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Abstract

Due to the rapid development of computer vision, single-
modal (RGB) object tracking has made significant progress
in recent years. Considering the limitation of single imaging
sensor, multi-modal images (RGB, infrared, etc.) are intro-
duced to compensate for this deficiency for all-weather ob-
ject tracking in complex environments. However, as acquir-
ing sufficient multi-modal tracking data is hard while the
dominant modality changes with the open environment, most
existing techniques fail to extract multi-modal complemen-
tary information dynamically, yielding unsatisfactory track-
ing performance. To handle this problem, we propose a novel
multi-modal visual prompt tracking model based on a univer-
sal bi-directional adapter, cross-prompting multiple modali-
ties mutually. Our model consists of a universal bi-directional
adapter and multiple modality-specific transformer encoder
branches with sharing parameters. The encoders extract fea-
tures of each modality separately by using a frozen, pre-
trained foundation model. We develop a simple but effec-
tive light feature adapter to transfer modality-specific infor-
mation from one modality to another, performing visual fea-
ture prompt fusion in an adaptive manner. With adding fewer
(0.32M) trainable parameters, our model achieves superior
tracking performance in comparison with both the full fine-
tuning methods and the prompt learning-based methods. Our
code is available: https://github.com/SparkTempest/BAT.

Introduction
Object tracking, a foundation visual task of computer vi-
sion, has achieved significant progress over the past decades.
Many excellent approaches (Zhang et al. 2021b; Yang et al.
2022; Zhang et al. 2021a; Lu et al. 2022; Zhu et al. 2023),
and benchmarks (Li et al. 2016, 2019, 2021; Zhang et al.
2022) have emerged and achieved promising performance
on RGB-based object tracking. However, due to the imag-
ing mechanism of visible light, some complex scenarios in
open environments, such as illumination variation, limit the
practical effectiveness of solely RGB-based object tracking,
leading to target missing or error tracking. Different from
RGB cameras that capture the reflected light of objects, ther-
mal infrared (TIR) imaging sensors capture the heat emit-
ted by the object itself. Compared to RGB images that con-
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Figure 1: Different dominant modality in complex scenarios.
The image with green box represents the dominant modality,
and the red box represents the auxiliary modality.

tain rich color texture in light condition while failing in
dark condition, TIR images provide significant contrast for
heat objects while presenting low resolution and poor tex-
ture. Consequently, to conquer the inherent shortcomings of
single-modality-based methods, multi-modal object track-
ing emerged, which fully leveraged RGB and thermal im-
ages to perform more robust all-weather tracking.

However, existing multi-modal tracking tasks also meet
two main issues: i) Due to the high data labeling cost
of multi-modal object tracking, most existing datasets are
scale-limited, which is insufficient to support building an
effective multi-modal tracker; ii) The dominant correlation
among multi-modal data is not fixed as shown in Fig. 1, be-
cause different imaging modalities have varying sensitivities
to objects in changing environments.

Since pure RGB sequences are much easier to acquire
than RGB-T sequence pairs, some multi-modal tracking
works (Zhu et al. 2019; Gao et al. 2019), accounting for
the first limitation, are pre-trained on RGB sequences first
and then transferred to multi-modal scenarios in a full
fine-tuning manner. For example, The mfDiMP (Zhang
et al. 2019) takes pre-trained DiMP as foundation mod-
els, and fine-tunes it on the generated RGB-T images.
Some researchers develop attribute-based multi-modal fu-
sion model (Li et al. 2020; Zhang et al. 2021a; Xiao et al.
2022) to reduce reliance on large-scale training data while
improving fusion capabilities with a small number of pa-
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rameters. Despite these methods achieving considerable
progress, they also suffered from time expensive and inef-
ficiencies, while showing limited performance. In addition
to full fine-tuning approaches, some recent methods (Yang
et al. 2022; Zhu et al. 2023) introduced the parameter-
efficient prompt tuning to multi-modal tracking by freezing
the backbone parameters and attaching a set of learnable pa-
rameters. These methods commonly took one modality (usu-
ally RGB) as the dominant modality and another one as the
auxiliary modality. However, these methods ignore the dy-
namic dominant correlation of multi-modal data, making it
difficult to fully exploit the complementary multi-modal in-
formation in complex scenarios as shown in Fig. 1, thus lim-
iting the tracking performance.

