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Abstract

Consumer-grade cameras capture the RAW physical descrip-
tion of a scene and then process the image signals to obtain
high-quality RGB images that are faithful to human visual
perception. Conventionally, dense prediction scenes require
high-precision recognition of objects in RGB images. How-
ever, predicting RGB data to exhibit the expected adaptability
and robustness in harsh environments can be challenging. By
capitalizing on the broader color gamut and higher bit depth
offered by RAW data, in this paper, we demonstrate that RAW
data can significantly improve the accuracy and robustness of
object detectors in harsh environments. Firstly, we propose
a general Pipeline for RAW Detection (PRD), along with a
preprocessing strategy tailored to RAW data. Secondly, we
design the RAW Corruption Benchmark (RCB) to address
the dearth of benchmarks that reflect realistic scenarios in
harsh environments. Thirdly, we demonstrate the significant
improvement of RAW images in object detection for low-
light and corrupt scenes. Specifically, our experiments indi-
cate that PRD (using FCOS) outperforms RGB detection by
13.9mAP on LOD-Snow without generating restored images.
Finally, we introduce a new nonlinear method called Func-
tional Regularization (FR), which can effectively mine the
unique characteristics of RAW data. The code is available at
https://github.com/DreamerCCC/RawMining.

Introduction
Background The recent advancements in deep neural net-
works (DNNs) (Liu et al. 2021; Yao et al. 2023) and im-
age signal processing (ISP) (Wu et al. 2019; Chen and Ma
2022) have led to significant progress in low-level vision
imaging tasks, such as image enhancement and image de-
raining. However, while these techniques have made fun-
damental breakthroughs in the field, they do not always
translate into valuable solutions for high-level visual recog-
nition tasks (VidalMata et al. 2020; Al Sobbahi and Tekli
2022). Gradually, the research community and industry have
reached a consensus that there is a discrepancy between
human-driven and machine-driven imaging, whereby the vi-
sual perception and interpretation of images by humans dif-
fers from that of models. On the one hand, ISP is used to
receive the raw signal RAW data (Wang et al. 2023) of the
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Figure 1: (Upper panel) Statistical comparison of RAW and
RGB data. (a) Semantic (Shannon Entropy): Image entropy
measures information content and is used to assess image
complexity. (b) Structural (CEIQ-Contrast (Yan, Li, and Fu
2019)): Based on the contrast assumption, high-contrast im-
ages are always more similar to contrast-enhanced images.
Tested on the full dataset of LOD (Hong et al. 2021). (Lower
panel) Visual comparison of RAW versus RGB data.

sensor for processing the whole camera pipeline. Although
the image enhancement algorithm driven by the human eye
sense can improve the visual quality, more is needed to solve
the object recognition problem (Li et al. 2017; Banerjee et al.
2021). On the other hand, visual recognition tasks are rep-
resented by object detection (Zhang et al. 2022b; Zou et al.
2023) and semantic segmentation (Zhang et al. 2022a). To
bridge the gap with computational photography in recent
years, the community has tried to post-process the acquired
RGB images in specific situations (Shyam et al. 2022; Xu
et al. 2023), such as object detection in the haze (Pham et al.
2022; Wu et al. 2022).

Challenges Deep learning (DL) based object detection
methods (Zhou, Wang, and Krähenbühl 2019; Tian et al.
2019; Tan, Pang, and Le 2020) face challenges in achieving
consistent high efficiency in harsh environments (Bi et al.
2022; Sun et al. 2022). These methods are limited in their
ability to effectively handle the variability and complexity of
environmental factors such as lighting conditions, weather,
and occlusions, which can significantly affect the accuracy
and robustness of detection algorithms. To overcome the in-
terference of extreme weather conditions on the camera in
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autonomous driving, the system’s adaptability to different
situations is usually enhanced by combining technologies
such as lidar and millimeter-wave radar. Tesla Vision fo-
cuses on a solely camera-based approach, enabling a new so-
lution through multi-camera and multi-sensor fusion (Talpes
et al. 2020; Ajitha and Nagra 2021). However, in monocu-
lar vision scenarios, object detectors have not had the op-
portunity to exhibit more robust performance in harsh en-
vironments: Firstly, inadequate lighting will lead to quality
degradation problems such as low brightness and poor con-
trast of RGB images. Secondly, deep models always fall into
different corruption scenarios when densely predicting im-
ages while facing the domain gap between the simulation of
corruption scenarios and the authentic situation. Thirdly, a
corruption benchmark that can reflect natural physical laws
is critical for finding general improvement of deep models
in harsh environments (Chen et al. 2021).

