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Abstract

Social media platforms are being increasingly used by ma-
licious actors to share unsafe content, such as images de-
picting sexual activity, cyberbullying, and self-harm. Con-
sequently, major platforms use artificial intelligence (AI)
and human moderation to obfuscate such images to make
them safer. Two critical needs for obfuscating unsafe im-
ages is that an accurate rationale for obfuscating image re-
gions must be provided, and the sensitive regions should be
obfuscated (e.g. blurring) for users’ safety. This process in-
volves addressing two key problems: (1) the reason for ob-
fuscating unsafe images demands the platform to provide an
accurate rationale that must be grounded in unsafe image-
specific attributes, and (2) the unsafe regions in the image
must be minimally obfuscated while still depicting the safe
regions. In this work, we address these key issues by first
performing visual reasoning by designing a visual reason-
ing model (VLM) conditioned on pre-trained unsafe image
classifiers to provide an accurate rationale grounded in un-
safe image attributes, and then proposing a counterfactual
explanation algorithm that minimally identifies and obfus-
cates unsafe regions for safe viewing, by first utilizing an
unsafe image classifier attribution matrix to guide segmen-
tation for a more optimal subregion segmentation followed
by an informed greedy search to determine the minimum
number of subregions required to modify the classifier’s out-
put based on attribution score. Extensive experiments on un-
curated data from social networks emphasize the efficacy
of our proposed method. We make our code available at:
https://github.com/SecureAIAutonomyLab/ConditionalVLM

Introduction
Social media is being increasingly misused by bad actors
to share sexually explicit, cyberbullying, and self-harm
content (Hendricks 2021; Chelmis and Yao 2019; Adler and
Chenoa Cooper 2022). However, social media platforms
are required by law to safeguard their users against such
images (Exon 1996), as well as provide a rationale for why
such images are flagged (Cabral et al. 2021) for the purpose
of transparency. In response, major platforms have deployed
AI and human-based content moderation techniques to
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flag and obfuscate (i.e, make the image safer by blurring
sensitive regions) such images (Bethany et al. 2023). This
process involves obfuscating (e.g. by blurring or blocking)
unsafe image regions in the image (Li et al. 2017) along
with generating a rationale that backs up the decision to
obfuscate the flagged images (Meta 2022).

The image obfuscation process faces two critical prob-
lems regarding how much of the unsafe image is obfuscated
and why it is obfuscated: First, the decision to deem an
image unsafe and obfuscate it demands providing a ratio-
nale for the decision. For example, Instagram moderators are
required to provide a legal rationale (Bronstein 2021; Are
2020) to back up their decision (Tenbarge 2023). Existing
visual reasoning methods (Li et al. 2022, 2023; Dai et al.
2023) are severely limited for unsafe images such as sexu-
ally explicit, cyberbullying, and self-harm since they cannot
provide a rationale grounded in attributes that are specific
to such images, such as rude hand gestures in cyberbullying
images (Vishwamitra et al. 2021), or sensitive body parts in
sexually-explicit images (Binder 2019). Second, the unsafe
image needs minimal obfuscation while still depicting the
safe regions for evidence collection and investigation (Billy
Perrigo 2019). For instance, human moderators need to de-
termine the age of the person in the image (e.g., in child sex-
ual abuse material (CSAM) investigations), look for identi-
fiers (e.g., tattoos, scars, and unique birthmarks), and deter-
mine their location information (e.g., landmarks, geograph-
ical features, and recognizable surroundings). Current seg-
mentation techniques (Chandrasekaran et al. 2021; Vermeire
et al. 2022; Bethany et al. 2023) cannot minimally identify
the regions and consequently impede investigations that per-
tinently need full details of the remaining safe regions.

In this work, we take the first step towards addressing
a pertinent, but overlooked problem of the image moder-
ation process in social media platforms. Our major objec-
tive is to first identify and minimally obfuscate the sensitive
regions in an unsafe image such that the safe regions are
unaltered to aid an investigation, and then provide an accu-
rate rationale for doing so, that is grounded in unsafe im-
age attributes (e.g., private body parts, rude gestures or hate-
ful symbols). To this end, we address this problem in two
steps: (1) we develop a novel unsafe image rationale genera-
tion method called ConditionalVLM (i.e., conditional vision
language model) that leverages the state-of-the-art large lan-
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guage models (LLM)-based vision language models (Fang
et al. 2023) to perform an in-depth conditional inspection to
generate an accurate rationale that is grounded in unsafe im-
age attributes; and (2) minimally obfuscating the sensitive
regions only by calculating the classifier attribution matrix
using a FullGrad-based model (Srinivas and Fleuret 2019)
and then utilize this information to guide Bayesian super-
pixel segmentation (Uziel, Ronen, and Freifeld 2019) for a
more informed and optimal dynamic subregion segmenta-
tion, via calculating the attribution score of each subregion.
Finally, we utilize a discrete optimization technique such as
informed greedy search to determine the minimum number
of subregions required to modify the classifier’s output, us-
ing the score attribution.

