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Abstract

In the domain of scene graph generation, modeling common-
sense as a single-prototype representation has been typically
employed to facilitate the recognition of infrequent predi-
cates. However, a fundamental challenge lies in the large
intra-class variations of the visual appearance of predicates,
resulting in subclasses within a predicate class. Such a chal-
lenge typically leads to the problem of misclassifying diverse
predicates due to the rough predicate space clustering. In
this paper, inspired by cognitive science, we maintain multi-
prototype representations for each predicate class, which can
accurately find the multiple class centers of the predicate
space. Technically, we propose a novel multi-prototype learn-
ing framework consisting of three main steps: prototype-
predicate matching, prototype updating, and prototype space
optimization. We first design a triple-level optimal transport
to match each predicate feature within the same class to a
specific prototype. In addition, the prototypes are updated us-
ing momentum updating to find the class centers according
to the matching results. Finally, we enhance the inter-class
separability of the prototype space through iterations of the
inter-class separability loss and intra-class compactness loss.
Extensive evaluations demonstrate that our approach signif-
icantly outperforms state-of-the-art methods on the Visual
Genome dataset.

Introduction

Scene graph generation (SGG) plays a vital role in visual
scene understanding, which aims to detect objects and repre-
sent their relationships using predicates in images (Sun et al.
2023). Consequently, SGG can provide valuable assistance
for subsequent computer vision tasks, including visual ques-
tion answering (Lei et al. 2023) and image captioning (Yang,
Liu, and Wang 2022).

Existing SGG methods can be roughly categorized into
two groups by whether to use external knowledge: 1) Visual
contextual based methods successively pass visual features
through a given network, such as graph neural networks (Li
et al. 2018) and transformers (Dhingra, Ritter, and Kunz
2021), to update the feature representations of predicates.
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However, the long-tail distribution of predicate classes limits
the performance of existing visual contextual based methods
(Chen et al. 2019b; Tang et al. 2020). As Zareian et al. point
out (Zareian et al. 2020), head predicates, such as on, crowd
out rarer but more informative tail predicates, such as stand-
ing on. 2) Commonsense based methods extract common-
sense from multiple external knowledge bases (Sharifzadeh
et al. 2022; Zareian 2020; Sharifzadeh, Baharlou, and Tresp
2021) to refine object and predicate features to improve re-
call for the tail predicate classes. Commonsense based meth-
ods typically represent the class center of each predicate as a
single prototype (Zareian 2020; Zheng et al. 2023a), where
the single prototype is embedded into a word vector trained
from external knowledge bases. The visual features of predi-
cate instances are mapped into the prototype space, and then
each predicate instance is assigned a corresponding predi-
cate class by searching the nearest prototype (Figure 1(a)).

Despite the progress made by existing commonsense-
based scene graph generation (C-SGG) methods, the per-
formance of diverse predicates is still not satisfied in the
single-prototype setting. In Figure 1(a), the predicate in-
stance man-riding-board is closer to the prototype lying on
than to the prototype riding (d> < d1) due to the visual sim-
ilarity. As a result, the predicate instance man-riding-board
is misclassified as man-lying on-board. Specifically, predi-
cates with large intra-class diversity, such as riding, stand-
ing on and lying on, are more likely to be misclassified.

Naturally, we investigated the underlying reasons behind
the misclassification of diverse predicates. The reason is that
the large intra-class variation is still not well addressed in
the single-prototype setting. For example, as illustrated in
Figure 1(a), there is a substantial diversity of visual ap-
pearance for bicycle riding, horseback riding, and wave
riding even if they respectively represents a single predi-
cate category of riding. This intra-class variation results in
subclasses clearly identified within each predicate category.
Modern prototype category theory of cognitive science ar-
gues that categories do not have single, central prototype,
but rather a polycentric structure with multiple prototypes
(Spivak 2014). These prototypes are not fixed, but rather are
defined by a set of representative features induced by ex-
isting instances (Lakoff 2007). Modern prototype category
theory motivated us to rethink C-SGG from the polycen-
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tric view of categories. Each predicate category has multiple
class centers, which are represented by multiple-prototypes.
In training, multiple-prototypes can be learned by cluster-
ing similar predicate features. Therefore, modern prototype
category theory enables us to better account for intra-class
diversity within categories.