Rethinking: Can RAW be employed for object detection,
and how to use it?

It is widely recognized that cameras are precise instru-
ments for measuring light. In many applications, it is as-
sumed that the radiance of an image is directly related
to the radiance of the scene being captured (Huang et al.
2022). This assumption is based on the principle of radiome-
try (Shaw 2013), which states that the amount of light energy
captured by a camera sensor is proportional to the amount of
light energy emitted by the scene being imaged. The goal of
ISP is to produce visually pleasing images that are faithful
to the photographer’s intent, rather than to provide a precise
representation of the physical properties of the scene. Fig-
ure 1 demonstrates that RAW images contain richer seman-
tic and structural information than RGB. RAW is the orig-
inal data that the sensor converts the captured light source
signal into a digital signal, including the original color in-
formation of the object, etc. Generally, the RAW data format
used in cameras is based on the Bayer arrangement (Richter
and Fößel 2019). Since improvements in RGB image qual-
ity do not always lead to better performance in high-level
recognition tasks (VidalMata et al. 2020; Al Sobbahi and
Tekli 2022; Banerjee et al. 2021; Li et al. 2017), and RAW
data contain richer and more accurate information about the
physical properties of the scene, making it an invaluable re-
source for developing robust object detection algorithms. In
this paper, we investigate the potential of mining RAW data
characteristics for improving the performance of object de-
tectors, focusing on three key research questions:

(1) Why is RAW data required? We propose a general
Pipeline for RAW Detection (PRD) to adapt to different
off-the-shelf object detectors. Specifically, the network
takes RAW Bayer as input, skips the traditional ISP, and
directly produces the prediction result of the target task.
By exploring the preprocessing of RAW data, as well
as different formats of model input, normalization, and
training strategies, we validate the performance of PRD
at nighttime. We demonstrate superiority across differ-
ent detectors and over other pipelines, where CenterNet
improves nighttime RGB detection accuracy and infer-
ence speed by 3.0mAP and 3.02x, respectively, on the

LOD (Hong et al. 2021).
(2) A reliable RAW corruption benchmark? The gap be-

tween methods for artificially synthesizing corruption
scenes and the natural world reduces confidence in the
results. The community has always needed a corruption
benchmark to reflect natural physical laws in RAW data.
We design the RAW Corruption Benchmark (RCB) to
fill the gap where RAW data reflect realistic scenarios
in harsh environments. We verify the considerable im-
provement of the RAW image on the corrupt scenes.
On LOD-Snow, FCOS (Tian et al. 2019) on PRD is
13.9mAP higher than RGB detection.

(3) How can we best utilize the information in RAW data?
The number of photons received by the camera is typ-
ically collected from multiple positions within the sen-
sor, and usually, the RAW data maintains a linear re-
lationship at different exposure levels. Unlike the 8-bit
sRGB color space, RAW data records pixel-level bit
depths typically ranging from 10-16 bits, allowing for
a wider range of potential values to be captured and
processed. We propose a novel nonlinear method called
Functional Regularization (FR) to exploit the unique
characteristics of RAW data further.

To the best of our knowledge, this paper is the first to com-
prehensively study the advantages of RAW data in harsh-
environments object detection, as well as the feasible pro-
cessing procedures and methods. By capitalizing on the
broader color gamut and higher bit depth offered by RAW
data, our results demonstrate that object detection perfor-
mance can be significantly improved, especially in settings
with challenging lighting conditions or other types of inter-
ference. The findings of this study have implications for the
development of more effective and reliable object detection
systems in a range of practical applications.

Preliminaries and Related Work
RAW Data Characteristics
Physical Analysis Compared with the processed sRGB
image, the RAW file has the following good properties:

✝ Data linearity (Huang et al. 2022). The photon count col-
lected from different locations in the sensor maintains a
linear relationship at different exposure levels.

✝ Shooting parameters (Kroon-Batenburg et al. 2017). A
RAW file usually contains sensor and metadata, such
as different camera parameter configurations (camera-
specific) and shooting parameters.

✝ Greater information content and higher bit depth (Bauer
and Becker 2011). The RAW file contains a lot of resolu-
tion, density, and color information, while the RGB final
output is only 8-bit level.

