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Abstract

Recently, Transformer-based text detection techniques have
sought to predict polygons by encoding the coordinates of
individual boundary vertices using distinct query features.
However, this approach incurs a significant memory over-
head and struggles to effectively capture the intricate rela-
tionships between vertices belonging to the same instance.
Consequently, irregular text layouts often lead to the predic-
tion of outlined vertices, diminishing the quality of results.
To address these challenges, we present an innovative ap-
proach rooted in Sparse R-CNN: a cascade decoding pipeline
for polygon prediction. Our method ensures precision by it-
eratively refining polygon predictions, considering both the
scale and location of preceding results. Leveraging this stabi-
lized regression pipeline, even employing just a single feature
vector to guide polygon instance regression yields promising
detection results. Simultaneously, the leverage of instance-
level feature proposal substantially enhances memory effi-
ciency (> 50% less vs. the SOTA method DPText-DETR)
and reduces inference speed (> 40% less vs. DPText-DETR)
with comparable performance on benchmarks. The code is
available at https://github.com/Albertchen98/Box2Poly.git.

Introduction
In an increasingly digitized world, the ability to automati-
cally detect and extract textual information from images is
an indispensable component for many applications of ma-
chine vision, including autonomous driving (Zhu et al. 2017;
Sun and Liu 2022), SLAM (Li et al. 2020), Visual Place
Recognition (Hong et al. 2019), and Assisted Navigation
(Rong et al. 2016). A reliable text detector is essential for
localizing or parsing written text within a scene. Recent text
detection methods have diversified the regression targets to
adapt to the diverse appearance of text instances. This vari-
ability typically arises in terms of text orientation and curva-
ture level.

Text orientation encompasses the possibilities of horizon-
tal alignment or rotation, while text curvature spans the spec-
trum from straight to intricately bent. When dealing with
text detection in cases where the layout is primarily straight

*Project Lead
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Feature
Extractor Box Layer

Polygon Layer

Box to Poly

Iterative Box
Regression

Iterative Polygon
Regression

Box
Proposal

 RoIAlign  PolyAlign

Polygon
PredictionFeature

Proposal

Poly
Proposal

Feature
Proposal

(a)

(b)

Figure 1: (a) The overview structure of Box2Poly. (b) Trans-
formation from Box to Poly.

and orientation is horizontal, a viable approximation of the
effects of perspective projection caused by pinhole cameras
is achievable through rotating and scaling bounding boxes
(Zhang et al. 2016; Ma et al. 2018; He et al. 2021) or utiliz-
ing quadrilaterals (Liu and Jin 2017; Bi and Hu 2021).

Besides, for text instances with arbitrary shapes, where
rotation and curvature can be present in a variety of configu-
rations, the use of mask-based representations and contour-
based methods has gained prominence due to their height-
ened adaptability.

Mask-based approaches (Baek et al. 2019; Wang et al.
2019; Xu et al. 2019; Long et al. 2018) initially generate
predictions at the pixel level, subsequently assembling indi-
vidual pixels to construct segmentation masks at the instance
level. Because masks possess nature at encapsulating de-
formable objects, these techniques offer a versatile solution
for detecting text with irregular shapes. Nonetheless, their
practical implementation is restricted by their substantial
memory requirements and computationally intensive post-
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processing steps. Alternative approaches (Lyu et al. 2018;
Huang et al. 2022; Zhang et al. 2019) approach the detection
task by framing it as instance segmentation. They incorpo-
rate a mask prediction head to generate segmentation masks
from RoI(Region of Interest) proposals, which helps miti-
gate the computational workload to a certain degree, but the
high-dimensional masks are hard to be effectively learned.

On the other side, contour-based methods directly regress
predictions towards the ground truth contours. Their effec-
tiveness is notably impacted by the initial quality of the poly-
gon proposals acquired. Therefore, several approaches (Dai
et al. 2021a; Zhang et al. 2023) further explore mask-based
techniques through initializing contour proposals from bi-
nary segmentation masks, followed by contour refinement.
In a different vein, several methods (Ye et al. 2023a; Zhang
et al. 2022) demonstrates a novel perspective by utilizing
bounding boxes as the initial estimation of contours, ei-
ther implicitly or explicitly. However, achieving a seamless
transformation amidst the shape disparity between the box
and the polygon contour remains an open challenge. Simul-
taneously, the memory efficiency of point query embedding
is a notable concern.