In this paper, to address the problem of misclassify-
ing diverse predicates in C-SGG, we propose a novel
multi-prototype learning (MPL) framework. Firstly, the pre-
trained model (Zareian 2020) is utilized to extract unclas-
sified predicate features and initial prototypes of common-
sense. Then, the triple-level optimal transport (TOT) is ap-
plied to match unclassified predicate features within the
same class to the initial prototypes of that class. TOT calcu-
lates the relational distance of object-predicate and subject-
predicate to avoid the incorrect matching between predicates
and prototypes. The multi-prototypes of each class are sub-
sequently updated using momentum updating, which allows
the model to find multiple class centers of predicates accu-
rately. For example, in Figure 1(b), in addition to the horse-
back riding prototype with distance d;, there is also a wave
riding prototype with a smaller distance ds (d3z < ds). As a
result, the predicate instance man-riding-board is correctly
classified as riding. Furthermore, to improve the structure
of the prototype space, we introduce an intra-class compact-
ness loss that encourages prototypes of the same class to
form tight clusters. Additionally, we propose an inter-class
separability loss that forces prototypes of different classes
to be far apart. During testing, each unclassified predicate
is assigned to the same class as the nearest prototype (Fig-
ure 1(b)).

The contributions can be summarized as follows:

* A novel MPL framework is proposed for C-SGG. The
proposed framework matches each predicate to the most
appropriate prototype. MPL improves the accuracy of
predicate inference and enhances the interpretability of
the model. To the best of our knowledge, this is the first
exploration to realize multi-prototype modeling for pred-
icate inference.

* A triple-level optimal transport method is proposed to
avoid incorrect matching between predicates and proto-
types. TOT achieves a trade-off between predicate-wise
comparison and triple-wise comparison when computing
the optimal transport matrix.

* The loss of both inter-class separability and intra-class
compactness are proposed to optimize multi-prototype
space. These two losses directly optimize both the
prototype-prototype and prototype-predicate distance,
which efficiently encourage diversity between prototypes
and avoid inter-class overlaps, respectively.

Related Work
SGG with Commonsense

Various methods have been proposed to incorporate
commonsense into the C-SGG task, including statisti-
cal probability-based approaches, external knowledge-based
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(b) Results of our multi-prototype learning framework

Figure 1: Comparison of previous single-prototype methods
and our proposed multi-prototype method. (a) Previous ap-
proaches attempt to represent commonsense as a single pro-
totype (Zareian 2020; Zheng et al. 2023a). The large intra-
class variance leads to inaccurate representation of class
features in single prototype setting, resulting in classifica-
tion errors. (b) Visualization of the results achieved by our
model.

approaches, graph-based approaches, and natural language
text-based approaches.

Statistical probability-based approaches, such as (Chen
et al. 2019b; Hou et al. 2019), utilize co-occurrence statis-
tics to model commonsense. However, these methods can be
limited by incomplete and biased representations of com-
monsense due to the availability of training data. To ad-
dress this, some methods use external knowledge sources
like WordNet (Miller 1995) and ConceptNet (Liu and
Singh 2004; Gu et al. 2019). Graph-based approaches, like
(Zareian 2020; Lin, Zhu, and Liang 2022), model com-
monsense as a graph but may be limited by incomplete
knowledge graphs. Recently, natural language text-based ap-
proaches have been introduced that extract commonsense
representations from large text corpora (Zhong et al. 2021;
Yao et al. 2021; Sharifzadeh et al. 2022). In this paper, we
are the first to use multi-prototype to find multiple class cen-
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ters in SGG.