In this point, we proposed a Bi-directional Adapter for
Multi-modal Tracking (BAT). Different from the methods
that add auxiliary modalities as prompts to the dominant
modality to enhance the representation ability of the foun-
dation model in downstream tasks (which often use RGB as
the primary modality), we do not preset the fixed dominant
modality-auxiliary modality, instead BAT dynamically ex-
tracts effective information from changing auxiliary modal-
ity to dominant modality. BAT consists of two modality-
specific branches and a universal bi-directional adapter.
Each modality-specific branch is initialized by the foun-
dation model with fixed parameters during training. Each
modal branch learns the prompt information from the other
modality to integrate with the feature information of the cur-
rent modality, enhancing the representation ability. The two
modality-specific branch performs interaction by the uni-
versal bi-directional adapter to dynamically fuse dominant-
auxiliary information mutually in a multi-modal non-fixed
association paradigm. The universal bi-directional adapter
has a lightweight hourglass structure. It can be embedded
in each transformer layer of the foundation model without
introducing a large number of learnable parameters. Exper-
iments on RGBT234 (Li et al. 2019) and LasHeR (Li et al.
2021) datasets validate the effectiveness of our BAT frame-
work. By training only a few parameters, BAT achieves sig-
nificant advantages compared with the competing methods.

Our main contributions are summarized as follows:

• We first propose an adapter-based visual prompt frame-
work for multi-modal tracking. Our model perceives the
dynamic changes of the dominant modality in open sce-
narios, effectively fusing multi-modal information in an
adaptive manner.

• To the best of our knowledge, we for the first time pro-
pose a universal bi-directional adapter for the foundation
model. It effectively cross-prompts multi-modal track-
ing with a simple and efficient structure. By only adding
0.32M learnable parameters, our model copes with robust
multi-modal tracking in open scenarios.

• We delved into the effects of our universal adapter on
different depths of layers with in-depth analysis. We also
explore even more efficient adapter architecture in exper-
iments, and validated our superiority on multiple RGBT
tracking-related datasets against the state-of-the-arts.

Related Works
Multi-modal Tracking
Object tracking is designed to track the assigned initial ob-
ject in the initial frame and predict its position and scale
in subsequent frames. Although numerous excellent stud-
ies (Ye et al. 2022; Cui et al. 2022; Lan et al. 2023) have been
proposed and achieved impressive tracking performance,
single-modal object tracking is not adequate to meet cer-
tain situations, such as low illumination, occlusion, or ther-
mal crossover. Accounting for this, multi-modal tracking has
gained increased attention because different modalities have
the potential to offer complementary information mutually,
boosting tracking performance in challenging scenarios that
are difficult to handle purely by single-modal images. For
example, FANet (Zhu et al. 2020) design a feature aggrega-
tion module to fuse multi-modal features within each modal-
ity and an adaptive aggregation module to fuse multi-modal
features in different modalities. HMFT (Zhang et al. 2022)
design a hierarchical fusion framework to integrate multi-
modal features. APFNet (Xiao et al. 2022) used an attribute-
based fusion framework to aggregate attribute-specific fu-
sion features, with a transformer structure to strengthen the
multi-modality features.