In this paper, we delve deeper into the box-to-polygon
pipeline, focusing on addressing these issues.

As aforementioned, shape inconsistency arises during the
box-to-polygon transformation process. This is especially
evident when polygon vertices are formed by sampling
points on boundaries (Ye et al. 2023a). As a result, curved
text instances that rotate more than 45 degrees incur an ad-
ditional learning cost due to the misaligned initialization. A
distinctive proposition introduced by DeepSolo (Ye et al.
2023b) involves utilizing top-K Bézier curves (Liu et al.
2020) as initial proposals for the regression of the center
polyline in text instances. While this approach enhances the
suitability of the proposals for arbitrary shapes, it overlooks
scale priors when generating Bézier curves across differ-
ent feature map levels. Simultaneously, rather than refin-
ing the boundary directly, the center polyline undergoes re-
cursive refinement during coordinate decoding. This makes
the predictions more inclined to failure cases, such as self-
intersection and misalignment to ground truth. We address
these concerns by generating polygon proposal from bound-
ing box using Bézier centerline as intermediary. As illus-
trated in Fig. 1(b), given a text instance enclosed by a bound-
ing box, a Bézier curve is generated within and expanded to
match the same scale as the box. Subsequently, a polyline
is derived by sampling a fixed number of vertices from this
intermediate representation. Finally, we expand the polyline
in its orthogonal direction to create a polygon, which partic-
ipates into subsequent iterative regression. In this approach,
the scale of polygon is inherited from the bounding box,
while the Bézier centerline guarantees the flexibility of the
orientation and shape.

The memory footprint overhead can be mitigated in two
perspectives. First, unlike two-stage DETR paradigm (Ye
et al. 2023a; Zhang et al. 2022; Ye et al. 2023b), which gen-
erates Top-K proposals on the output of transformer encoder,
we opt for a sparse proposal initialization (Sun et al. 2021)
to alleviate computational demands and reduce memory us-

age. This sparse proposal initialization involves introducing
a fixed set of instances at the outset of coordinate decod-
ing. As aforementioned, directly initializing text polygons
leads to instability and complications, we utilize learnable
bounding boxes as their prior estimates. We initiate the pro-
cess by regressing the box proposals before proceeding to
learn the polygon representations (refer to Fig. 1). Further-
more, we employ instance-level feature embedding1 for each
instance proposal. In contrast, TESTR (Zhang et al. 2022)
and DPText-DETR (Ye et al. 2023a) utilize point-level fea-
ture embedding for individual vertices, encoding their coor-
dinates and interrelationships within each polygon instance.

Undoubtedly, instance-level feature embedding lacks the
representative capacity when contrasted with point-level
one. In light of this, our approach adopts the iterative regres-
sion strategy (Cai and Vasconcelos 2018; Sun et al. 2021) to
ensure the stable regression of polygon coordinates. Diverg-
ing from refining with instance-independent absolute off-
sets (Ye et al. 2023a), the predicted refinement offset in our
method is made to be scale- and translation-invariant.

Orientation discontinuity exists when the predicted poly-
gon possesses reversed orientation w.r.t. ground truth, this
hurdles the learning process since the network needs ex-
tra steps to correct the ”wrong” orientation. To accelerate
the convergence, we augment the ground truth by extend-
ing the orientation-including annotation to be orientation-
equivalent.

Sparse R-CNN (Sun et al. 2021) is a representative work
depending on iterative regression that achieves accurate re-
sults and high data-efficiency in object detection. At each
decoding layer, RoIAlign (He et al. 2017) is leveraged to ex-
tract image RoI feature for each box proposal. To conduct
the task of polygon prediction, we propose a RoIAlign-like
operation PolyAlign to assist the regression of polygons.

In summary, the objectives of this paper are as follows:
• Propose an memory efficient and computationally effi-

cient text polygon prediction method with comparable
performance to SOTA.

• Thoughtfully devise the smooth transformation from
box to polygon.

• Introduce RoIAlign-like operation to extract precise RoI
features for polygon regression.

• Stabilize the training process by recursively refining
polygon proposals.