Optimal Transport

In the field of computer vision, optimal transport (OT) has
been employed to address the low prediction accuracy issue
in crowded scenarios by formulating the assigning proce-
dure in object detection as an OT problem (Ge et al. 2021).
Additionally, OT has been used in the field of image segmen-
tation and semantic correspondence (Liu et al. 2020). For
point cloud analysis, Li et al. utilized OT to establish corre-
spondences between two point clouds, which approximates
scene flow and overcomes the problem of the scarcity of an-
notated scene flow data in a self-supervised manner (Li, Lin,
and Xie 2021). In the field of natural language processing,
OT distance has been utilized in estimating the necessary
quantity of alignment for instance Word Mover’s Distance
(Chen et al. 2019a). In this paper, triple-level optimal trans-
port used as marginal constraints to suppress many-to-one
matching of predicates and prototype.

Prototype Learning and Contrastive Learning

Few-shot learning approaches have achieved success in rec-
ognizing classes with few training examples, but offline
methods prevent end-to-end training of prototypes. For in-
stance, Allen ef al. (Allen et al. 2019) proposed to learn
prototypes to address the challenge of recognizing classes
with few training examples. In the context of 3D point cloud
deep learning, multi-prototype methods were briefly men-
tioned in (Zhao, Chua, and Lee 2021), which generated mul-
tiple prototypes by farthest point sampling on the embedding
space for the support set. Kim et al. (Kim et al. 2018) pro-
posed end-to-end deep quadruplet networks to map proto-
type and real image embeddings into a common space for
image classification. Recently, Kang et al. (Kang and Ahn
2022) proposed a variational multi-prototype encoder for
object recognition, where multiple prototypes are used to
represent each object class. However, these methods do not
provide concrete evidence of the existence of multiple pro-
totypes. In this work, we allocate prototype representation
for predicates through OT and demonstrate the existence of
multi-prototypes through visualization experiments.

Problem Formulation and Definitions

SGG: The task of SGG first parses the input image Z into
an unclassified scene graph G, = {V, = (V,UV,), &}
Where Vo = {vi }fv L

{v MV » 18 the feature of predicate node, where
N and M denote the number of objects and predicates, re-
spectively. The undirected edges in £, connect predicate and
object nodes. In the prediction stage, each object node v
will be assigned a class label from a set of object classes Cl.
Each predicate node V;) will be assigned a class label from a
set of predicate classes Cp,.

C-SGG Models: The commonsense can| be gormulated as
agraph G, = (V.,&.), where V, = {v } and &, de-
note the node set and edge set, respectlvely 1} contains both
object nodes and predicate nodes. Each node in V, repre-
sents the word embeddings of its class label and each class

v is the feature of object node and
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label appears in exactly one node. The edge between two
nodes represents the statistical co-occurrence frequency.

In current C-SGG, a predominant strategy for classifica-
tion is to use a single prototype representation for each class
(Zareian 2020). Specifically, each predicate embedding v;;
is utilized for C,-way classification, as described by Eqn.

(1):
exp (v”—v )

5 exp (v V)
where P (V; | p) is the probability that V; belonging to pred-
icate class p € C,. v. represents a commonsense node, and
Eqn. (1) computes a pairwise similarity from each predi-
cate instance to all commonsense nodes. Consequently, v*
is treated as a single prototype representation.

Although Eqn. (1) reflects the prevailing notion of single
prototype learning in C-SGG, it has the following problems:
1) Eqn. (1) defines each class by a single prototype represen-
tation, neglecting intra-class diversity. 2) The optimization
of Eqn. (1) through cross-entropy loss ignores the absolute
distances between predicates and prototypes, which leads to
the inter-class overlaps.

)

Method
Overview

Our framework is illustrated as Figure 2. Given an unclas-
sified scene graph G, and prototype V. (Figure 2(a)), op-
timal transport is performed to obtain the best matching re-
sults between prototype and predicate features (Figure 2(b)).
According to the matching results, we calculate the average
predicate features corresponding to the prototype, and then
momentum update the prototype features in each training it-
eration. The inter-class separability and intra-class compact-
ness loss are utilized to optimize prototype space. Finally,
the MPL outputs the multi-prototypes C. In the testing stage,
we assign a label to the nearest predicate features V), based
on C to generate the final scene graph (Figure 2(c)).