Our work has profound implications for the safety of so-
cial media content moderators, by greatly reducing their
need to view unsafe content (Steiger et al. 2021), social me-
dia users who are minors or sensitive to such content (Har-
grave and Livingstone 2009), and law enforcement agents
who need to investigate such images as part of their investi-
gation (Krause 2009). We make the following contributions:

• We develop ConditionalVLM, a visual reasoning model
that generates accurate rationales for unsafe images by
leveraging state-of-the-art VLMs conditioned on pre-
trained unsafe image classifiers.

• We develop a novel unsafe image content obfuscation
algorithm that minimally obfuscates only the unsafe re-
gions while keeping the rest of the image unaltered for
investigations.

• Evaluations of our work show that it can categorize the
three social media unsafe categories of images with an
accuracy of 93.9%, and minimally segment only the un-
safe regions with an accuracy of 81.8%.

Related Works
Safeguarding Images
Social media platforms are frequently misused for sharing
various forms of unsafe content, including sexually-explicit
images (Ashurst and McAlinden 2015; Sanchez et al. 2019),
non-consensual intimate images (NCII)(Lenhart, Ybarra,
and Price-Feeney 2016), and child sexual abuse mate-
rial (CSAM)(Sanchez et al. 2019). These platforms also
contribute to the spread of cyberbullying (Vishwamitra
et al. 2021) and self-harm images, which pose significant
risks (John et al. 2018). The traditional blurring approach
in image moderation has wide-ranging implications. Over
a million global moderators face mental health risks from
viewing such content (bbc 2021; reu 2021). Additionally,
minors require image safeguarding to shield them from ex-
posure to harmful content, while law enforcement agents
need it for analyzing crime scene images with minimal ob-
fuscation to preserve crucial investigative details.

Vision-Language Models
Pre-trained models in computer vision (CV) and natural
language processing (NLP) have led to the development
of large-scale Vision-Language Models (VLMs). Methods

like CLIP (Radford et al. 2021) and BEIT-3 (Wang et al.
2023) integrate image-text pairs, with CLIP using con-
trastive training and BEIT-3 employing multiway transform-
ers for masked modeling. Modular approaches also exist,
leveraging established models for image and text interpre-
tation. However, these models face challenges in effec-
tively coordinating visual and textual features. For instance,
Flamingo (Alayrac et al. 2022) and BLIP-2 (Li et al. 2023)
address this by adding cross attention layers or querying
transformers, while LENS (Berrios et al. 2023) develops
visual vocabularies without additional training. A common
limitation is the lack of conditioning capability, crucial for
domain-specific attributes (Ramesh et al. 2022).

Image Segmentation and Counterfactual
Explanation for Obfuscation
Another type of explanation that is growing in popularity
due to its ability to address several of these issues is coun-
terfactual explanations (Wachter, Mittelstadt, and Russell
2017). A counterfactual explanation can be defined as tak-
ing the form: a decision y was produced because variable X
had values (v1, v2, . . . ) associated with it. If X instead had
values (v1′, v2′, . . . ), and all other variables had remained
constant, score y′ would have been produced. Some works
such as BEN (Chandrasekaran et al. 2021), SEDC (Vermeire
et al. 2022), and CSRA (Bethany et al. 2023) have explored
region-based counterfactual visual explanations. However,
existing approaches face two key challenges: 1. suboptimal
subregion boundaries, leading to excessive parts of the im-
age being identified as causing a decision, and 2. high time
complexity 2K in searching for a counterfactual in an im-
age of K regions. BEN and SEDC segment an input image
into K static subregions without any prior knowledge of the
classifier, resulting in an uninformed search strategy for find-
ing the counterfactual examples. While CSRA does use prior
knowledge of the classifier to inform the search of the coun-
terfactual example, BEN, SEDC and CSRA do not jointly
optimize the subregions boundaries and minimize the num-
ber of subregions, which is particularly important for ob-
fuscation applications where preserving as much context as
possible is preferred.

Method
Figure 1 illustrates the architecture of our proposed ap-
proach, which consists of two modules. The initial module
proposes a conditional visual language model designed for
image reasoning. The model classifies images as safe or un-
safe by understanding the interactions or activities of enti-
ties within the image, using its comprehension of visual fea-
tures and linguistic annotations. In the subsequent module,
counterfactual visual explanations are proposed to precisely
identify sub-object regions of the image contributing to its
unsafe classification for obfuscation.