Related Works
Iterative Regression Methods in Object Detection
The iterative regression technique has garnered significant
attention within the realm of bounding box object detection.
Cascade R-CNN(Cai and Vasconcelos 2018) extends the ar-
chitecture of Faster R-CNN (Ren et al. 2015) by introducing
multi-stage detection sub-networks. This breaks down the
regression task into a series of cascade layers, where each
layer’s regressor operates directly on the prediction results
provided by the previous layer. This sequential refinement

1corresponding to the term object query in DETR (Carion et al.
2020) and proposal feature in Sparse RCNN (Sun et al. 2021)

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

1220



Points Sampling
& Line Buffering

PolyAlign

Self Attention

Dynamic Instance
Interaction

 

 

 

RoIAlign

 

 

 

Dynamic Instance
Interaction

Self Attention

Figure 2: Illustration of the last bounding box regression it-
eration and the first polygon regression iteration.

process contributes to an improvement in detection quality.
Similarly, within the framework of DETR methods, such
as Deformable DETR (Zhu et al. 2020) and DAB DETR
(Dai et al. 2021b), a comparable strategy is employed. These
methods also embrace iterative bounding refinement, where
the regression head of each decoder layer predicts bound-
ing boxes as relative offsets w.r.t the bounding boxes of the
preceding layer. This iterative approach contributes to the
gradual enhancement of localization accuracy. In a differ-
ent vein, Sparse R-CNN (Sun et al. 2021) introduces an
innovative paradigm by circumventing the computationally
intensive proposal generator in the Fast R-CNN paradigm.
Instead, they initialize learnable bounding boxes with thor-
oughly sparse setting and subsequently update them using
a methodology akin to that of Cascade R-CNN. Despite its
streamlined pipeline, this approach achieves remarkable per-
formance and training efficiency.

Text Detection With Contour Iterative Regression
Recognizing the complexity of accomplishing the regression
in a single pass, researchers have explored the application
of iterative regression to predict concise contour boundaries
for text instances, An example is TextBPN++ (Zhang et al.
2023), where the boundary originates from a pixel-level
score map and is subsequently refined through recursive op-
timization facilitated by a boundary transformer. However,
this transformation from a score map to a boundary is heav-
ily reliant on predefined rules and the pixel-level prediction
restricts its application to higher input resolution. Lever-
aging on the impressive performance of DETR methods,
TESTR (Zhang et al. 2022) takes a novel approach rooted
in Deformable DETR (Zhu et al. 2020). It harnesses bound-
ing boxes predicted by the transformer encoder’s output as

proposals and then transforms these boxes into polygons
by sampling points along the upper and lower sides. Sub-
sequently, the generated polygon vertex is embedded into
point query through sine positional encoding and partici-
pates into coordinate regression at each layer of the decoder.
A further advancement, DPText-DETR (Ye et al. 2023a),
refines the TESTR framework by introducing iterative re-
finement of polygon vertices during decoding. It also in-
troduces the utilization of vertex coordinates as reference
points for conducting deformable cross-attention (Zhu et al.
2020), in response to each point query. DPText-DETR sur-
passes the performance of TESTR and emerges as the new
state-of-the-art method across several text detection bench-
marks. However, DPText-DETR shares a common challenge
with TESTR, namely, a substantial memory footprint. This
is attributed to the requirement of encoding coordinate in-
formation for each polygon vertex with an individual query.

Method
Overview

The overall structure of Box2poly Network is illustrated in
Fig. 1(a), which is built upon Sparse R-CNN (Sun et al.
2021). The image containing text instance is fed into an FPN
backbone to extract multiple layer features. Then the decod-
ing part on the right can leverage these features to complete
the detection task. Like in Sparse R-CNN, a fixed, learn-
able set of N bounding boxes serve as region proposals,
and each of those proposals is corresponding to a feature
proposal of dimension D. The network performs structured
regression with two heads, one for boxes and one for poly-
gons. Each of them contains K and M layers respectively.
The box proposals serve as priors for the subsequent poly-
gon prediction. To transition from box prediction to polygon
representation, a transitional layer Box to Poly is inserted be-
tween the last layer of box head and the first layer of polygon
head. PolyAlign is leveraged to extract precise RoI features
for polygon regression. Besides that, orientation-equivalent
annotation for text polygon is introduced to eliminate the
learning discontinuity when the predicted polygon shows re-
versed orientation w.r.t. the spatially proximal ground truth
one.