Multi-prototype Learning

In this section, the details of the multi-prototype learning
framework are described as follows:

Step 1: Initial Predicate Features and Prototypes Ex-
tracting. Given an image Z, the object detector is first used
to extract a set of bounding box proposals B and the cor-
responding region objects feature vectors are V,. The ob-
ject detector also generates visual features V), for predicates
to focus on the closed boxes of any two objects (Xu et al.
2017).

To identify the necessary prototypes that can effectively
differentiate a predicate class, the vector of one predicate
word vector is diverged into K prototypes. Specifically,
given a vector z ~ N(0, 1), a small hyper-sphere is defined
with radius r centered at the prototype V.. We random sam-
ple vectors C = V, + p as multi-prototypes with the sphere,
where p ~ U[—r,r] is a randomly sampled vector from a
uniform distribution z.

Step 2: Prototype-Predicate Feature Matching by
Triple-level Optimal Transport. After obtaining the initial
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Figure 2: An overview of our full method. (a) Unclassified scene graphs extraction. (b) Our proposed MPL framework. (c)
Generated scene graph results. The black arrow represents the training phase, and the green arrow represents the testing phase.

representation of multi-prototypes C, the predicate features
in the same class are matched to the prototypes belonging to
that class, and then update the prototypes according to the
matched predicate features. Step 2 is proposed to solve the
problem 1) of Eqn. (1).

Traditional Optimal Transport. Given M predicate fea-
ture vectors P [v}), .. ,V;)w ] that belong to a class
p € Cp, our goal is to match P to the multi-prototype
CP = [v},...,vE], where C? € C. This matching results
are denoted by Q = [ql, ,qM ] , and Q are optimized
by maximizing the similarity between the predicates and the

prototypes, i.e.,

max Tr(Q"CP'P), )
where Tr(+) is the trace operation (Zhang et al. 2023a).

However, traditional OT can lead to incorrect matching
between prototypes and predicates. As illustrated in Fig-
ure 3(b), when purely relying on the Wasserstein distance
in Eqn. (2) (Lin and Chan 2023), the predicate prototype
standing on (in red) may be wrongly matched with the im-
age corresponding to riding (in blue) because of their visual
similarity.

Triple-level Optimal Transport. To address the above-
mentioned mismatch, we propose the Triple-level Optimal
Transport. In particular, TOT is an optimization problem
consisting of a Wasserstein distance term and a triple dis-
tance term:

max (1-8)Tr(QTcrTP)
Wasserstein term

T T
+ 6<7DOCQDOP - DSCQDsp)

triple—distance term

te (KL (Quu}l]) LKL (@%Hjh)) |

€)

1132

where D, = d(v}, € vi,v})and D, = d(v?, € v}, v})
are the object-predicate distance and subject-predicate dis-
tance in visual triplets, respectively. Similarly, D,. and
D, are the object-predicate distance and subject-predicate
distance in the commonsense triplet, respectively. TOT
achieves a trade-off between predicate-wise comparison and
triple-wise comparison when computing the optimal trans-
port matrix, in which the significance of the two terms
is controlled by the hyperparameter 8 € [0, 1]. For the
marginals of the transport matrix, instead of imposing strict
equality constraints (Zhou et al. 2023), we add two regu-
larizers to penalize the KL-divergences between them and
uniform distributions (Wu et al. 2023). The terms %1 7 and
%1 s in Eqn. (3) represent uniform distribution that assigns
the equal probability to each elements in matrix I and J.
The significance of the two regularizers is controlled by the
hyperparameter £ (Demetci et al. 2020). The regularizers al-
low us to learn the significance and the assignment of the
predicates while avoiding trivial solutions (Figure 3(a)).