Parameter-Efficient Tuning
Fine-tuning is a widely studied technique over the past
decades that usually transfers large pre-trained models to
downstream tasks by updating all the parameters on task-
oriented data. These full fine-tuning method are parameter-
inefficient and also require sufficient data to optimize all
the parameters. Recently, prefix-tuning, a new paradigm for
parameter-efficient tuning, has become widely employed
in natural language processing (NLP), which has demon-
strated its efficiency in a variety of extended computer vi-
sion tasks (Khattak et al. 2023). VPT (Jia et al. 2022) intro-
duces prompt-tuning into the vision task, adding learnable
tokens from the input layer and freezing the backbone to
train the classification head and the newly added prompt to-
ken, achieving better results than full-tuning-based methods.
Protrack (Yang et al. 2022) provides a new perspective for
multi-modal tracking by transforming multi-modal inputs
into a single modality through a prompt paradigm. It exploits
the tracking ability of pre-trained RGB trackers, rather than
building complex multi-modal fusion modules. Inspired by
this, ViPT (Zhu et al. 2023) designs a learnable prompts
generation module to generate prompts for RGB modality
based on thermal infrared modality on downstream tasks.
Unlike visual-language models, RGB-T tracking employs
two comparable modalities, which can be both contributed
by the pre-trained visual foundation model. However, pre-
vious methods mainly take RGB as the dominant modal-
ity, ignoring the dynamically changing environments where
TIR has stronger representation ability than RGB, perform-
ing the dominant modality. This motivates us to break away
from the fixed multi-modal correlation paradigm and design
a universal bi-directional adapter that does not predefine the
dominant modality and can adaptively extract features from
RGB and IR.
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Figure 2: The overall architecture of our proposed BAT. We first transformed the template frame and search frame of each
modality into tokens, then concatenated them together to pass the N -layer dual-stream transformer encoder, respectively. The
bi-directional adapter is paralleled with the dual-stream encoder layer, which could learn feature prompts from one modality to
another. To this end, the output features of the two branches are added and fed into the prediction head for final tracking result.

Methodology
In this paper, we propose a novel universal bi-directional
adapter for multi-modal tracking (BAT), which cross-
prompts multi-modal data mutually. Instead of fully fine-
tuning the foundation model, BAT transfers the pre-trained
tracker to multi-modal scenarios effectively and efficiently
by only learning the lightweight adapter, performing excel-
lent multi-modal complementarity and superior tracking ac-
curacy. We present the overall architecture of our BAT in
Fig. 2.

Multi-modal Tracking
Given a video V with an initial box position B0 of the target
object Z0 in the first frame Itemplate, single-model object
tracking learns to search for this object in the subsequent
frames Isearch. Typically, the object tracker T consists of
a feature extraction function F and a head box H. For
the transformer-based foundation model, the template frame
Itemplate and the search frame Isearch are transformed into
tokens by patch embedding and position embedding, and
then concatenated together to pass through N -layer trans-
former encoder for joint feature extraction. Finally, the out-
put token of encoder for the corresponding search image is
fed into the prediction head to obtain the target tracking re-
sult. Thus, the position of the box B in subsequent frames is
predicted by

B = H(F(Itemplate, Isearch,B0)), (1)

where F is a pre-trained transformer backbone with power-
ful representation ability.

Multi-modal tracking (MMT) extends this setting to mul-
tiple videos in different modalities by formally introducing
another modal stream, which jointly makes the final deci-
sion for the tracking objects. Take RGB-T as an example,
the RGB and thermal modalities are temporally synchro-
nized and spatially aligned. MMT tracks Z0 from both the

subsequent frames of both RGB modality IRGB
search and TIR

modality IT
search as,

B = H(F(IRGB
template, IT

template, IRGB
search, IT

search,B0)).
(2)

As shown in Fig. 2, our BAT has a dual-stream encoder
structure for RGB modality and thermal infrared modality
respectively, each stream of which shares the same param-
eters. BAT first feeds the two modalities IRGB

template, IRGB
search

and IT
template, IT

search to a patch and position embedding
layer, and obtain the RGB tokens xRGB

0 and TIR tokens
xTIR
0 . Then, our universal bi-directional adapter is embed-

ded in the i-th layer of transformer encoder, penetrating the
encoders of two modalities. For the i + 1 layer of each
encoder, it learns to integrate the modality-specific feature
with complementary information of another modality from
its previous layer. Each encoder learns feature prompts from
another modality in a layer-by-layer manner,

(xRGB
i+1 , xTIR

i+1 ) = FA
i (xRGB

i , xTIR
i ), i = 1, 2, · · · , N, (3)

where FA
i refers to the dual-stream encoder layer paralleled

with our bi-directional adapter structure.
To this end, the multi-modal feature of tracking objects is

progressively and dynamically extracted during the N layers
of the transformer encoder in the foundation model. Finally,
the features of two modal branches are added and fed into
the prediction head to obtain the final tracking results as

Bbox = H(xRGB
N + xTIR

N ), i = 1, 2, · · · , N. (4)

Bi-directional Adapter
Our bi-directional adapter (BAT) is designed to cope with
transferring complementary features from one modality to
another in a universal manner. The input modality is self-
adaptive, capable of dynamically extracting the features of
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Figure 3: The detailed architecture of bi-directional adapter.
It consists of three linear projection layers, tn represents the
token’s num of each modality, the input token is first dimen-
sional reduced to de and passed through a linear projection
layer, then up-project to the original dimension dt and fed
into another modality as feature prompts.

the auxiliary modality and transferring them to the dominant
modality as the environment changes.