Learnable Bounding Boxes as Priors

We leverage learnable bounding boxes to estimate the loca-
tion and scale of text instances before polygon regression.
Following Sparse RCNN (Sun et al. 2021), a set of learnable
bounding boxes are initialized with the image size and re-
fined recursively for K times. As illustrated in Fig. 2, given
a box proposal BK−1

i , i ∈ N from previous layer, RoIAlign
(He et al. 2017) is leveraged to extract RoI feature within
its scope. This extracted RoI feature is merged with its cor-
responding proposal feature fK−1

i using Dynamic Instance
Interaction (Sun et al. 2021), yielding an updated proposal
feature fK

i . To further refine the bounding box proposal
BK−1
i , a coordinate offset ∆box is predicted based on fK

i

to achieve BK
i .

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

1221



Figure 3: Ilustration of transforming from box to polygon
with Bézier curve as intermediate representation.

Box to Poly
To conduct polygon regression, we first transform the
bounding box prior BK

i to polygon representation using
Bézier curve (Liu et al. 2020) as intermediary. As depicted
in Fig. 2 and Fig. 3, at the final layer (K − 1) of iterative
bounding box regression, a Bézier curve with four control
points is predicted upon proposal feature fK

i as relative off-
sets [δpj = (δxj , δyj)]

3
j=0 w.r.t. the center of the reference

box. We denote reference bounding box as (xc, yc, w, h),
where (xc, yc) represents the box center and (w, h) refers to
the box scale. The control points

(
xctrl
j , yctrlj

)
of the cubic

Bézier curve are expressed as(
xctrl
j , yctrlj

)
= (xc, yc) + (δxj · w, δyj · h) .

By multiplying (δxj , δyj) with (w, h), the generated Bézier
curve inherits the scale from the reference bounding box.
Next, we uniformly sample points on this Bézier curve to ob-
tain vertices of a polyline that fits the center-curve of text in-
stance. This process is performed using the following equa-
tions:

ps,x =

3∑
j=0

xctrl
j Bj(ts), ps,y =

3∑
j=0

yctrlj Bj(ts),

Bj(ts) =

(
3

j

)
tjs(1− ts)

3−j , ts =
s

S − 1
,

where s ∈ [0, . . . , S − 1] indexes each sample point, and
(ps,x, ps,y) represents their coordinates. Bj(ts) calculates
the value of each Berstein basis polynomial (Lorentz 2012)
at every single step ts. The polyline is complemented with
a scalar width to form a boundary around a text instance.
To that end an additional value δwp is predicted, which de-
scribes the scaling factor between the bounding box size and
the initial value of the text polygon’s width:

wp =
√
wh · exp(δwp).

To obtain polygon vertices, we expand the polyline with dis-
tance wp/2 towards outside using fbuffer:

ptops , pbots = fbuffer(ps,
wp

2
).

The complete procedure is depicted in Figure 3 to enhance
comprehension. To ensure a distinctive representation, the
top vertices ptops are designated to reside on the left side
while traversing the polyline in vertex order.

Iterative Regression of Proposal Polygons
A set of polygon proposals N × S × 4 are generated from
last step after transforming N proposal boxes. Similar to the
proposal boxes, their coordinates undergo updates across M
layers of iterative regression. For instance, as depicted in
Figure 2, during the initial polygon regression layer, given

a proposal Pm−1
i =

[(
ptops,y , p

bot
s,y

)m−1
]S−1

s=0
from the pre-

ceding layer, we first apply the following transformation:

(ps,x, ps,y, ps,dx, ps,dy)
m−1

=(
ptops,x + pbots,x

2
,
ptops,y + pbots,y

2
, ptops,x − pbots,x, p

top
s,y − pbots,y

)m−1

This transformation converts the representation to center
point coordinates and the coordinate differences between
the top and bottom vertices. To ensure stability in the iter-
ative regression process, the polygon regression head yields
an output denoted as a scale- and location-invariant distance
vector ∆poly = [(δps,x, δps,y, δps,dx, δps,dy)]

S−1
s=0 . Subse-

quently, the mth decoder refines the polygon as follows:

pms,x = pm−1
s,x + δps,x|pm−1

s,dx |,

pms,y = pm−1
s,y + δps,y|pm−1

s,dy |,

pms,dx = pm−1
s,dx exp (δps,dx),

pms,dy = pm−1
s,dy exp (δps,dy).