The above characteristics disappear when the RAW files are
processed into final sRGB images. Most image processing
systems serve human vision perceptual quality. Therefore,
the subsequent adjustment stages in processing based on hu-
man vision are conducted, e.g. white balance, tone mapping,
and gamma correction.
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Prior Arts
RAW Data Processing RAW data is a kind of informa-
tion that records the digital camera sensor and also records
the meta-data generated by the camera, such as ISO, wide
door speed, aperture value, etc. Research on RAW data in
low-level vision has primarily focused on denoising (Zhang
et al. 2021) and synthesis of RAW images (Xing, Qian,
and Chen 2021; Zhou et al. 2021). Although there have
been studies on the application of RAW data in downstream
tasks (Ljungbergh et al. 2023; Morawski et al. 2022), the
main focus has been on improving RAW detection perfor-
mance in normal scenarios, often requiring additional pa-
rameters or branches in the pipeline. Additionally, the inte-
gration of camera-specific physical characteristics into ob-
ject detection tasks also has garnered attention in the re-
search community. The importance of dynamic range for
RAW object detection was first demonstrated by (Xu et al.
2023), which introduced the HDR RAW Pipeline. Shyam
et al. proposed an image restoration architecture suitable
for sRGB and RAW images, showcasing improved detection
performance under low-light conditions through a two-stage
training process (Shyam et al. 2022). Rawgment (Yoshimura
et al. 2022), on the other hand, is a data augmentation
method designed explicitly for RAW images, combining
color jittering and blur enhancement. The key focus of our
work, however, is to explore the robustness of raw data in
challenging object detection environments.

Low-light Object Detection Different from general ob-
ject detection, low-light object detection has been regarded
as a new topic rather than a special scene. With the emer-
gence of ExDark (Loh and Chan 2019), LOD (Hong et al.
2021), and RAW-NOD (Morawski et al. 2022) datasets,
methods based on sRGB data and RAW data have also been
proposed. For sRGB data, they can be regarded as degraded
images and supplemented with specific preprocessing mod-
ules (Jiang et al. 2022) or joint training strategies (Guo, Lu,
and Wu 2021). For RAW data, researchers find that powerful
smart ISP models can replace traditional ISPs to improve de-
tection accuracy, and even RAW images can be directly used
to train recognition models. Hong et al. proposed a detec-
tor based on RAW images with excellent performance under
low light (Hong et al. 2021). Our research on RAW data is
aimed at addressing both theoretical and practical gaps in
the area of object detection under challenging conditions.

Benchmarks for Corruption Since Dodge and Karam
studied the fragile performance of deep recognition mod-
els under noise and blur (Dodge and Karam 2016), a se-
ries of research on corruption robustness based on deep
learning methods has been launched. Benchmarks on im-
age classification (Hendrycks and Dietterich 2019), ob-
ject detection (Michaelis et al. 2019), and person re-
identification (Chen, Wang, and Zheng 2021) are proposed
to evaluate the performance of models on common corrup-
tion. Studies have shown that in image classification (Azu-
lay and Weiss 2018), object detection (Chen et al. 2021),
and other tasks (Kamann and Rother 2020), the model al-
ways suffers considerable accuracy loss on corrupt images.
However, in common dense prediction scenarios, it has been
a challenge to obtain a model that balances corruption ro-

bustness and performance without complex process design
and multi-task training (Fan et al. 2022). In this paper, we
propose the corruption benchmark on RAW data for the first
time and discuss RAW’s superior performance on corruption
robustness in general object detection.

Why is RAW Data Required? & A Reliable
RAW Corruption Benchmark

Pipeline for RAW Detection (PRD)
Based on the analysis presented in Sec. Introduction and
the statistical comparison shown in Figure 1, we have con-
cluded that RAW data can offer a more precise and immedi-
ate representation of object information in low-light condi-
tions while also capturing the physical features of the scene
with accuracy. Recent studies investigating the use of RAW
data for object detection have revealed that only a hand-
ful of operations within the traditional ISP pipeline actually
improve the performance of high-level visual tasks (Ljung-
bergh et al. 2023). However, our experiments have demon-
strated that preprocessing RAW data into 8-bit 3-channel
data (RAW-RGB style) is suboptimal, primarily due to the
excessive discarding of important RAW data features. As a
result, we propose the RAW detection pipeline (PRD), as
illustrated in Figure 2, which involves dynamic preprocess-
ing of RAW data and integration with a general detector.
Specifically, (a) the RAW preprocessing step involves pack-
aging the RAW-Bayer input (H×W ×1) into RAW-Packed
(H2 × W

2 × 4) rather than interpolating it into RGB (RAW-
RGB1: H ×W × 3), as described in the following ablation
comparison. (b) To adjust the model’s ability to represent
RAW images, we utilize a normalization range based on the
number of bits, as higher pixel value ranges in RAW data
correspond to richer semantics. For instance, the normalized
range for a 14-bit RAW image is [0, 26). (c) In terms of
the detector, the first layer of the model must be adapted to
RAW-Packed by changing the number of channels in the first
layer to 4 while retaining the same structure and supervision
functions. Notably, PRD does not require metadata.