The matrix value of Q* stores the matching results of pro-
totypes and features. Q* can be easily calculated throughout
iterative matrix multiplication using the Sinkhorn-Knopp al-
gorithm (Cuturi 2013).

Step 3: Prototype Updating. Following the matching re-
sults of each predicate v; to its corresponding k-th prototype

for class p, the multi-prototypes CP = {fo }szl are updated
as centers of the matched predicate features (Fickinger et al.
2021). Specifically, after each training batch, each prototype
is updated using the following equation:

4)

where p = 0.999 is a momentum coefficient and v, repre-
sents the mean vector of the predicate features matched to
prototype v¥ in Q*.

Step 4: Prototype Space Optimization. Step 4 aims to
solve the problem 2) of Eqn. (1). It is essential to balance the

ve = pve + (1= p)vy,
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(a) An illustration of the TOT.

Figure 3: (a) Given the commonsense and the visual fea-
tures, the TOT not only considers their predicate-wise dis-
tance (the green arrows) but also considers the triple dis-
tance of object-predicate (man-riding) and subject-predicate
(riding-surfboard). Even if the predicate-wise distance is
large, the triple distance can be small (i.e., the lengths of
the black dotted lines are similar). (b) Many predicate in-
stances are matched to one prototype by traditional OT al-
gorithm (Hartigan and Wong 1979). Right: TOT suppresses
the many-to-one matching.

emphasis on prototype diversity to avoid equally distanced
prototypes that can harm separability in predicate classes
(Kang and Ahn 2022). To achieve this, we derive an inter-
class separability Licg for prototype space optimization:

exp (v;—V’j/T)

exp (v} vE/T) + > ecexXp (viv/7)’

&)
where «y represents the set of other K'C), — 1 prototypes, and
T is a control parameter. Eqn. (5) enforces each predicate
instance to be closer to its matched prototype and dissimilar
to other irrelevant prototypes.

However, Eqn. (5) does not take into account the goal of
making predicate features that belong to the same prototype
more compact. Therefore, we use an intra-class compactness
loss Licc to minimize the distance between each predicate
and its matched prototype:

k _
Lice = 6° <\/1 (- 1) NG

where § is a hyperparameter that controls the shape of
Pseudo-Huber loss curve. Compared to Euclidean distance,
Pseudo-Huber loss is more robust to outliers and thus more
suitable for long-tailed scenarios (Barron 2019).

Finally, our complete loss function is formed by the fol-
lowing combination of loss functions:

—log

Lics =

Lc—saa = Liocal + M Lics + A2Licc, @)

where Ly is the focal loss for predicate classification and
object classification (Lin et al. 2017).
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Training Details

The Adam (Kingma and Ba 2014) optimizer is used with
batch size 4 during training. The initial learning rate is
0.0001 for the backbone and 0.0003 for our MPL frame-
work, which decays by a factor of 10 for every 5 epochs.
The weight decay is set as 0.0001. The training of our full
method takes approximately 15-16 hours. The prototype
number K is set to 3. A\; and Ay were set to 0.1 and 0,1,
respectively, by cross-validation. 7 and § are both set to 0.1.
€ is set to 0.05. The radius r is set to 0.0001. The trade-off
hyperparameter 3 is set to 0.1. Importantly, our initial pro-
totype features are generated from commonsense. We use
a pre-trained graph convolution network (GCN) in (Zareian
2020) to make the initial prototype feature have context in-
formation.

Experiments
Dataset and Evaluation Settings

Experiment results using the large-scale Visual Genome
(VG) dataset are presented (Krishna et al. 2017). The train-
ing set of VG includes 70% images, with 5K images used
as a validation subset. The testing set is composed of
the remaining 30% of images. Three standard evaluation
modes are used (Lu et al. 2016): (i) Scene Graph Detec-
tion (SGDET); (ii) Scene Graph Classification (SGCLS);
(ii1) Predicate Classification (PREDCLS). The image-wise
Recall (R) and Mean Recall (mR) is used, which measure the
fraction of ground truth visual predicates appearing in top-
20, top-50, and top-100 confident predictions (Chen et al.
2019b; Tang et al. 2019).

