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Abstract

Domain-generalized urban-scene semantic segmentation
(USSS) aims to learn generalized semantic predictions across
diverse urban-scene styles. Unlike generic domain gap chal-
lenges, USSS is unique in that the semantic categories are
often similar in different urban scenes, while the styles
can vary significantly due to changes in urban landscapes,
weather conditions, lighting, and other factors. Existing ap-
proaches typically rely on convolutional neural networks
(CNNs) to learn the content of urban scenes. In this paper,
we propose a Content-enhanced Mask TransFormer (CM-
Former) for domain-generalized USSS. The main idea is to
enhance the focus of the fundamental component, the mask
attention mechanism, in Transformer segmentation models
on content information. We have observed through empiri-
cal analysis that a mask representation effectively captures
pixel segments, albeit with reduced robustness to style vari-
ations. Conversely, its lower-resolution counterpart exhibits
greater ability to accommodate style variations, while be-
ing less proficient in representing pixel segments. To har-
ness the synergistic attributes of these two approaches, we
introduce a novel content-enhanced mask attention mech-
anism. It learns mask queries from both the image fea-
ture and its down-sampled counterpart, aiming to simulta-
neously encapsulate the content and address stylistic vari-
ations. These features are fused into a Transformer de-
coder and integrated into a multi-resolution content-enhanced
mask attention learning scheme. Extensive experiments con-
ducted on various domain-generalized urban-scene segmen-
tation datasets demonstrate that the proposed CMFormer sig-
nificantly outperforms existing CNN-based methods by up
to 14.0% mIoU and the contemporary HGFormer by up to
1.7% mIoU. The source code is publicly available at https:
//github.com/BiQiWHU/CMFormer.

Introduction
Urban-scene semantic segmentation (USSS) is a challenging
problem because of the large scene variations due to chang-
ing landscape, weather, and lighting conditions (Sakaridis,
Dai, and Van Gool 2021; Mirza et al. 2022; Bi, You, and
Gevers 2023; Chen et al. 2022). Unreliable USSS can pose
a significant risk to road users. Nevertheless, a segmenta-
tion model trained on a specific dataset cannot encompass
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Figure 1: (a) In domain generalized USSS, the domain gap is
mainly from the extremely-varied styles. (b) A segmentation
model is supposed to show good generalization on unseen
target domains.

all urban scenes across the globe. As a result, the segmenta-
tion model is prone to encountering unfamiliar urban scenes
during the inference stage. Hence, domain generalization
is essential for robust USSS (Pan et al. 2018; Huang et al.
2019a; Choi et al. 2021), where a segmentation model can
effectively extrapolate its performance to urban scenes that
it hasn’t encountered before (Fig. 1). In contrast to com-
mon domain generalization, domain generalized USSS re-
quires special attention because the domain gap is mainly
caused by large style variations whereas changes in seman-
tics largely remain consistent (example in Fig. 2).

Existing approaches can be divided into two groups. One
group focuses on the style de-coupling. This is usually
achieved by a normalization (Pan et al. 2018; Huang et al.
2019a; Peng et al. 2022) or whitening (Pan et al. 2019; Choi
et al. 2021; Xu et al. 2022; Peng et al. 2022) transforma-
tion. However, the de-coupling methodology falls short as
the content is not learnt in a robust way. The other group
is based on adverse domain training (Zhao et al. 2022; Lee
et al. 2022; Zhong et al. 2022). However, these methods usu-
ally do not particularly focus on urban styles and therefore
their performance is limited.

Recent work has shown that mask-level segmentation
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Figure 2: Domain-generalized USSS demonstrates a distinc-
tive feature of consistent content with diverse styles. An ex-
ample is given for BDD100K and GTA5.

Transformer (e.g., Mask2Former) (Ding et al. 2023) is a
scalable learner for domain generalized semantic segmenta-
tion. However, based on our empirical observations, a high-
resolution mask-level representation excels at capturing con-
tent down to pixel semantics but is more susceptible to style
variations. Conversely, its down-sampled counterpart is less
proficient in representing content down to pixel semantics
but exhibits greater resilience to style variations.

