dard deviation (Std). To ensure subject-independent cross-
validation, the datasets were divided into person-wise sub-
folds. More details regarding the evaluation protocols are
available in the supplementary material.

Quantitative Results
Comparison with the State-of-the-Art. We compared the
performance of the proposed Fusion-Vital model with that of
several state-of-the-art remote physiology models (Chen and
McDuff 2018; Nowara, McDuff, and Veeraraghavan 2021;
Liu et al. 2020; Tu, Hwang, and Lin 2016; Mercuri et al.
2019; Zheng et al. 2021; Ha, Assana, and Adib 2020; Choi,

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

1348



Method Input Respiration Rate (BPM) Heart Rate (BPM)
MAE↓ RMSE↓ ρ↑ Std↓ MAE↓ RMSE↓ ρ↑ Std↓

CAN (Chen and McDuff 2018) RGB 3.16 5.83 0.57 5.21 3.43 6.42 0.80 5.26
Nowara et al. (Nowara, McDuff, and Veeraraghavan 2021) RGB 2.51 4.58 0.67 4.25 2.66 5.14 0.85 5.10
MTTS-CAN (Liu et al. 2020) RGB 2.65 4.13 0.69 4.04 2.41 5.27 0.88 4.44
Tu et al. (Tu, Hwang, and Lin 2016) RF 5.46 7.31 0.19 4.86 5.50 11.68 0.64 9.79
Mercuri et al. (Mercuri et al. 2019) RF 2.52 5.64 0.54 5.47 4.73 9.60 0.70 8.55
Zheng et al. (Zheng et al. 2021) RF 1.68 3.82 0.72 3.45 2.50 5.32 0.88 4.29
Ha et al. (Ha, Assana, and Adib 2020) RF 1.37 3.36 0.75 3.21 2.83 5.48 0.86 4.80
RF-Vital (Choi, Kang, and Kim 2022) RF 0.66 1.44 0.88 1.43 2.19 4.75 0.90 4.31

Fusion-Vital (Ours) RGB+RF 0.44 1.07 0.93 1.19 1.61 3.05 0.97 3.02

Table 1: Quantitative comparison of the proposed Fusion-Vital model and eight baseline methods based on their performance
on the RRM-static (for respiration) and MMD-rPPG (for heartbeat) datasets.

Method Input Heart Rate–Dark (BPM) Heart Rate–Occluded (BPM)
MAE↓ RMSE↓ ρ↑ Std↓ MAE↓ RMSE↓ ρ↑ Std↓

MTTS-CAN (Liu et al. 2020) RGB Not Applicable 2.72 5.17 0.85 4.51
RF-vital (Choi, Kang, and Kim 2022) RF 2.35 4.36 0.89 4.12 Not Applicable

Fusion-Vital (Ours) RGB+RF 2.39 4.40 0.89 4.05 2.68 5.11 0.86 4.32

Table 2: Quantitative comparison of the Fusion-Vital model and single-sensor methods based on their estimation of heart rate
under challenging scenarios. Note that Fusion-Vital shows stable predictions under both scenarios even with corrupted inputs.

Input Modality MAE↓ RMSE↓ ρ↑ Std↓RGB RF

Time Time 1.75 3.48 0.94 3.43
Time-Diff. Time 2.12 4.42 0.91 4.04

Time Time-Diff. 1.86 3.67 0.93 3.51
Time-Diff. Time-Diff. 1.61 3.05 0.97 3.02

Table 3: Heart rate estimation performance using different
combinations of RGB-RF input modalities.

Kang, and Kim 2022) which depend on a single modality
(either video or RF data). Each model was trained on the
RRM-static dataset for respiration and on the MMD-rPPG
dataset for heartbeat, and tested only on the general samples
(i.e., not including the challenging dark nor occluded sce-
narios).

Regarding the breathing rate estimation results (presented
on the left side of Table 1), our method outperforms the pre-
vious baseline models by a large margin, achieving an 83.4%
reduction in MAE and a 74.1% decrease in RMSE compared
to the best output among the RGB-only models, as well as
a reduction of 33.3% in MAE and 25.7% in RMSE com-
pared to the best RF-only model. As for heart rate estimation
(right side of Table 1), our fusion-based approach also ex-
hibited superior performance, achieving a 33.2% reduction
in MAE and a 42.1% reduction in RMSE compared with the
best RGB-only model, and a 26.5% reduction in MAE and
35.8% reduction in RMSE compared with the best results

from RF-only models. These results confirm the comple-
mentarity between the RGB and RF modalities and demon-
strate the efficacy of fusion-based vital sensing for human
physiological estimation.
Measurement in Challenging Scenarios. In addition to the
overall performance enhancement achieved under the previ-
ous general scenarios, multimodal fusion for remote physi-
ology also has the potential to enable modality-agnostic pre-
diction when one of the sensors is missing or unavailable.
Specifically, our model leverages CA mechanisms to assign
adaptive weights to each modality depending on the sur-
rounding conditions, which enables stable estimation even
when one sensor is inapplicable. Table 2 summarizes the
vital estimation results on the MMD-rPPG dataset under
challenging scenarios where one of the sensors is unavail-
able for remote physiology due to either dark conditions
for RGB or occluded settings for RF. It is evident that such
corrupted input streams make previous RGB- and RF-only
models fail completely under dark and occluded conditions,
respectively. In contrast, the proposed model maintains great
robustness in both cases. Note that the model shows compa-
rable performance with its single-sensor counterparts, even
when the corrupted input from another sensor is fed into the
network.