Comparisons with the State-of-the-art Methods

Table 1 shows a comparison of our approach with other
commonsense-based methods considered in Recall. Our
method outperforms all the other models on all three tasks,
achieving 54.2 on average. We train MPL on the Open Im-
ages V6 dataset (Kuznetsova et al. 2020) and compare it
with other complex methods, as shown in Table 2. The ex-
perimental results show that MPL achieved SOTA under all
settings (Following (Cong, Yang, and Rosenhahn 2023)),
which demonstrates the powerful performance.

Ablation Studies of Different Modules

Effectiveness of MPL Framework: As shown in Table 3,
Exp 1 denotes our full method. Three variant experiments
are designed to validate the effect of the MPL framework.
1) Exp 2: We remove step 1 and step 2 in MPL framework
while a fixed commonsense graph is used. It denotes that
commonsense regresses to the single prototype state without
multi-prototype evolution for predicate inference. From Exp
2, the performance consistently improves after the multi-
prototype learning has been applied. 2) Exp 3: We replace
step 2 with traditional OT. From Exp 3, we see a substantial
performance gain after our optimal transport has been ap-
plied. This shows that the matching method based on TOT
is superior to the traditional clustering algorithm. 3) Exp 4-
6: We investigate our overall training objective in Eqn. (7).
Adding Lics or Licc individually brings gains, revealing
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Model SGDET SGCLS PREDCLS

R@20 R@50 R@100 | R@20 R@50 R@I100 | R@20 R@50 R@100 mean
BGNN (Li et al. 2021) (2021) - 31.0 358 - 374 385 - 59.2 61.3 43.9
NICE (Li et al. 2022) - 27.0 30.8 - 37.8 39.0 - 55.0 56.9 41.1
SMP (Zhang et al. 2023b) - 32.6 36.9 - 39.9 40.7 - 66.3 68.0 47.4
GB-Net (Zareian 2020) 20.3 26.4 30.0 349 38.0 38.8 60.4 66.6 68.2 44.7
Motif + DNS (Yao et al. 2021) - 30.9 35.1 - 38.4 39.3 - 64.4 66.4 45.8
TXM (Sharifzadeh et al. 2022) - - - - 39.0 39.9 - 66.7 68.3 -
KEM (Zheng et al. 2023b) - 34.5 37.9 - 47.1 479 - 72.6 73.5 52.3
V'S? (Zhang et al. 2023c) 27.8 36.6 41.5 - - - - - - -
PE-Net (Zheng et al. 2023a) - 30.7 352 - 394 40.7 - 64.9 67.2 46.4
Our method 28.8 37.6 42.2 39.8 48.0 49.2 66.4 73.3 75.1 54.2

Table 1: Comparisons with state-of-the-arts on the VG dataset. Because some methods were not tested on R@20, we only

compute the mean of the two tasks of R@50 and R@100.

Model mR@50 R@50 wmAPrel wmAPphr score wtd
RelDN 33.98 73.08 32.16 33.39 40.84
VCTree 33.91 74.08 34.16 33.11 40.21
MOTIFS 32.68 71.63 2991 31.59 38.93
TDE 3547 69.30 30.74 32.80 39.27
GPS-Net 35.26 74.81 32.85 33.98 41.69
BGNN 40.45 74.98 33.51 34.15 42.06
BGNN+SCR (Kang and Yoo 2023) 42.43 75.21 33.98 35.13 42.66
SGTR (Li, Zhang, and He 2022) - 59.91 36.98 38.73 42.28
RelTR (Cong, Yang, and Rosenhahn 2023) - 71.66 34.19 37.46 42.99
Our method 43.98 76.34 37.11 40.55 44.43

Table 2: Comparison with other state-of-the-art methods on the Open Images V6 (Kuznetsova et al. 2020) test set.