A novel content-enhanced mask attention (CMA) mech-
anism is proposed. It jointly leverages both mask represen-
tation and its down-sampled counterpart, which show com-
plementary properties on content representing and handling
style variation. Jointly using both features helps the style to
be uniformly distributed while the content to be stabilized in
a certain cluster. The proposed CMA takes the original im-
age feature together with its down-sampled counterpart as
input. Both features are fused to learn a more robust content
from their complementary properties.

The proposed content-enhanced mask attention (CMA)
mechanism can be integrated into existing mask-level seg-
mentation Transformer in a learnable fashion. It consists
of three key steps, namely, exploiting high-resolution prop-
erties, exploiting low-resolution properties, and content-
enhanced fusion. Besides, it can also be seamlessly adapted
to multi-resolution features. A novel Content-enhanced
Mask TransFormer (CMFormer) is proposed for domain-
generalized USSS.

Large-scale experiments are conducted with various do-
main generalized USSS settings, i.e., trained on one dataset
from (Richter et al. 2016; Ros et al. 2016; Cordts et al. 2016;
Neuhold et al. 2017; Yu et al. 2018) as the source domain,
and validated on the rest of the four datasets as the unseen
target domains. All the datasets contain the same 19 se-
mantic categories as the content, but vary in terms of scene
styles. The experiments show that the proposed CMFormer
achieves up to 14.00% mIoU improvement compared to the
state-of-the-art CNN based methods (e.g., SAW (Peng et al.
2022), WildNet (Lee et al. 2022)). Furthermore, it demon-
strates a mIoU improvement of up to 1.7% compared to the
modern HGFormer model (Ding et al. 2023). It also shows
state-of-the-art performance on synthetic-to-real and clear-
to-adverse generalization.

Our contribution is summarized as follows:
• A content-enhanced mask attention (CMA) mechanism

is proposed to leverage the complementary content and
style properties from mask-level representation and its

down-sampled counterpart.
• On top of CMA, a Content-enhanced Mask Transformer

(CMFormer) is proposed for domain generalized urban-
scene semantic segmentation.

• Extensive experiments show a large performance im-
provement over existing SOTA by up to 14.0% mIoU,
and HGFormer by up to 1.7% mIoU.

Related Work
Domain Generalization has been studied on no task-
specific scenarios in the field of both machine learning and
computer vision. Hu et al. (Hu and Lee 2022) proposed a
framework for image retrieval in an unsupervised setting.
Zhou et al. (Zhou et al. 2020) proposed a framework to gen-
eralize to new homogeneous domains. Qiao et al. (Qiao,
Zhao, and Peng 2020) and Peng et al. (Peng, Qiao, and
Zhao 2022) proposed to learn domain generalization from
a single source domain. Many other methods have also been
proposed (Zhao et al. 2020; Mahajan, Tople, and Sharma
2021; Wang et al. 2020; Chattopadhyay, Balaji, and Hoff-
man 2020; Segu, Tonioni, and Tombari 2023).
Domain Generalized Semantic Segmentation is more
practical than conventional semantic segmentation (Pan
et al. 2022; Ji et al. 2021; Li et al. 2021; Ji et al. 2022; Zhou,
Yi, and Bi 2021; Ye et al. 2021), which focuses on the gener-
alization of a segmentation model on unseen target domains.
Existing methods focus on the generalization of in-the-wild
(Piva, de Geus, and Dubbelman 2023), scribble (Tjio et al.
2022) and multi-source images (Kim et al. 2022; Lambert
et al. 2020), where substantial alterations can occur in both
the content and style.
Domain Generalized USSS focuses on the generaliza-
tion of driving-scenes (Cordts et al. 2016; Yu et al. 2018;
Neuhold et al. 2017; Ros et al. 2016; Richter et al. 2016).
These methods use either normalization transformation
(e.g., IBN (Pan et al. 2018), IN (Huang et al. 2019a), SAN
(Peng et al. 2022)) or whitening transformation (e.g., IW
(Pan et al. 2019), ISW (Choi et al. 2021), DIRL (Xu et al.
2022), SAW (Peng et al. 2022)) on the training domain, to
enable the model to generalize better on the target domains.
Other advanced methods for domain generalization in seg-
mentation typically rely on external images to incorporate
more diverse styles (Lee et al. 2022; Zhao et al. 2022; Zhong
et al. 2022; Li et al. 2023), and leverage content consistency
across multi-scale features (Yue et al. 2019). To the best of
our knowledge, all of these methods are based on CNN.
Mask Transformer for Semantic Segmentation uses the
queries in the Transformer decoder to learn the masks,
e.g., Segmenter (Strudel et al. 2021), MaskFormer (Cheng,
Schwing, and Kirillov 2021). More recently, Mask2Former
(Cheng et al. 2022) further simplifies the pipeline of Mask-
Former and achieves better performance.