As shown in Fig. 2, the bi-directional adapter adopts a
modular design, which is embedded in the multi-head self
attention stage and the MLP stage, separately. Here, we take
the processing of xRGB

i → xTIR
i as an example to detail

our bi-directional adapter. The i-th layer of RGB branch in-
tegrates the auxiliary information from TIR branch through
the adapter as,

xRGB
i

′
= xRGB

i + FAtt(xRGB
i ) + PTIR

i ,

PTIR
i = FAda(xTIR

i ), i = 1, 2, ..., N
(5)

where FAtt and FAda represent the multi-head self-
attention block and our bi-directional adapter network, re-
spectively. FAda(·) refers to the output feature prompt of
the bi-directional adapter. The PTIR

i is the feature prompt
extracted from TIR modality. xRGB

i is fed to the multi-head
self attention block after passing a layernorm operator, and
then added with xRGB

i and PTIR
i to obtain xRGB

i
′.

In the next stage, xRGB
i

′ is fed into the multi-layer per-
ceptron FMLP , and added with feature prompt PTIR

i
′ and

xRGB
i

′ together to obtain the output xRGB
i+1 of the i+1 layer

in the RGB encoder.

xRGB
i+1 = xRGB

i

′
+ FMLP (xRGB

i

′
) + PTIR

i

′
, (6)

PTIR
i

′
= FAda(xTIR

i

′
), i = 1, 2, ..., N. (7)

The detailed architecture of our bi-directional adapter is
depicted in Fig. 3, which is designed to transfer feature
prompts from one modality to another modality. The input
token of bi-directional adapter block is first reduced to de di-
mension by down projection layer, and then passed through

a linear projection layer. Then, it is up-projected to the orig-
inal dimension, and fed back to transformer encoder layer
of the other modality as the feature prompt. Through this
simple structure, bi-directional adapter effectively perform
feature prompting between xRGB

i and xTIR
i modalities for

multi-modal tracking.
As for freezing the transformer encoder and prediction

head, we only need to optimize a few parameters of the
newly added adapter. It is worth noting that, different from
most conventional adapters, our bi-directional adapter is per-
formed as a cross-modal feature prompt for the dynamically
changing dominant modality, ensuring promising tracking
performance in the open world.

Objective Loss
The token sequence is first converted to a 2D spatial feature
map, using a series of fully convolutional networks (FCN),
and outputs the target classification score map (indicating
the target location), offset, and the normalized bounding
box. The overall loss function of BAT is formulated as,

Ltotal = Lcls + λ1Liou + λ2L1. (8)

where Lcls denotes the weighted focal loss for classification,
the generalized IoU loss Liou and L1 are adopted for bound-
ing box regression, λ1 and λ2 are trade-off parameters.

Experiments
Experimental Setting
Datasets and Evaluation Metrics. We conduct experi-
ments on two multi-modal tracking datasets: RGBT234 (Li
et al. 2019) and LasHeR (Li et al. 2021), and evaluate the
tracking performance with four evaluation metrics: Preci-
sion Rate (PR), Maximum Precision Rate (MPR), Success
Rate (SR), and Maximum Success Rate (MSR).

RGBT234 provides 234 sequences of aligned RGB and
infrared videos. It offers 12 attributes, including LI (Low
Illumination), Occlusion, DEF (Deformation), Movement,
etc. The total number of frames is about 234K, with a max-
imum of 8K frames per sequence. It provides the ground-
truth label for both RGB and TIR modalities, allowing track-
ers to perform multi-modal performance evaluations.

Due to the RGBT234 use of a parallel optical axis visi-
ble light-infrared imaging system, no pre-processing or post-
processing (such as stereo matching and color correction)
is required. Its cross-modal alignment is more accurate, but
the ground truth for RGB and IR is still not completely con-
sistent. Therefore, for a fair comparison, we use the MPR
and MSR instead of PR and SR as the evaluation metrics.
Specifically, for each frame, the Euclidean distance between
the result box and the ground truth is calculated separately
in the RGB and IR modalities, and the smaller distance is
used to calculate the accuracy.