Normalization Range Adjusting the normalization range
of the input is crucial not only to ensure the model’s capabil-
ity to represent high-bit-depth data but also to enhance the
pretrained model’s adaptability to the unique characteristics
of RAW images. For instance, RGB images (8-bit) are typ-
ically normalized to the range [0, 1]. However, this range
becomes inadequate for representing the rich information in
14-bit RAW images. Therefore, we base our normalization
on the 8-bit range and incrementally expand the processing
range of the data during preprocessing.

Datasets and Pre-training Settings To evaluate the real-
world performance of low-light detection, we utilize the
LOD (Hong et al. 2021) dataset, which consists of 2230 im-
age pairs that are randomly split into a training set of 1830
pairs and a test set of 400 pairs. The RAW-NOD (Morawski
et al. 2022) dataset contains 7K raw images captured in out-
door low-light conditions. PASCALRAW (Omid-Zohoor,

1The detector takes a demosaiced 3-channel RAW-RGB as in-
put to ensure detector compatibility with sRGB.
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Figure 2: The pipeline of RAW Detection (PRD). (i) The preprocessing of RAW Bayer needs to go through “Pack” and “Normal-
ize” to complete the packaging of H×W×1 to H

2 ×W
2 ×4 and normalize the range of pixels. The Bayer and RAW-RGB (Hong

et al. 2021; Morawski et al. 2022; Ljungbergh et al. 2023) formats in related works are shown to be sub-optimal. (ii) Adjusting
the object detector only requires modifying the number of channels in the first layer to match the input of RAW data. (iii) We
propose Functional Regularization (FR) to exploit the unique characteristics of RAW data further.

Ta, and Murmann 2014) contains 4,259 annotated RAW im-
ages, with three annotated object classes (car, person, and
bicycle), and is modeled after the PASCAL VOC database.
The detector pre-training process adheres to the default con-
figuration of MMDetection (Chen et al. 2019). For instance,
when the “Pre-trained” is set to true for CenterNet, irrespec-
tive of the data type (RAW or RGB), the original pre-trained
model is obtained from training on the MS COCO dataset,
following the default configuration.

Data Preprocessing and Implementation Details All
data annotation formats follow the COCO standard. The pre-
processing process in PRD does not perform additional pro-
cessing on the RAW image, such as using the white balance
in the camera’s saved parameters to prevent color cast. We
implement our approach using the Open MMLab Detection
Toolbox (Chen et al. 2019) and PyTorch, running on 8 RTX
NVIDIA 2080Ti GPUs (12GB). We follow the official de-
fault settings of detectors, e.g. for CenterNet, use Random-
CenterCropPad and RandomFlip as data augmentation.

RAW Corruption Benchmark (RCB)
Benchmarking RAW Corruption: Existing Challenges
The discrepancy between synthetic and authentic scenarios
often leads to less confidence in model predictions. Com-
monly, deep learning-based methods face difficulty main-
taining high efficiency in harsh environments. This is pri-
marily attributed to the domain gap between the training
and test datasets. Additionally, deep models are typically de-
signed to capture complex features and patterns in the data,
which can limit their capability to identify and mitigate cor-
ruption outside the scope of the training data. As the oppor-
tunities to harness the potential of RAW data continue to in-
crease, there is an urgent need for a reliable RAW corruption
benchmark to address these challenges. Current corruption
benchmarks (Hendrycks and Dietterich 2019; Chen, Wang,
and Zheng 2021; Chen et al. 2021) typically consist of sev-
eral types of blur, noise, weather, and digital. Each corrup-
tion type is parameterized with five severity levels. However,
these corruption definitions are all based on the RGB level,
making it impractical to apply them to RAW data directly.