Preliminary
Problem Definition Domain generalization can be formu-
lated as a worst-case problem (Li, Namkoong, and Xia 2021;
Zhong et al. 2022; Volpi et al. 2018). Given a source do-
main S , and a set of unseen target domains T1, T2, · · · , a
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Figure 3: (a) In the domain-generalized USSS setting, within
the content-style space, samples from various domains tend
to cluster closely along the content dimension while display-
ing dispersion along the style dimension. (b) An optimal
generalized semantic segmentation scenario would involve
uniform distribution of styles while maintaining content sta-
bility (as indicated by the brown bounding box).

model parameterized by θ with the task-specific loss Ltask,
the generic domain generalization task can be formulated as
a worst-case problem, given by

min
θ

supp
T :D(S;T1,T2,··· )≤ρ

ET [Ltask(θ; T1, T2, · · · )], (1)

where θ denotes the model parameters, D(S; T1, T2, · · · )
corresponds to the distance between the source S and tar-
get domain T , and ρ denotes the constraint threshold.

Content-style Feature Space Here we analyze the feature
space. Figure 3a illustrates that in the context of domain-
generalized USSS, samples from distinct domains might ex-
hibit analogous patterns and cluster tightly along the content
dimension. Conversely, samples from diverse domains may
segregate into separate clusters along the style dimension.

An optimal and adaptable segmentation representation
should achieve content stability while simultaneously ex-
hibiting resilience in the face of significant style varia-
tions. Illustrated in Figure 3b, our objective is to cultivate
a content-style space wherein: 1) samples from diverse do-
mains can occupy analogous positions along the content di-
mension, and 2) samples can be uniformly dispersed across
the style dimension. Both learning objectives allow us to
therefore minimize the domain gap.

Overall Idea Recent work has shown that mask-level seg-
mentation Transformer (e.g., Mask2Former) (Ding et al.
2023) is a scalable learner for domain generalized seman-
tic segmentation. However, we empirically observe that, a
mask-level representation is better at representing content,
but more sensitive to style variations (similar to Fig. 3a); its
low-resolution counterpart, on the contrary, is less capable
to represent content, but more robust to the style variations
(similar to the style dimensions in Fig. 3b).

Overall, the mask representation and its down-sampled
counterpart shows complementary properties when handling
samples from different domains. Thus, it is natural to jointly
leverage both mask representation and its down-sampled
counterparts, so as to at the same time stabilize the content
and be insensitive to the style variation.

Difference between Existing Pipelines Existing methods
usually focus on decoupling the styles from urban scenes,
so that along the style dimension the samples from different
domains are more uniformly distributed.

In contrast, the proposed method intends to leverage the
content representation ability of mask-level features and the
style handling ability of its down-sampled counterpart, so as
to realize the aforementioned learning objective.