Gradients are soly back-propagated through distance vector
∆poly to make the training stable, as in (Zhu et al. 2020;
Sun et al. 2021). Afterwards, (ps,x, ps,y, ps,dx, ps,dy)

m

are transformed back to the representation Pm
i =[(

ptops,y , p
bot
s,y

)m]S−1

s=0
to align with the ground truth and com-

pute the coordinate loss.
As exp (δps,dx) and exp (δps,dy) are invariably greater

than 0, the sign of (ps,dx, ps,dy)
m remains consistent with

(ps,dx, ps,dy)
m−1. In simpler terms, this ensures that the up-

dated polygon maintains a coherent alignment of its top and
bottom boundaries across various regression layers.

PolyAlign
In pursuit of more representative Region of Interest (RoI)
features for each polygon proposal, we introduce an inno-
vative step called PolyAlign. In contrast to the conventional
bounding box RoIAlign (He et al. 2017), which employs bi-
linear interpolation at the center of each RoI grid, PolyAlign
directly operates on the paired top and bottom vertices of
polygons and their corresponding centerline vertices. This
approach is underpinned by the assumption that point-level
coordinate regression is especially sensitive to deviations in
the foothold of RoI feature extraction.

Upon extracting Poly RoI features [z1, z2.., zL] from
multi-layered feature maps, we aggregate them using sum
aggregation zms =

∑L
l=1 z

l. Here, L refers to the num-
ber of multi-layer feature maps and zms represents the ag-
gregated feature. The resultant Polygon RoI feature assumes
spatial dimensions of S × 3 × 256, where S is the number
of vertices on each boundary.
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Orientation-Equivalent Annotation

As the polygon representation, with pair-wise top and bot-
tom vertices, always carries the attribute of orientation, an
issue similar to the boundary discontinuity (Yang et al.
2021b,a, 2022) exists in its regression. As illustrated in
Fig. 4 (right), if the polygon is initialized with reverse orien-
tation w.r.t. the ground truth, the network needs extra effort
to learn the reversal meanwhile correcting the vertex coordi-
nates, which greatly complicates the learning process in the
presence of diverse rotations. Inspired by (Liao et al. 2022),
we remedy this issue by augmenting the ground truth with its
orientation-reversed version. Given the ground truth as P̄i =[(
p̄top0 , p̄bot0

)
, ...,

(
p̄topS−1, p̄

bot
S−1

)]
in Fig. 4 (left), the reversed

version is then P̄r
i =

[(
p̄botS−1, p̄

top
S−1

)
, ...,

(
p̄bot0 , p̄top0

)]
.

Given both orientations, a candidate polygon can, during
training, be regressed to either P̄i or P̄r

i .

Optimization

Polygon Bipartite Matching Like other detectors (Carion
et al. 2020; Sun et al. 2021; Dai et al. 2021b; Zhu et al. 2020)
that perform set prediction, we employ Bipartite Matching to
assign predictions to ground truth. This cost consists of two
components: correctness of class prediction and distance be-
tween coordinates. Given prediction set Y = {yi}N−1

i=0 and
padded ground truth set Ȳ = {ȳi}N−1

i=0 . The matching cost
is defined as

Lpoly
match

(
yπ(i), ȳi

)
= Lfocal

(
ρπ(i), c̄i

)
+ Lpoly

(
Pπ(i), P̄E

i

)
.

Here, π(i) ∈ ΠN represents a permutation of N elements.
Lfocal

(
ρπ(i), c̄i

)
evaluates the class matching cost with Fo-

cal loss (Lin et al. 2017) between the predicted class score
ρπ(i) and ground truth label c̄i, while Lpoly

(
Pπ(i), P̄E

i

)
cal-

culates the coordinate matching cost for polygon vertex co-
ordinates by L1 distance between prediction Pπ(i) and ex-
tended ground truth P̄E

i . Lpoly

(
Pπ(i), P̄E

i

)
is made to be

orientation-invariant by taking the minimum one between
two prediction-target pairs : Pπ(i) ∼ P̄i and Pπ(i) ∼ P̄r

i .
This is expressed as

Lpoly

(
Pπ(i), P̄E

i

)
= Lpoly

(
Pπ(i), P̃i

)
,

P̃i = argmin
[P̄i,P̄r

i ]

(
∥Pπ(i) − P̄i∥1, ∥Pπ(i) − P̄r

i ∥1
)
.