LasHeR is an RGBT tracking dataset that contains 1224
RGBT sequences with 730K frames, captured in various
types of imaging platforms. It includes 19 video attributes,
adding 7 types of new attributes such as “HI” (High Illumi-
nation), “FL” (Frame Lost), and “AIV” (Abrupt Illumination
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Variation) on the basis of previous ones, making it an even
more challenging dataset for RGBT tracking tasks.

To address the alignment issue of radial distortion images
in different RGBT modalities, the LasHeR dataset only per-
forms precise alignment on the local area covering the target
object in each frame, since the object tracking task does not
emphasize the tracking effect of the background. Thus, for
each frame, a set of matching points is labeled to transform
its RGB image into the same coordinate system as the ther-
mal infrared image. This results in consistent ground truth
for both modalities. Different from the RGBT234 dataset,
PR and SR can be used as evaluation metrics.

Implementation Details. We implement our BAT based
on the Pytorch and train it on 4 NVIDIA RTX A6000 GPUs
with a batch size of 32. We follow the hyper-parameters
setting of the foundation model in the loss function. The
AdamW optimizer (Loshchilov and Hutter 2019) with a
weight decay of 10−4 is adopted, and the learning rate is
set to 4× 10−4. The fixed parameters of the modal-specific
branch in BAT are initialized by the pre-trained foundation
model (Ye et al. 2022). The fine-tuning of our BAT on the
LasHeR training set takes 60 epochs for 8 hours, where each
epoch contains 6× 104 sample pairs.

Comparisons
We compare our model with 19 competing methods. The
quantitative comparisons are reported in Table 1 and the
qualitative evaluation results are presented in Fig. 4.

Quantitative Evaluation on RGBT234. As shown in Ta-
ble 1, for full-tuning competing methods, DMCNet (Lu et al.
2022) achieved considerable performance with the runner-
up MPR score of 83.9%. While the SOTA efficient-tuning
methods ViPT (Zhu et al. 2023) achieved similar perfor-
mance as DMCNet, with a worse MPR score of 83.5% and a
slightly higher MSR score of 61.7%. The existing efficient-
tuning methods did not perform significant improvements.
This may be due to that these efficient-tuning methods are
challenging to dynamically extract compatible information
from both RGB and TIR modalities. As a comparison, our
BAT achieves 86.8% MPR and 64.1% MSR, outperforming
the runner-up MPR and MSR scores by 2.9% and 2.4% re-
spectively, which is a significant improvement among all the
competing methods. The experimental results demonstrate
the effectiveness of our BAT model.

Quantitative Evaluation on LasHeR. Compared with
the RGB234 dataset, the LasHeR dataset is more challeng-
ing, due to more extreme attributes being introduced. The
performance gap of most existing methods is significantly
widened. Previous advanced methods such as DMCNet and
APFNet perform unsatisfactory on this dataset. Even OS-
Track, a tracker only based on RGB modality, reaches a
stronger performance than many RGBT trackers, which
is completely opposite to the situation where multi-modal
trackers take the lead in the RGBT234 dataset. The efficient-
tuning methods such as ProTrack and ViPT are significantly
superior to the traditional methods, which may benefit from

RGBT234 LasHeR
Method MPR↑ MSR ↑ PR ↑ SR ↑
ATOM (2019) - - 40.6 30.7
DiMP-50 (2019) - - 44.2 33.6
mfDiMP (2019) 64.6 42.8 44.8 34.3
DAPNet (2019) 76.6 53.7 43.1 31.4
SiamFC++ (2020) - - 34.8 27.4
CAT (2020) 80.4 56.1 45.0 31.4
CMPP (2020) 82.3 57.5 - -
STARK ST-50 (2021) - - 44.9 36.1
TransT (2021) - - 52.4 39.4
JMMAC (2021b) 79.0 57.3 - -
MANet++ (2021) 79.5 55.9 46.7 31.4
FANet (2020) 78.7 55.3 44.1 30.9
ADRNet (2021a) 80.9 57.1 - -
OSTrack-256 (2022) 72.9 54.9 51.5 41.2
APFNet (2022) 82.7 57.9 50.0 36.2
DMCNet (2022) 83.9 59.3 49.0 35.5
HMFT (2022) 78.8 56.8 - -