Methodology
Recap on Mask Attention

Recent studies show that the mask-level pipelines (Strudel
et al. 2021; Cheng, Schwing, and Kirillov 2021; Cheng et al.
2022) have stronger representation ability than conventional
pixel-wise pipelines for semantic segmentation, which can
be attributed to the mask attention mechanism.

It learns the query features as the segmentation masks
by introducing a mask attention matrix based on the self-
attention mechanism. Let Fl and Xl denote the image fea-
tures from the image decoder and the features of the lth layer
in a Transformer decoder, respectively. When l = 0, X0

refers to the input query features of the Transformer decoder.
The key Kl and value Vl on Fl−1 are computed by lin-

ear transformations fK and fV , respectively. Similarly, the
query Ql on Xl−1 is computed by linear transformation fQ.
Then, the query feature Xl is computed by

Xl = softmax(Ml−1 +QlK
T
l )Vl +Xl−1, (2)

where Ml−1 ∈ {0, 1}N×HlWl is a binary mask attention
matrix from the resized mask prediction of the previous
(l − 1)th layer, with a threshold of 0.5. M0 is binarized
and resized from X0. It filters the foreground regions of an
image, given by

Ml−1(x, y) =

{
0 if Ml−1(x, y)=1
-∞ else

. (3)

Exploiting High-Resolution Properties

Highlighted within the green block in Figure 4, our empir-
ical observations reveal that the high-resolution mask rep-
resentation exhibits the following characteristics: 1) greater
proficiency in content representation, and 2) reduced sus-
ceptibility to domain variation. Achieving uniform mixing
of samples from four domains presents a challenge.

To leverage the properties from high-resolution mask rep-
resentations, we use the self-attention mechanism to exploit
the amplified content representation from Xl. Let QXl

, VXl

and KXl
denote its query, value and key, and dk denotes

their dimension. Then, the self-attention is computed as

Attention(QXl ,KXl ,VXl) = Softmax(
QXlKXl√

dk
)VXl , (4)

where Softmax denotes the softmax normalization function,
and the final output is denoted as X̃l.
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Figure 4: (a) The proposed Content-enhanced Mask Attention (CMA) consists of three key steps, namely, exploiting high-
resolution properties (in green), exploiting low-resolution properties (in brown), and content enhanced fusion (in gray). (b)
Framework overview (in yellow) of the proposed Content-enhanced Mask TransFormer (CMFormer) for domain generalized
semantic segmentation. The image decoder is directly inherited from the Mask2Former (Cheng et al. 2022).

Exploiting Low-Resolution Properties
As shown in the brown block of Fig. 4, the low-resolution
mask-level representation has the following properties: 1)
less qualified to represent the content; 2) more capable to
handle the style variation. In the feature space, samples from
different domains are more uniformly distributed. We pro-
pose to build a low-resolution mask representation derived
from its high-resolution counterpart. This approach capital-
izes on the attributes of the low-resolution representation to
effectively address domain variations.

The low-resolution counterpart Fd
l is computed by aver-

age pooling avgpool from the original image feature Fl by

Fd
l = avgpool(Fl), (5)

where the width and height of Fl is both twice the width and
height of Fd

l .
Similarly, the key and value from Fd

l are computed by
linear transformations, and can be denoted as Kd

l and Vd
l ,

respectively. The query from Xd
l−1 is also computed by lin-

ear transformation, and can be denoted as Kd
l . The mask

attention on the low-resolution feature Xd
l is computed as

Xd
l = softmax(Md

l−1 +QlK
dT
l )Vd

l +Xd
l−1. (6)

To exploit the properties from the low-resolution mask
representation Xd

l , we use the self-attention mechanism. Let
QXd

l
, VXd

l
and KXd

l
denote its query, value and keys. Then,

the self-attention is computed by

Attention(Q
Xd

l
,K

Xd
l
,V

Xd
l
) = Softmax(

Q
Xd

l
K

Xd
l√

dk

)V
Xd

l
. (7)

The final output is denoted as X̃d
l . It inherits the charac-

teristics of the low-resolution mask representation, which is
adept at accommodating style variations while being less re-
silient in capturing pixel-level intricacies.