Set Prediction Loss The training loss is identical to the
matching cost, but summed only over the matched pairs. To
encourage consistency, the ground truth for polygon coordi-
nates directly inherits the orientation P̃i from the matching
cost calculation.

Experiments
Datasets
The datasets involved in the experiment are SynthText
150K, TotalText, CTW1500, ICDAR19 MLT and Inver-
seText. As implied by the name, SynthText 150K (Liu et al.
2020) collects 150k synthesized scene text images, con-
sisting of 94,723 images with multi-oriented straight texts
and 54,327 images with curved ones. TotalText (Ch’ng and
Chan 2017) contains 1,255 training images and 300 test
images with highly diversified orientations and curvatures.
In this dataset, the text instance is labeled in word-level.
CTW1500 is another dataset with curved texts including
1,000 training images and 500 test images. Its annotation
is in text-line level. ICDAR19 MLT is a multi-lingual scene
text detection dataset (Nayef et al. 2019) providing 10k im-
ages for training. InverseText (Ye et al. 2023a) is a test set
that consists of 500 test images with text instances concur-
rently possessing rotation and curvature.

Implementation Details
ResNet50 (He et al. 2016) is adopted for all experiments
and initialized with ImageNet pretrained weights. The batch
size is set 16 and all models are trained with 8 pieces
NVIDIA RTX 3090 GPUs. The final results on TotalText
and CTW1500 are reported with the training strategy simi-
lar to (Zhang et al. 2022; Ye et al. 2023a): First, the network
is pretrained on a combined dataset for 180k iterations with
a learning rate 2.5× 10−5 that drops at 144k and 162k step.
The learning rate drop factor is 10. The combined dataset
is composed of TotalText, ICDAR19 MLT and SynthText
150K. Following (Ye et al. 2023a), data augmentation in-
cludes instance aware random cropping, random blur, color
jittering and multi-scale resizing, with the shorter side re-
stricted to the range [480, . . . , 832] pixels and the longer side
capped at a maximum of 1600 pixels.

Before training, the datasets are polished following the
protocol of (Ye et al. 2023a) – annotation of polygon ver-
tices is rearranged to eliminate the influence of the implicit
reading order, and the training set is expanded by rotating
training images with a set of predefined rotation angles. Our
chosen proposal number, denoted as N , is set at 300. Mean-
while, for Bezier curves, the number of sampling points S
has been established as 8, yielding 16 vertices for each poly-
gon proposal. The box head employs a multi-stage approach
with K layers set at 3, while the polygon head similarly em-
ploys a multi-stage structure with M layers also set at 3.

Comparisons With Other Methods
On Arbitrary-Shaped Text Benchmarks We evaluate
our network on two widely-used text detection bench-
marks, namely TotalText and CTW1500. Despite using just
one feature embedding per polygon instance, our approach
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Method Feature Extractor TotalText CTW1500
P R F P R F

DB(Liao et al. 2020) ResNet50+DCN 87.1 82.5 84.7 86.9 80.2 83.4
I3CL(Du et al. 2022) ResNet50+FPN 89.2 83.7 86.3 87.4 84.5 85.9

ABCNet-v2(Liu et al. 2021) ResNet50+FPN 90.2 84.1 87.0 85.6 83.8 84.7
Boundary(end-to-end)(Wang et al. 2020) ResNet50+FPN 88.9 85.0 87.0 - - -

TESTR-Polygon(Zhang et al. 2022) ResNet50+Deform. Encoder 93.4 81.4 86.9 92.0 82.6 87.1
SwinTextSpotter(Huang et al. 2022) Swin-Transformer+FPN - - 88.0 - - 88.0

DPText-DETR(Ye et al. 2023a) ResNet50+Deform. Encoder 91.8 86.4 89 91.7 86.2 88.8
Box2Poly(ours) ResNet50+FPN 90.22 86.57 88.35 88.84 87.46 88.13

Table 1: Quantitative text detection results on arbitrarily shaped datasets, measured using Precision (P), Recall (R), and F-score
(F). Our method’s results are presented as mean achieved through five rounds of finetuning, the spread of F-score is conveyed
as 3σ empirical standard deviation, which are correspondingly ±0.26 and ±0.35 for TotalText and CTW1500.