Ablation Study
To further evaluate the effectiveness of each element in the
proposed Fusion-Vital model, we performed ablation exper-
iments on the MMD-rPPG dataset.
Input Modality of RGB and RF. Our Fusion-Vital model
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Figure 3: Qualitative examples of 10-s vital wave estimations obtained from RGB-only (Liu et al. 2020), RF-only (Choi, Kang,
and Kim 2022), and Fusion-Vital models. The gold-standard signal is represented with blue, and the estimated one is with red
line in the figure. The first and second columns show the cases of respiration and heart beat monitoring when a person has
global swinging movements, respectively. The third and fourth columns show the results under more challenging scenarios,
where the data were recorded under dark lighting or occlusion, respectively. Note that each signal is normalized to [-1, 1].

Fuion Module MAE↓RMSE↓ ρ↑ Std↓
(Wang et al. 2021) 1.99 4.21 0.92 3.85

(Prakash, Chitta, and Geiger 2021) 1.87 3.74 0.92 3.81
(Li et al. 2022) 1.71 3.22 0.95 3.20

Ours w/o Sensor-Wise Projection 1.66 3.23 0.96 3.18
Ours 1.61 3.05 0.97 3.02

Table 4: Heart rate estimation performance applying another
fusion strategies or variants of the proposed fusion module.

is characterized by aligning RGB and RF inputs on the
time-difference domain (i.e., motional input for RGB and
Doppler input for RF) to ensure the temporal equivalence
of each modality as well as improve robustness on exter-
nal spuriousness. To investigate the effectiveness of these
time-difference-based input pairs, we compared the estima-
tion performance using different input combinations of RGB
and RF modalities, as summarized in Table 3. The results
demonstrate that the use of time-difference inputs is signifi-
cantly more effective for vital estimation than the direct ap-
plication of conventional time domain inputs (i.e., spatial
video for RGB and unwrapped range input for RF). Fur-
thermore, the outcomes of non-equivalent temporal orders
between RGB and RF (second and third rows in Table 3)
clearly highlight the significance of temporal alignment for
each sensor input.
Fusion Components. To examine the effectiveness of the
proposed transformer-based temporal fusion module for
physiological measurements, we conducted experiments by
comparing its performance against those of alternative mul-
timodal fusion strategies (Wang et al. 2021; Prakash, Chitta,
and Geiger 2021; Li et al. 2022), developed mainly for spa-
tial fusion, and a variant of ours (temporal fusion mod-
ule without sensor-wise projection). The results, presented
in Table 4, demonstrate that the proposed time-difference-
centric attention outperforms the conventional fusion strate-
gies in all metrics. Moreover, we observed that the sensor-
wise projection in our module leads to an additional re-
duction of 3.01% in MAE and 5.57% in RMSE, indicating

the significance of considering sensor-wise characteristics
through their independent projection during fusion.

Qualitative Results

Fig. 3 presents a qualitative comparison of the baseline and
proposed models under various scenarios. From the results,
we can observe the following: 1) when the subject exhibits
unwanted global motion, our fusion-based approach can
more robustly measure the respiration or heart beat signal,
implying the superiority of the fusion-based approach over
the single-sensor approaches, especially in the presence of
global motion; and 2) in dark or occluded settings where ei-
ther sensor is inherently unavailable, only the Fusion-Vital
model can reconstruct stable outputs.

Meanwhile, in terms of overhead, the respective inference
times of RGB-only, RF-only, and our RGB-RF model, for a
single frame were represented as 18.8 ms, 33.6 ms, and 29.3
ms, respectively, all of which allow near-real-time process-
ing under workstation settings.

Conclusion

In this study, we presented a novel Fusion-Vital model,
which represents the first remote physiological reconstruc-
tion approach based on the deep multimodal fusion of RGB
and RF sequences. To enable effective alignment between
the disparate video and RF dimensions, as well as the
straightforward reflection of minute vital signatures, we in-
troduced a new RGB-RF pairwise format based on time-
difference signatures. Furthermore, the Fusion-Vital model
features a CA-based fusion transformer, which enables
feature-level adaptive fusion between multisensor streams.
We evaluated the performance of the proposed Fusion-Vital
model using both the public RRM-static dataset and a newly
constructed MMD-rPPG dataset. The experimental results
demonstrate that the RGB and RF modalities can comple-
ment each other’s information for vital monitoring tasks,
which is what enables the proposed model to significantly
outperform current state-of-the-art models.
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