Content-enhanced Fusion
Our idea is to leverage the complementary properties of
mask-level representation and its down-sample counterpart,
so as to enhance both the pixel-wise representing and style
variation handing (shown in the gray box of Fig. 4). The joint
use of both representations aids the segmentation masks in
concentrating on scene content while reducing sensitivity to
style variations.

To this end, we fuse both representations X̃l and X̃d
l in a

simple and straight-forward way. The fused feature Xfinal
l

serves as the final output of the lth Transformer decoder, and
it is computed as

Xfinal
l = hl([X̃l, X̃

d
l ]), (8)

where [·, ·] represents the concatenation operation, and hl(·)
refers to a linear layer.

Network Architecture and Implementation Details
The overall framework is shown in the yellow box of Fig. 4.
The Swin Transformer (Liu et al. 2021) is used as the back-
bone. The pre-trained backbone from ImageNet (Deng et al.
2009) is utilized for initialization.

The image decoder from (Cheng et al. 2022) uses the
off-the-shelf multi-scale deformable attention Transformer
(MSDeformAttn) (Zhu et al. 2021) with the default setting
in (Zhu et al. 2021; Cheng et al. 2022). By considering the
image features from the Swin-Based encoder as input, every
6 MSDeformAttn layers are used to progressively up-sample
the image features in ×32, ×16, ×8, and ×4, respectively.
The 1/4 resolution feature map is fused with the features
from the Transformer decoder for dense prediction.

The Transformer decoder is also directly inherited from
Mask2Former (Cheng et al. 2022), which has 9 self-
attention layers in the Transformer decoder to handle the
×32, ×16 and ×8 image features, respectively.
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Following the default setting of MaskFormer (Cheng,
Schwing, and Kirillov 2021) and Mask2Former (Cheng et al.
2022), the final loss function L is a linear combination of the
binary cross-entropy loss Lce, dice loss Ldice, and the clas-
sification loss Lcls, given by

L = λceLce + λdiceLdice + λclsLcls, (9)

with hyper-parameters λce = λdice = 5.0, λcls = 2.0 as
the default of Mask2Former without any tuning. The Adam
optimizer is used with an initial learning rate of 1 × 10−4.
The weight decay is set 0.05. The training terminates after
50 epochs.

Experiment
Dataset & Evaluation Protocols
Building upon prior research in domain-generalized USSS,
our experiments utilize five different semantic segmentation
datasets. Specifically, CityScapes (Cordts et al. 2016) pro-
vides 2,975 and 500 well-annotated samples for training and
validation, respectively. These driving-scenes are captured
in Germany cities with a resolution of 2048×1024. BDD-
100K (Yu et al. 2018) also provides diverse urban driving
scenes with a resolution of 1280×720. 7,000 and 1,000 fine-
annotated samples are provided for training and validation
of semantic segmentation, respectively. Mapillary (Neuhold
et al. 2017) is also a real-scene large-scale semantic segmen-
tation dataset with 25,000 samples. SYNTHIA (Ros et al.
2016) is large-scale synthetic dataset, and provides 9,400
images with a resolution of 1280×760. GTA5 (Richter et al.
2016) is a synthetic semantic segmentation dataset rendered
by the GTAV game engine. It provides 24,966 simulated
urban-street samples with a resolution of 1914×1052. We
use C, B, M, S and G to denote these five datasets.