Figure 5: Qualitative results on images containing text in-
stances rotated and randomly curved.

achieves comparable performance to the current state-of-
the-art method, DPText-DETR. The latter utilizes point-
level feature embedding on each polygon vertex (16 ver-
tices per polygon). In comparison, our method’s F-Score
is only 0.7% lower on both dataset: 88.35 vs. 89 on To-
talText and 88.13 vs. 88.8 on CTW1500 (Tab. 1). More-
over, it is noteworthy that DPText-DETR employs a stronger
feature extracting method compared to our network, and
it takes advantage of proposal generator. Box2Poly leads
TESTR-Polygon by 1.7% and 1.2% on these two bench-
marks (Tab. 1). Additionally, when compared to Swin-
TextSpotter, which employs a stronger backbone, our detec-
tion performance overhead on TotalText and CTW1500 is
0.35 and 0.13 regarding F-score, respectively (Tab. 1).

Stability Against Rotation Together With Arbitrary
Shape To showcase the robustness of our network in si-
multaneously managing text rotation and arbitrary curva-
ture, we conduct a comparative analysis of detection re-
sults with other polygon-based methods on InverseText. As
delineated in Tab. 3, our network achieves marginally im-
proved performance over DPText-DETR under the setting of
no pretraining. With the inclusion of pretraining, Box2Poly
achieves an F-score of 88.7, surpassing DPText-DETR by
1.6%. Further substantiating our network’s capabilities, we

visually present a selection of detection results in Fig. 5. No-
tably, the network consistently generates compact polygons
for images featuring text instances with varying degrees of
rotation and curvature.

Memory Efficiency and Data Efficiency As depicted in
Tab. 4, the incorporation of the single feature embedding per
instance approach notably reduces the GPU memory foot-
print of our network compared to DPText-DETR, despite
our model leveraging three times as many instance propos-
als (300 vs. 100). And a faster inference speed is observed
in our method (FPS 19.6 vs. 13.6). Remarkably, after solely
10k training iterations on the TotalText dataset, Box2Poly
achieves performance on par with no-pretraining DPText-
DETR. This result underscores Box2Poly’s commendable
data efficiency(Tab. 4).

Ablation Studies
In this section, we undertake an analysis of the distinct con-
tributions made by various components introduced in Sec. .
Our experimental approach involves systematically deac-
tivating or substituting different components of Box2Poly
during each experiment. The model is trained for 50k iter-
ations on the TotalText dataset, with subsequent evaluation
conducted on InverseText. The initial learning rate is set at
2.5× 10−5 and is reduced to 2.5× 10−6 at 80% of the iter-
ations. The confidence score threshold is established at 0.3.
Comprehensive results are detailed in Tab. 2.

Transformation From Box to Polygon In Experiment 1,
as outlined in Tab. 2, we employ a strategy akin to DPText-
DETR (Ye et al. 2023a) and TESTR (Zhang et al. 2022) for
the conversion from bounding box to polygon. This involves
sampling a consistent number of points along the upper and
lower edges of the bounding box, ensuring equidistant dis-
tribution. It’s performance is significantly lower compared
to our Box to Poly method discussed in Sec. . This verifies
the effectiveness of our design conducting transformation.

PolyAlign In order to validate the assumption introduced
in Sec. , we conduct an evaluation of the impact of dif-
ferent PolyAlign implementations: Vertex, Grid and Bézier.
Among these, PolyAlign-Vertex is the implementation inte-
grated into our proposed network. This variant projects ver-
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Experiments Trans. Box to Poly PolyAlign Orientation-Equivalent Polygon IoU Loss F-score
Sampling Box+bezier Vertex Grid Bezier Annotation 50K 30K

1. ✓ - ✓ - - ✓ - 53.61 -
2. - ✓ - ✓ - ✓ - 86.07 -
3. - ✓ - - ✓ ✓ - 86.26 -
4. - ✓ ✓ - - - - 87.49 86.94
5. - ✓ ✓ - - ✓ ✓ 86.29 -

6.(final) - ✓ ✓ - - ✓ - 87.41 87.34

Table 2: Ablation studies on InverseText. 50K and 30K corresponds to the number of training iterations. ”final” corresponds to
the version of model we leverage to derive the final result. ✓ marks the integrated component or technique.