SGDET
Exp Module mR@50 mR@100
1 our full method 21.2 22.3
2 w/o step 1 and step 2 18.8 19.8
3 Replace step 2 with traditional OT | 19.1 20.1
4 w/o Lics and Lico 19.7 20.7
5 w/o Lics 20.9 21.9
6 w/o Licc 20.7 21.7
7 K=1 19.7 20.6
8 K=2 20.1 21.1
9 K=3 21.2 22.3
10 K=4 19.9 20.9
11 K=5 19.3 20.2

Table 3: Ablation studies on the proposed MPL. w/o means
removing the corresponding part in our model.

the value to supervise prototype-prototype and predicate-
prototype distance explicitly.

Effectiveness of Prototype Number K. Exp 7-11 report
the performance of our approach regarding the number of
prototypes. From Exp 9, we observe that with a higher num-
ber K (1 to 3), the performance of our model increases from
19.7 to 21.2 on mR@50. When further considering an even
higher number K (3 to 5), the performance gradually sig-
nificantly degrades (21.2 to 19.3). Although higher proto-
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type numbers allow the model to directly capture more intra-
class information, noisy messages start to permeate through-
out the OT and hamper the final prediction. Therefore, this
suggests that ' = 3 is the optimal choice.

Qualitative Results

Figure 4 shows six challenging images. For example, con-
sidering image (a), we succeeded in correcting the bias in
the pre-trained commonsense based on the multi-prototype
representation of riding, that is, from lying on to riding.
Considering the image (b), the visual posture of the dog
is deceptive, which makes it easier for the commonsense
model to predict sitting on. With our novel MPL frame-
work, we correctly identify the predicate lying on between
dog and bench. In fact, this is precisely because our lying
on prototype has differentiated the shape of dog sitting on
bench. Another interesting example is the image (f), where
our model can deal with a situation where the subject is face.
Our model can correct the coarse predicate of face on pole
to the fine predicate of painted on.

Can our MPL framework really help improve the re-
call of diverse predicates? Based on the clear definition of
prototypes, our scene graph generation process can be eas-
ily understood as matching the most similar prototypes to
each scene. In Figure 5, we demonstrate the matching of
K = 3 prototypes for each class in the riding category.
The matched prototypes are represented by distinct colors,
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Figure 5: Visualization of predicate-prototype similarity for
riding classes.

namely yellow, blue, and red.

To visualize the matching results, we use the color of
the corresponding prototype to indicate the distance of each
predicate to the closest prototype. The results show that the
prototypes correspond well to meaningful patterns within
the classes, which confirms their semantic significance.

In summary, the matching of prototypes based on their
similarity to the input scene facilitates the generation of ac-
curate and semantically meaningful scene graphs. Figure 5
provides a clear illustration of the effectiveness of this ap-
proach in the riding category.

Embedding Spaces Visualization. In Figure 6, on the
left is a single prototype model (Zheng et al. 2023a), and on
the right is our multi-prototype model. As can be observed,
in our algorithm, the predicate embeddings that belong to
the same prototypes are well-separated. This is because our
model is based on a Wasserstein distance-based optimal
transport approach, which reshapes the feature space by en-
coding the latent data structure into the embedding space.
The embedding is directly supervised by both an inter-class
separability loss and an intra-class compactness loss. These
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Figure 6: Embedding spaces learned by (left) single proto-
type model, and (right) our multi-prototype model. For bet-
ter visualization, we show three classes of VG with three
prototypes per class.

losses help improve the separability of different classes and
the compactness of instances within the same class, respec-
tively. By incorporating these losses, our model can better
capture the underlying data structure and produce embed-
dings that are more informative and discriminative.

Conclusion

In this work, we have demonstrated that the single-prototype
used in current C-SGG methods is inadequate for captur-
ing intra-class diversity. To address the problem of misclas-
sifying diverse predicates, we have proposed a novel MPL
that enables better segmentation of the predicate space. Our
approach included a predicate-prototype matching based on
TOT, prototype updating, and prototype space optimization.
Experimental results on the VG dataset have confirmed the
benefits of maintaining multiple-prototypes.
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