Following prior domain generalized USSS works (Pan
et al. 2018, 2019; Choi et al. 2021; Peng et al. 2022), the
segmentation model is trained on one dataset as the source
domain, and is validated on the rest of the four datasets as
the target domains. Three settings include: 1) G to C, B, M,
S; 2) S to C, B, M, G; and 3) C to B, M, G, S. mIoU (in
percentage %) is used as the validation metric. All of our
experiments are performed three times and averaged for fair
comparison. All the reported performance is directly cited
from prior works under the ResNet-50 backbone (Pan et al.
2018, 2019; Choi et al. 2021; Peng et al. 2022).

Existing domain generalized USSS methods are included
for comparison, namely, IBN (Pan et al. 2018), IW (Pan
et al. 2019), Iternorm (Huang et al. 2019b), DRPC (Yue
et al. 2019), ISW (Choi et al. 2021), GTR (Peng et al. 2021),
DIRL (Xu et al. 2022), SHADE (Zhao et al. 2022), SAW
(Peng et al. 2022), WildNet (Lee et al. 2022), AdvStyle
(Zhong et al. 2022), SPC (Huang et al. 2023), and HG-
Former (Ding et al. 2023).

Comparison with State-of-the-art
GTA5 Source Domain Table 1 reports the performance on
target domains of C, B, M and S, respectively. The proposed
CMFormer shows a performance improvement of 10.66%,

Method Trained on GTA5 (G)
→ C → B → M → S

IBN 33.85 32.30 37.75 27.90
IW 29.91 27.48 29.71 27.61

Iternorm 31.81 32.70 33.88 27.07
DRPC 37.42 32.14 34.12 28.06
ISW 36.58 35.20 40.33 28.30
GTR 37.53 33.75 34.52 28.17
DIRL 41.04 39.15 41.60 -

SHADE 44.65 39.28 43.34 -
SAW 39.75 37.34 41.86 30.79

WildNet 44.62 38.42 46.09 31.34
AdvStyle 39.62 35.54 37.00 -

SPC 44.10 40.46 45.51 -
CMFormer (Ours) 55.31 49.91 60.09 43.80

Table 1: G → {C, B, M, S} setting. Performance compari-
son between the proposed CMFormer and existing domain
generalized USSS methods. ’-’: The metric is either not re-
ported or the official source code is not available. Evaluation
metric mIoU is given in (%).

9.45%, 14.00% and 12.46% compared to existing state-
of-the-art CNN based methods on each target domain, re-
spectively. These outcomes demonstrate the feature gener-
alization ability of the proposed CMFormer. Notice that the
source domain GTA5 is a synthetic dataset, while the target
domains are real images. It further validates the performance
of the proposed method.

SYNTHIA Source Domain Table 2 reports the perfor-
mance. The proposed CMFormer shows a 5.67%, 8.73%
and 11.49% mIoU performance gain against the best CNN
based methods, respectively. However, on the BBD-100K
(B) dataset, the semantic-aware whitening (SAW) method
(Peng et al. 2022) outperforms the proposed CMFormer by
1.80% mIoU. Nevertheless, the proposed CMFormer still
outperforms the rest methods. The performance gain of the
proposed CMFormer when trained on SYNTHIA dataset is
not as significant as it is trained on CityScapes or GTA5
dataset. The explanation may be that the SYNTHIA dataset
has much fewer samples than GTA5 dataset, i.e., 9400 v.s.
24966, and a transformer may be under-trained.

CityScapes Source Domain Table 3 reports the per-
formance. As HGFormer only reports one decimal results
(Ding et al. 2023), we also report one decimal results
when compared with it. The proposed CMFormer (with
Swin-Base backbone) shows a performance gain of 6.32%,
10.43%, 9.50% and 12.11% mIoU on the B, M, G and S
dataset against the state-of-the-art CNN based method. As
BDD100K dataset contains many nigh-time urban-street im-
ages, it is particularly challenging for existing domain gen-
eralized USSS methods. Still, a performance gain of 6.32%
is observed by the proposed CMFormer.

On the other hand, when comparing ours with the contem-
porary HGFormer with the Swin-Large backbone, it shows
an mIoU improvement of 1.1%, 1.5%, 1.3% and 1.7% on
the B, M, G and S target domain, respectively.