RAW Corruption Deep models are susceptible to noise,

and previous noise models have often been simplistic, in-
volving evenly distorting images with Gaussian noise. How-
ever, real image noise differs from the noise generated by
these simple models, as it is a combination of multiple types
of noise, such as photon noise, kTC noise, and dark current
noise. While RGB data is often subject to non-linear noise
or digital corruption, the application scenarios of RAW data
are typically oriented toward real interference. To this end,
we have developed a RAW corruption benchmark that falls
into two broad categories: (1) blur, including defocus, glass,
motion, and zoom, and (2) weather, including snow, frost,
fog, and bright.

(1) RAW noise characteristics: After passing through the
ISP, the noise properties will become more complex and
challenging to process. Specifically, first, lens shading
correction will significantly enhance the noise at the
edge of the image. Second, demosaic will turn image
noise into structural noise, such as unique pattern noise.
Third, Gamma correction leads to nonlinear changes,
and AWB leads to linear shifts in noise. Fourth, CCM’s
color gamut space conversion enhances noise correla-
tion and worsens the visual noise effect.

(2) Dataset collection and preprocessing: To ensure that the
dataset is sufficiently large and representative of real-
world scenarios, we combine the dataset: LOD (Hong
et al. 2021), RAW-NOD (Morawski et al. 2022) and
PASCALRAW (Omid-Zohoor, Ta, and Murmann 2014).
The image preprocessing steps follow the settings out-
lined in our PRD.

(3) Corruption transformation: Previous benchmarks in-
volve generating corrupted sRGB images. In RCB, we
generate perturbations for RAW-RGB. Our methodol-
ogy is inspired by previous works (Zhang et al. 2021)
and (Michaelis et al. 2019). We adopt the severity set-
tings outlined in (Hendrycks and Dietterich 2019).

Evaluation Metric To unify performance evaluation
across diverse datasets in corruption scenarios, we propose
an enhanced metric Q:

Q =

{
AP (%) for LOD & RAW-NOD,
AP 50(%) for PASCALRAW.

(1)
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Items Data Type Pre-trained Normalize Range mAP mAP@50 mAP@75 mAP@S mAP@M mAP@L

Pre
Processing

Format

RGB % % [0,1) 24.6 41.5 25.8 0.0 10.6 29.1
RAW-Bayer % % [0,1) 17.8 32.2 18.3 0.0 4.7 22.0
RAW-RGB % % [0,1) 22.6 38.7 23.6 0.0 7.8 27.4

RAW-Packed % % [0,1) 23.4 40.6 24.4 0.7 6.1 28.6
RGB % ! [0,1) 25.0 40.7 26.9 0.0 12.9 29.8

RAW-Bayer % ! [0,1) 21.2 37.2 21.6 0.4 6.2 26.0
RAW-RGB % ! [0,1) 22.8 39.7 23.5 0.6 7.9 27.5

RAW-Packed % ! [0,1) 23.7 40.4 24.1 0.0 7.7 28.8

Higher Range

RAW-Bayer % ! [0,4) 24.7 43.1 25.1 0.0 7.3 29.8
RAW Packed % ! [0,4) 25.7 43.5 27.0 0.0 8.3 31.2
RAW-Bayer % ! [0,8) 24.1 42.0 24.8 0.0 6.5 29.3
RAW Packed % ! [0,8) 26.7 45.0 28.2 0.0 11.5 31.9
RAW-Bayer % ! [0,64) 24.9 43.7 25.4 0.7 7.8 30.0
RAW Packed % ! [0,64) 28.0 47.5 29.1 0.1 10.4 33.3

Table 1: PRD ablation results on pre-processing for RAW data. The experiments are performed on CenterNet (Zhou, Wang,
and Krähenbühl 2019), LOD (Hong et al. 2021). RAW-RGB represents the demosaic pre-processed RAW image (3 channels,
8-bit), RAW-Bayer, and RAW-Packed are from raw data (1 channel and 4 channels, 14-bit).

This approach maintains the standard measures of AP50 and
AP , allowing for consistent evaluation across datasets. For a
holistic assessment of corrupted scenarios, we introduce the
composite corruption performance:

CCP =
1

Nc ×Ns

Nc∑
c=1

Ns∑
s=1

Qc,s. (2)

Qc,s denotes the performance metric tailored to each dataset,
assessed for corruption type c and its severity s. This encom-
passes 8 distinct corruption categories (i.e., Nc = 8) and
spans 5 levels of severity (i.e., Ns = 5).