ProTrack (2022) 79.5 59.9 53.8 42.0
ViPT (2023) 83.5 61.7 65.1 52.5

BAT (Ours) 86.8 64.1 70.2 56.3

Table 1: Overall performance on RGBT234 and LasHeR
dataset. Results are reported in percentage (%).

the strong representation ability of the used pre-trained foun-
dation model. As shown in Table 1, ViPT achieved 65.1% of
PR and 52.5% of SR, which is a considerable improvement
among the competing methods. However, our BAT even fur-
ther improves the ViPT at 5.1% and 3.8%, reaching 70.2%
and 56.3% of PR and SR scores, respectively. This experi-
ment further validates our universal bi-directional adapter in
learning dynamically changing attributes in complex envi-
ronments.

Qualitative Evaluation. Since our dual-stream encoder
does not rely on a single modality as the dominant modality,
it outperforms single-stream prompt-learning approaches in
complex scenarios when RGB images are distorted or even
unavailable. As shown in Fig. 4(a), the tracking information
provided by the video sequence in the early stage strongly
depends on the TIR image, and after a few frames, the
RGB image progressively dominates and provides more ef-
fective information than TIR. Fixed correlation methods,
such as ViPT, mainly using RGB as the dominant modal-
ity, cope with tracking the object in subsequent bright light
scenes while failing to dynamically track the accurate po-
sition in dark light environments. Our method effectively
tracks the target even when RGB is completely unavail-
able, and the tracking results are much better when both
RGB and TIR provide effective information in subsequent
scenes. As shown in Fig. 4(b), for transparent object track-
ing, the features provided by the RGB modality in this sce-
nario have strong interference. Compared with other meth-
ods that fail to track, our bi-directional adapter dynamically
extracts effective features of the target from both RGB and
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Figure 4: Visualization of tracking results. The green rectangles indicate target objects in the template frame. Our method shows
the best performance in different frame sequences as the dominant modality dynamically changes.
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Figure 5: Different variants of bi-directional adapter for
dual-stream encoder framework.

IR modalities, capturing a more accurate target response po-
sition, and eliminating the interference of the RGB modal-
ity. These experiments demonstrate our effectiveness in dy-
namically prompting effective information from the chang-
ing dominant-auxiliary modalities in complex scenarios.

Discussion
Effect of Different Adapter Variants. In this section, we
explore the different adapter variants in our BAT framework.
As shown in Fig. 5, the adapter can be performed in two
single directions: RGB → TIR in Fig. 5(a) and TIR →
RGB in Fig. 5(b). The single-directional adapter only ex-
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Figure 6: More comparisons of BAT and the competing
methods under different attributes in the LasHeR dataset.

tracts feature prompts from one modality to another, and
only takes one stream’s transformer encoder layer’s output
to regression final result. Fig. 5(c) presents the dual-adapter
architecture without sharing parameters. Each adapter only
extracts feature prompts from one specific modality to an-
other modality. We use the foundation model as our baseline.
The dual-stream framework initialized by the parameters of
foundation model is denoted as Baseline-Dual, which takes
the specific stream that has the maximum score-map value
in the prediction head to calculate the final result.

We reported the results of different variants of adapter in
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Method PR SR

Baseline 51.5 41.2
Baseline-Dual 52.2 42.8
BAT-RGB 69.0 55.4
BAT-TIR 68.5 54.8
BAT-Dual 69.6 56.4

BAT 70.2 56.3

Table 2: Quantitative comparison between different variants
of BAT on the LasHeR dataset