From Synthetic Domain to Real Domain We also test
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Method Trained on SYNTHIA (S)
→ C → B → M → G

IBN 32.04 30.57 32.16 26.90
IW 28.16 27.12 26.31 26.51

DRPC 35.65 31.53 32.74 28.75
ISW 35.83 31.62 30.84 27.68
GTR 36.84 32.02 32.89 28.02
SAW 38.92 35.24 34.52 29.16

AdvStyle 37.59 27.45 31.76 -
CMFormer (Ours) 44.59 33.44 43.25 40.65

Table 2: S → {C, B, M, G} setting. Performance compari-
son between the proposed CMFormer and existing domain
generalized USSS methods. ’-’: The metric is either not re-
ported or the official source code is not available. Evaluation
metric mIoU is given in (%).

Method Backbone Trained on Cityscapes (C)
→ B → M → G → S

IBN Res50 48.56 57.04 45.06 26.14
IW Res50 48.49 55.82 44.87 26.10

Iternorm Res50 49.23 56.26 45.73 25.98
DRPC Res50 49.86 56.34 45.62 26.58
ISW Res50 50.73 58.64 45.00 26.20
GTR Res50 50.75 57.16 45.79 26.47
DIRL Res50 51.80 - 46.52 26.50

SHADE Res50 50.95 60.67 48.61 27.62
SAW Res50 52.95 59.81 47.28 28.32

WildNet Res50 50.94 58.79 47.01 27.95
HGFormer Swin-T 53.4 66.9 51.3 33.6

Ours Swin-B 59.27 71.10 58.11 40.43
HGFormer Swin-L 61.5 72.1 59.4 41.3

Ours Swin-L 62.6 73.6 60.7 43.0

Table 3: C → {B, M, G, S} setting. Performance compari-
son between the proposed CMFormer and existing domain
generalized USSS methods. ’-’: the metric is either not re-
ported or the official source code is not available. Evaluation
metric mIoU is given in (%). †: HGFormer only reports one
decimal results (Ding et al. 2023).

the generalization ability of the CMFormer when trained on
the synthetic domains (G+S) and validated on the three real-
world domains B, C and M, respectively. The results are
shown in Table 4. The proposed CMFormer significantly
outperforms the instance normalization based (IBN (Pan
et al. 2018)), whitening transformation based (ISW (Choi
et al. 2021)) and adversarial domain training based (SHADE
(Zhao et al. 2022), AdvStyle (Zhong et al. 2022)) methods
by >10% mIoU.

From Clear to Adverse Conditions we further vali-
date the proposed CMFormer’s performance on the adverse
conditions dataset with correspondance (ACDC) (Sakaridis,
Dai, and Van Gool 2021). We set the fog, night, rain and
snow as four different unseen domains, and directly use the
model pre-trained on CityScapes for inference. The results
are shown in Table 5. It significantly outperforms existing
domain generalized segmentation methods (Pan et al. 2018;

Backbone Trained on Two Synthetic Domains (G+S)
→ Citys → BDD → MAP mean

Res50 35.46 25.09 31.94 30.83
IBN 35.55 32.18 38.09 35.27
ISW 37.69 34.09 38.49 36.75

SHADE 47.43 40.30 47.60 45.11
AdvStyle 39.29 39.26 41.14 39.90

SPC 46.36 43.18 48.23 45.92
Ours 59.70 53.36 61.61 58.22

Table 4: Generalization of the proposed CMFormer when
trained on two synthetic datasets and generalized on real do-
mains. Evaluation metric mIoU is presented in (%).

Method Trained on Cityscapes (C)
→ Fog → Night → Rain → Snow

IBN 63.8 21.2 50.4 49.6
IW 62.4 21.8 52.4 47.6

ISW 64.3 24.3 56.0 49.8
ISSA 67.5 33.2 55.9 53.2
Ours 77.8 33.7 67.6 64.3

Table 5: Generalization of the proposed CMFormer to the
adverse condition domains (rain, fog, night and snow) on
ACDC dataset (Sakaridis, Dai, and Van Gool 2021).