Method P R F

TESTR-Polygon 91.9 84.4 86.8
DPText-DETR 90.7 84.2 87.3
Box2Poly(ours) 91.4 86.1 88.7
DPText-DETR† - - 86.8
Box2Poly†(ours) 90.4 85.7 87.41

Table 3: Evaluation of methods on the InverseText dataset.
†means pretraining is not included. The results of the other
two methods are fetched from DPText-DETR.

tex coordinates back onto the feature maps and performs RoI
feature extraction from there. On the other hand, PolyAlign-
Grid aligns its feature extraction foothold with the center
of sampling grids within the polygon, following the design
principles of RoI Align (He et al. 2017). The Bézier imple-
mentation, PolyAlign-Bézier, is based on BezierAlign from
ABCNet (Liu et al. 2020), albeit with several modifications
made to ensure uniformly distributed sampling grids. To
cope with this feature extractor, the regression is conducted
on Bézier-Polygon, where top and bottom boundary is rep-
resented with Bézier curves. As indicated in Tab. 2, it is ob-
served that PolyAlign-Vertex achieves the best performance.
This result lends support to our assumption that precise fea-
ture extraction at specific locations is advantageous for ver-
tex regression. This finding is congruent with the notion that
DPText-DETR outperforms TESTR-Polygon due to the for-
mer using vertex coordinates as reference points to conduct
deformable cross-attention (Zhu et al. 2020), rather than the
center of proposal bounding box.

Orientation-Equivalent Annotation As demonstrated in
the results of 50K training iterations presented in Tab. 2, the
incorporation of OEA (Orientation-Equivalent Annotation)
does not yield a performance improvement for the network.
However, upon integrating OEA, a better convergence be-
havior is observed after re-running Exp. 4 and 7 with iden-
tical configuration for less iterations(30K) (Tab. 2). As a
result, the disruption in learning caused by orientation dis-
crepancy has been notably mitigated. The relatively modest
impact of OEA on performance can be attributed to the fact
that, within the polished datasets, text orientation issue has
been mitigated to a certain extent.

Polygon IoU Loss Since its inception, the Intersection
over Union (IoU) loss (Yu et al. 2016) has emerged as an

Method Total-Text FPS VRAMP R F

DPText-DETR - - 86.79 13.6 17409MB
Box2Poly(ours) 89.58 83.83 86.60 19.6 8072MB

Table 4: Qualitative results on TotalText without pretrainig.
VRAM occupation is measured with 2 images per GPU.

indispensable technique in the realm of bounding box object
detection. Therefore, we are also inclined to devise a similar
loss to aid the task of polygon prediction. Recognizing that
formulating the intersection between two non-convex poly-
gons in a differentiable manner is a challenging endeavor,
we address this issue by decomposing the polygon into a set
of quadrilaterals. The IoU loss is then calculated at this level.
Notably, this polygon IoU loss does not yield any improve-
ment, and even leads to a performance drop (as evidenced by
Exp. 5 in Tab. 2). We assume the reason behind this is, un-
like bounding box, IoU loss is redundant when vertex-level
L1 loss is introduced, and this estimated IoU cannot reflect
the overlapping quality between non-convex polygons well.

Conclusion

In this paper, we present a novel approach for text detec-
tion by performing iterative polygon regression. Our method
modifies the box iterative regression pipeline to make it
suit the polygon regression task. It begins with a learn-
able bounding box and incorporates a transformative pro-
cess, allowing for seamless transition from box to poly-
gon representation. Then, the polygon coordinates are iter-
atively refined using polygon RoI(Region of Interest) fea-
tures. Through this process, our network demonstrates re-
markable memory efficiency and stability in detecting text
of varying and intricate shapes. Despite a slight reduc-
tion in performance compared to the current state-of-the-art
(SOTA), our approach still maintains commendable results.
It’s worth noting that our detector may face challenges in
scenarios where small texts dominate the scene, difficult to
guarantee high recall. To address this, the incorporation of
a reliable proposal generator could be beneficial. Addition-
ally, any resulting increase in memory occupation due to this
augmentation can be probably counterbalanced by reducing
the number of box and polygon regression layers.
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