Where is RAW Better than RGB?
In most DNNs designed for RAW-to-RGB mapping, the
Bayer mosaic pattern present in the RAW input image is typ-
ically removed by stacking each 2 × 2 block in the original
image in four input channels. This approach ensures transla-
tional color invariance in each channel and biases the input
interpretation toward color separation. One advantage of us-
ing the stacked method is that, for a fixed kernel size, the
receptive field of the first layer is doubled compared to the
flat input, as encountered in dilated convolutions. To address
the issue of selecting an appropriate form of RAW input,
Table 1 compares the effects of using RAW-Bayer, RAW-
RGB, and RAW-Packed inputs. Additionally, to fully lever-
age the rich information provided by the high-bit character-
istics of the RAW data, we also vary the normalization range
during the preprocessing stage. Pre-trained is somewhat un-
fair to RAW-Packed (detector receives 3-channel sRGB for
pre-training, but receives 4-channel RAW-Packed for fine-
tuning), so we compare without it. Under the same normal-
ization standard, RAW Packed (14-bit, 28.0mAP) surpasses
RGB detection (8-bit, 25.0mAP) by 3.0mAP. Due to our in-
ability to establish the accuracy of the RGB inverse transfor-
mation method, we refrain from drawing conclusions about

the performance of RAW versus RGB detection from the un-
processed comparison experiments. We next present experi-
mental results, including the detection performance of RAW
images in low-light and corrupt scenes, as well as a compar-
ison regarding inference speed and training overhead.

Night-time To validate the unique advantages of RAW
data identified through our statistical and physical analy-
ses, we conduct PRD experiments on the low-light LOD
with various detectors. In CenterNet (Zhou, Wang, and
Krähenbühl 2019), RAW detection achieves an accuracy im-
provement of 3.0mAP over RGB detection (from 25.0 to
28.0 mAP), and in EfficientNet-B3 (Tan and Le 2019), the
improvement is 4.6mAP (from 24.5 to 29.1 mAP). This
demonstrates that utilizing RAW images instead of sRGB
images can enhance detection precision under low-light con-
ditions. These results highlight the effectiveness of RAW-
input design in enabling the detector to extract signals that
would otherwise be lost or degraded when using sRGB in-
puts with low signal-to-noise ratios (SNR).

Corruption Scenarios Our evaluation using the RCB re-
veals the distinct advantages of PRD in handling corrupt
scenes, as compared to standard RGB detection. As shown
in Table 2, RAW data consistently outperforms RGB in re-
sisting corruption (the reason for using RAW-RGB is that
the performance of the two data in the same data format
can be compared fairly). Notably, in terms of corruption
robustness, RAW detection significantly surpasses RGB in
both CNN-based and Transformer-based detectors, includ-
ing FCOS and DETR, with improvements of 6.95mAP and
7.96mAP, respectively. This superiority holds even though
Transformer models show greater robustness in RGB sce-
narios under varying weather conditions (Zhou et al. 2022).
Please note that during the training period, the data used also
includes corrupted scene data.

Domain Shift Our investigations into the inference capa-
bilities of normally trained detectors across varied environ-
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FCOS DETRScenarios Corruption Data Type mAP mAP@50 mAP@75 mAP mAP@50 mAP@75

RAW 44.0 71.0 47.1 44.8 71.5 47.2Normal Night Time RGB 44.4 69.9 47.1 46.5 72.4 50.4

Weather

Snow RAW 38.7 (-5.30) 64.4 39.8 36.2 (-8.60) 60.3 39.1
RGB 24.8 (-19.2) 45.8 23.9 20.0 (-26.5) 37.6 18.5

Frost RAW 38.3 (-5.70) 64.6 39.1 37.8 (-7.00) 62.5 40.0
RGB 19.2 (-25.2) 38.1 17.1 12.7 (-33.8) 27.1 9.90

Fog RAW 42.9 (-1.10) 69.3 45.2 42.6 (-2.20) 68.2 47.1
RGB 34.8 (-9.60) 57.6 36.0 30.9 (-15.6) 52.6 31.3

Contrast RAW 42.1 (-1.90) 68.4 44.6 42.0 (-2.80) 68.7 44.7
RGB 39.2 (-4.80) 61.9 42.1 39.2 (-7.30) 61.9 42.1

Blur

Brightness RAW 43.0 (-1.00) 69.3 46.5 42.4 (-2.40) 68.4 46.3
RGB 39.7 (-4.70) 65.4 41.2 37.7 (-8.80) 64.2 38.4