Table 2. The dual-stream baseline (Baseline-Dual) is slightly
better than the foundation model (Baseline), which demon-
strates the foundation model has the potential to be applied
in both RGB and TIR modalities. For the single-directional
adapters, BAT-RGB and BAT-TIR achieve a significant im-
provement over the baseline models. This might be due to
that the effective information of one modality is transferred
to the other modality through the adapter. It further vali-
dated that multi-modal data provides more complementary
information than single modality. Meanwhile, the difference
between BAT-RGB and BAT-TIR is small (less than 3%),
indicating that the dominant correlation is not fixed, dynam-
ically learning from the two modalities has the potential to
perform even better tracking results in more complex con-
ditions. The dual-adapter (BAT-Dual) requires double pa-
rameters compared to our universal bi-directional adapter,
while maintaining the similar performance as our universal
version. This may be because BAT adopts the same founda-
tion model for two modality-specific branches that are fixed
during training. Therefore, the feature distribution should
be compatible with both modalities to dynamically balance
the changing dominant and auxiliary modalities. Our bi-
directional adapter cross-prompts the two branches with a
universal adapter, learning compatibility of multiple modal-
ities and achieving comparable performance with half learn-
able parameters. Our universal adapter is also more flexible
to handle more modalities in a parameter-efficient manner.

Effect of Adapter in Different Layers. To explore a more
efficient adapter architecture, we choose parts of transformer
encoder layers to embed our bi-directional adapter. We pre-
set 6 embedding types, formulated as BAT-“n”, where “n”
represents the remaining number of adapter layers. The re-
sults are shown in Table 3. The layers indicate the position
of our bi-directional adapter in the foundation model. The
performance of BAT-1 is limited as few multi-modal infor-
mation cross-prompts during training. BAT-4 in the middle
layers achieves comparable performance as BAT-12, while
saving more learnable parameters. It demonstrates our uni-
versal bi-directional adapter has the potential to be further
simplified.

More Comparisons under Different Attributes. Since
the LasHeR dataset provides 19 additional attributes in addi-
tion to the point annotates, we further evaluate the proposed
BAT with some advanced competing methods on each at-
tribute. As shown in Fig. 6, our BAT outperforms the com-

Type Layers PR SR

BAT-1 1 61.4 49.3
BAT-1 12 61.6 49.9
BAT-4 1-4 65.2 52.5
BAT-4 5-8 68.6 55.2
BAT-4 9-12 66.4 53.4

BAT-12 1-12 70.2 56.3

Table 3: Results of different bi-directional adapter layers in
LasHeR

Attribute mfDiMP APFNet ViPT Ours

NO 76.5/57.5 66.7/46.7 84.1/68.4 90.2/73.3
HO 19.8/23.8 27.1/27.7 46.8/43.4 56.5/51.0
LI 29.6/23.8 41.8/30.8 49.9/41.2 60.4/48.2

AIV 16.6/16.4 32.1/26.2 36.3/34.2 51.4/45.3
TC 38.0/28.8 43.1/31.6 57.4/46.0 62.7/50.1

Table 4: More quantitative comparisons of PR and SR scores
under five extreme attributes in LasHeR dataset

peting methods in all the attributes. This experiment not only
validates the effectiveness of our method, but also demon-
strates our superior generalization under different condi-
tions. Moreover, we further explore the performance of BAT
in five extreme attributes such as “NO”, “HO”, “LI”, “AIV”
and “TC”. The experimental results of PR and SR scores are
reported in Table 4. Compared with the comparisons on the
complete LasHeR dataset, our model outperforms the com-
peting methods even more under extreme attributes. Our PR
score of “LI” attribute and SR score in “AIV” attribute sur-
passes ViPT by over 10%. These attributes show more dy-
namic than other attributes, which further verifies the effec-
tiveness of our bi-directional adapter in dynamically learn-
ing the changing dominant-auxiliary information for multi-
modal tracking in complex environments.

Conclusion

In this work, we present BAT, a new bi-directional adapter
by introducing a universal feature prompt-learning paradigm
to multi-modal tracking. The core idea of BAT is to dynam-
ically excavate the changing dominant-auxiliary relevance
of multiple modalities in complex scenarios, and extract
complementary information from the pre-trained foundation
model. Extensive experiments on multiple RGBT tracking
datasets demonstrate the superiority of BAT over competing
methods. With the in-depth study of the adapter structure of
BAT, we believe this work has the potential to be applied
to broader tasks. We expect it can attract more attention to
multi-modal parameter-efficient tuning and empower, more
general, vision-language tasks. Moreover, our method is cur-
rently validated in the RGB and TIR tracking task, and in
the future, we are interested in exploring a general model
for more diverse modalities.
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