Content Enhancement Trained on CityScapes (C)
×32 ×16 ×8 → B → M → G → S

55.43 66.12 55.05 38.19
✓ 56.17 67.55 55.42 38.83
✓ ✓ 58.10 69.72 55.54 39.41
✓ ✓ ✓ 59.27 71.10 58.11 40.43

Table 6: Ablation studies on each component of the pro-
posed CMFormer. ×32, ×16 and ×8 denote the image fea-
tures of ×32, ×16 and ×8 resolution. ✓ refers to the content
enhancement is implemented. Evaluation metric mIoU.

Huang et al. 2019a; Pan et al. 2019; Choi et al. 2021; Li
et al. 2023) by up to 10.3%, 0.5%, 11.6%, 11.1% on the fog,
night, rain and snow domains, respectively.

Ablation Studies
On Content-enhancement of Each Resolution Table 6 re-
ports the performance of the proposed CMFormer when
×32, ×16 and ×8 image features are or are not imple-
mented with content enhancement. The content enhance-
ment on a certain resolution feature allows the exploiting
of its low-resolution properties. When no image features
are implemented with content enhancement, CMFormer de-
grades into a Mask2Former (Cheng et al. 2022) which only
includes the high-resolution properties. When only imple-
menting content enhancement on the ×32 image feature,
the down-sampled ×128 image feature may propagate lit-
tle content information to the segmentation mask, and only
a performance gain of 0.74%, 1.43%, 0.37% and 0.64% on
B, M, G and S target domain is observed. When further im-
plementing content enhancement on the ×16 image feature,
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Unseen images Ground truth IBN SAW OursISWIW

Figure 5: Unseen domain segmentation prediction of existing CNN based domain generalized semantic segmentation methods
(IBN (Pan et al. 2018), IW (Pan et al. 2019), ISW (Choi et al. 2021), SAW (Peng et al. 2022)) and the proposed CMFormer
under the C → B, M, G, S setting.

Unseen images Ground truth IBN SAW OursIW ISW

Figure 6: Unseen domain segmentation prediction of existing CNN based domain generalized semantic segmentation methods
(IBN (Pan et al. 2018), IW (Pan et al. 2019), ISW (Choi et al. 2021), SAW (Peng et al. 2022)) and the proposed CMFormer
under the C → adverse domain setting.

the enhanced content information begins to play a role, and
an additional performance gain of 1.93%, 2.17%, 0.12% and
0.58% is observed. Then, the content enhancement on the
×8 image feature also demonstrates a significant impact on
the generalization ability.

Quantitative Segmentation Results
Some segmentation results on the C → B, M, G, S set-
ting and C → adverse domain setting are visualized in
Fig. 5 and 6. Compared with the CNN based methods, the
proposed CMFormer shows a better segmentation predic-
tion, especially in terms of the completeness of objects.

Conclusion
In this paper, we explored the feasibility of adapting the
mask Transformer for domain-generalized urban-scene se-

mantic segmentation (USSS). To address the challenges of
style variation and robust content representation, we pro-
posed a content-enhanced mask attention (CMA) mecha-
nism. This mechanism is designed to capture more resilient
content features while being less sensitive to style variations.
Furthermore, we integrate it into a novel framework called
the Content-enhanced Mask TransFormer (CMFormer).
Extensive experiments on multiple settings demonstrated the
superior performance of CMFormer compared to existing
domain-generalized USSS methods.

Boarder Social Impact. The proposed method has the
potential to enhance the accuracy and reliability of seman-
tic segmentation models, thereby contributing to safer and
more efficient autonomous systems. Overall, the proposed
content-enhanced mask attention mechanism offers promis-
ing advancements in domain-generalized USSS.
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