Defocus Blur RAW 43.6 (-0.40) 69.3 47.3 41.8 (-3.00) 68.5 44.8
RGB 41.2 (-3.20) 66.2 43.2 39.7 (-6.80) 66.6 41.4

Motion Blur RAW 43.9 (-0.10) 69.7 47.9 43.1 (-1.70) 70.2 45.6
RGB 43.3 (-1.10) 68.0 45.8 42.5 (-4.00) 67.8 45.4

Zoom Blur RAW 31.3 (-12.7) 55.2 32.1 30.7 (-14.1) 54.8 31.3
RGB 26.0 (-18.4) 49.8 24.5 30.2 (-16.3) 52.0 29.2

Table 2: PRD results under corruption scenarios, fine-tuned with the pre-trained FCOS (Tian et al. 2019) and DETR (Carion
et al. 2020) on LOD (Hong et al. 2021). RAW here refers to RAW-RGB that has been demosaic preprocessed. The RAW
samples in the corruption scenarios are obtained by RCB. Corruption is implemented with severity=2.

mental conditions revealed a significant performance degra-
dation in RGB detection, starkly contrasting to RAW detec-
tion, which demonstrated relative resilience. Using FCOS,
initial RAW and RGB performances are 44.0 and 44.4 mAP,
respectively. In snowy conditions, RAW and RGB fell to
16.4 and 1.2 mAP; in frost, to 18.8 and 2.1 mAP; and in
fog, to 28.4 and 20.1 mAP.

Inference Speed and Training Overhead Firstly, in-
ference speed advantage. In PRD, when processing RAW-
Packed data, the speed of detector inference samples has
also been multiplied. For instance, under an RTX NVIDIA
2080Ti, CenterNet processes RAW and RGB at speeds
of 18.4 and 55.6 images per second (img/s), respectively,
achieving a 3.02-fold increase. Secondly, the memory usage
during model training is basically unchanged. The training
load does not escalate when employing detectors like FCOS
and EfficientDet, among others.

Discussion on the Data Volume Required for Pre-
training Concerning the volume of data required for pre-
training, we contend that it largely hinges on the diversity
and representativeness of the dataset rather than sheer quan-
tity. Since RGB data benefits from ISP compression and
optimization, it facilitates quicker learning of effective fea-
tures, implying that RAW data may require a larger dataset
for model pre-training.

Summary: RAW data has shown significant promise in
object detection, offering numerous advantages. PRD en-
ables current detectors to accurately predict on RAW data,
bypassing the need for additional RGB reconstruction or de-
noising branches. In low-light scenarios, RAW detection no-
tably surpasses RGB, especially as PRD excludes traditional

ISP modules. Furthermore, PRD maintains training effi-
ciency comparable to RGB detection while tripling inference
speed. Our benchmarking of RAW data’s robustness reveals
PRD’s effectiveness in corrupt scenes, with RAW detection
outperforming RGB by average margins of 6.95mAP and
7.96mAP for FCOS and DETR, respectively. These findings
underscore RAW data’s enhanced performance and PRD’s
potential to bolster object detection robustness in challeng-
ing real-world scenarios.

How Can We Better Utilize The Information
in RAW Data?

To improve the mapping and representation of RAW-specific
data in neural networks, one feasible approach is to enhance
the nonlinear activation function in the detector. However,
an activation function tailored for RAW data requires careful
consideration of several factors. Firstly, RAW data often un-
dergoes nonlinear noise that can be challenging to model ac-
curately. Secondly, RAW data has a high dynamic range, and
designing an activation function that can effectively capture
the full range of values in the data can be difficult. Thirdly,
the specific task being addressed is another essential consid-
eration in choosing an activation function for RAW data.

Previous Functions Across theoretical research into
activation functions, those sharing properties similar to
Swish (Ramachandran, Zoph, and Le 2017), which in-
cludes non-monotonicity, the ability to preserve small
negative weights and a smooth profile. For instance,
GELU (Hendrycks and Gimpel 2016) and Mish (Misra
2019). Among them, GELU introduces random regulariza-
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Range Activation Accuracy
mAP mAP@50 mAP@75

ReLU 25.7 43.5 27.0[0,4) FR 28.5+2.8% 47.2+3.7% 30.3+3.3%

ReLU 26.7 45.0 28.2[0,8) FR 27.9+1.2% 46.9+1.9% 29.1+0.9%

ReLU 28.0 47.5 29.1[0,64) FR 28.7+0.7% 48.2+0.7% 30.3+1.2%

Table 3: Ablation of FR in the PRD (normalize range). The
input format: RAW-Packed. Detector: CenterNet.

Figure 3: The activation functions of the Swish (Ramachan-
dran, Zoph, and Le 2017) and the FR (Ours) (left panel), and
the derivatives of these functions (right panel).

tion and retains the function’s dependence on the input.
Heuristically, we also want not to be affected too much by
outlier noise when larger inputs are retained.

Functional Regularization (FR) To enable effective
processing of high-dimensional and information-rich RAW
data, we develop a new regularization function that com-
bines ReLU6 (Krizhevsky and Hinton 2010) and H-
Swish (Howard et al. 2019). Pixels with a higher bit range
typically contain more semantic information, but they may
also contain more noise in the form of RAW data. To address
this issue during training, we have modified the activation
function to mitigate the noise by using a bounded activation
function with stronger regularization. This modification also
helps to solve the problem of large negative inputs. Firstly,
it should have no lower bounds to avoid gradient saturation,
which can cause a sharp drop in training speed. Addition-
ally, incorporating non-monotonicity can help keep negative
values small, thereby stabilizing the gradient flow. Further-
more, due to the preservation of a small amount of negative
information, FR eliminated the preconditions necessary for
the Dying ReLU phenomenon by design.

FR, additionally, is non-monotonic, smooth, and pre-
serves a small amount of negative weights. These properties
contribute to the consistent performance and improvement
observed when using FR in place of ReLU in networks (The
1st derivative of FR is shown in Figure 3):

FR : y = min

(
x · ReLU6(x+ 3)

6
, 8

)
(3)

Inspired by (Howard et al. 2019), we add a maximum
limit to the eigenvalue in FR, which was initially designed to
measure the fixed-point value of the detector. However, with

Format Activation Accuracy
mAP mAP@50 mAP@75

ReLU 21.2 37.2 21.6RAW-Bayer FR 21.9+0.7% 37.2+0.0% 22.6+1.0%

ReLU 22.8 39.7 23.5RAW-RGB FR 25.1+2.3% 42.4+2.7% 26.8+3.3%

ReLU 23.7 40.4 24.1RAW-Packed FR 25.8+2.1% 43.3+2.9% 27.8+3.7%

Table 4: Ablation of FR in the PRD (RAW format). The nor-
malize range: [0,1). Detector: CenterNet.

higher-bit raw values, we find that setting a limit of 8 for the
eigenvalue can provide stronger regularization.

Confirmatory Experiment The FR can produce a strong
regularization effect by reducing the sensitivity of neurons
to large values and minimizing differences in the upper
and lower areas. The main experiment is CenterNet (Zhou,
Wang, and Krähenbühl 2019) done by PRD on LOD. As
shown in Table 3 and 4, without exploding the memory
bandwidths, FR can effectively improve the performance of
the detector in PRD. Compared with ReLU6 and H-Swish,
FR brings CenterNet an improvement of 0.3 and 0.8 mAP
under night-time LOD, respectively. We conduct an in-depth
investigation into the optimal of FR to further enhance per-
formance improvements. We have made the following ob-
servations: (1) Neither ReLU6 nor H-Swish outperforms
ReLU in the head. (2) The appropriate component positions
for ReLU6 and H-Swish differ. (3) Achieving optimal re-
sults involves replacing the activation function with our FR
in the initial layers of both the backbone and neck.

Summary: In contrast to RGB detection, PRD employs a
dynamic amplification of input normalization from a 0-1 dis-
tribution. Additionally, to further enhance the performance
of RAW detection, we develop a method called FR, which
leverages the unique properties of RAW data to improve the
detector’s sensitivity to pixels and features.

Conclusion

Object detectors in monocular vision scenes suffer from in-
terference from harsh environments. Although RAW data is
limited to a specific sensor, it includes more color gamut and
a higher bit depth. Nevertheless, the main problems are (1)
Proving the rationality and advantages of RAW application
in object detection. (2) The performance of different meth-
ods varies significantly across evaluation criteria, especially
in corruption scenarios. (3) Design appropriate methods to
cope with the RAW characteristics. In this paper, we aim
to tackle these challenges. Experimental results demonstrate
the superiority of RAW in nighttime and corruption scenar-
ios, and the regularization of the nonlinear method also im-
proves the feature representation ability of the model.

Potential Negative Impact Model training requires ex-
tensive camera data for diverse scenes, lighting, and devices.
However, this data collection process could violate image
rights without stringent regulatory guidelines.
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