Conditional Vision-Language Model
We introduce a framework that synergistically combines the
strengths of large language models (LLMs) with the spe-
cific requirements of large image encoders. Additionally,
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Figure 1: Overview of the proposed architecture. The initial module utilizes ConditionalVLM for classifying images as safe or
unsafe, while the subsequent module proposes counterfactual visual explanations to identify and obfuscate the unsafe regions
within the image.

it provides more explicit control over visual features being
reasoned. The ConditianalVLM architecture is anchored by
three pivotal components, as depicted in Figure 1:
A Large Pre-trained Image Encoder takes an image X as
input and outputs a visual embedding representation of the
image, Z = g(X). We explore a state-of-the-art pre-trained
vision transformer ViT-g/14 from EVA (Fang et al. 2023).
A Conditional Image Instruction-guided Transformer
(CIIT) employs contrastive language-image pre-training to
encode visual data in congruence with a specific language
prompt. Additionally, we condition this language prompt
using pre-trained unsafe image classifiers. This allows the
model to match and parse the unsafe visual embedding
effectively, while also providing more explicit control over
unsafe visual features (Ramesh et al. 2022). CIIT utilizes
a pre-trained Q-Former model (Li et al. 2023), which is
conditioned on image classifiers as control code c on unsafe
image content such as sexually explicit, cyberbullying, and
self-harm.

• A prior p(I|c) that produces CIIT instruct prompt I con-
ditioned on control code c.

• A transformer decoder p(L|I, c) that produces con-
trastive embedding L conditioned on Instruct prompt I
and control code c.

The transformer decoder allows us to invert images given
their CIIT Instruct prompt, while the prior allows us to learn
a generative model of the image embeddings themselves.
Taking the product of these two components yields a gen-
erative model P (L|c) of embedding L given control c:

p(L|c) = p(L, I|c) = p(L|I, c)p(I|c) (1)

The control code c provides a point of control over the
CIIT generation process. The distribution can be decom-
posed using the chain rule of probability and trained with
a loss that takes the control code into account.

p(L|c) =
n∏

i=1

p(Li|L<i, c) (2)

We train the model with parameters θ to minimize the
negative log-likelihood over a dataset D = X1, ..., Xn:

L(D) = −
|D|∑
k=1

log pθ(L
k
i |L<i, c

k) (3)

A Pre-trained Large Language Model Decoder takes a
text embedding L as input and outputs linguistic sentences
derived from the embedding, Text = LLM(L). We choose
Vicuna (Vic 2023) as our LLM decoder which is constructed
upon LLaMA (Touvron et al. 2023) and can perform a wide
range of complex linguistic tasks.

Counterfactual Subobject Explanations for
Obfuscation
In order to connect region attribution to provide counterfac-
tual subobject region explanation of an image, relative to a
given machine learning predictive model, we propose a two-
phase approach. The pipeline of the proposed approach is
illustrated in Figure 1. We first partition the image into non-
intersecting subobject regions and measuring region attribu-
tion value to each region using gradient attribution maps in
Section 3.1 and Section 3.2. The counterfactual analysis of
alternate versions of the image using a greedy search algo-
rithm using regions with highest attribution values for coun-
terfactual analysis is followed in Section 3.3.
Subobject Region Partitioning using Adaptive Segmen-
tation. We represent a given image,Xas a non-intersecting
set of K regions given by {z1, z2, · · · , zK}. The boundaries
of these regions are defined by clustering algorithms that use
color and spatial information and are called superpixels. Let
Z represent the K region segmentation, zi represent the la-
bel assigned toXi and j represent the label of some arbitrary
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cluster. An image must be segmented into meaningful sub-
object regions in order to allow for a counterfactual analysis
of the image by the binary predictive model f(X) → 0, 1.
These regions serve as the features that are analyzed in
the counterfactual analysis. To maximize the efficiency of
a counterfactual analysis, we require an adaptive segmen-
tation method. Many segmentation methods are wasteful
in their assignment of many segments to uninformative re-
gions, while not segmenting detailed regions enough. Such
a method should be able to respect pixel connectivity and
spatial coherence and requires an adaptive number of re-
gions. K-means based clustering methods are a fast and sim-
ple basis for leading segmentation, however Gaussian Mix-
ture Models (GMM) may be better suited for an adaptive
segmentation method since we need to capture the hetero-
geneity in the pixel distribution of various types of images.

Let N = h ∗ w be the number of pixels in an image, X
with c color channels. The values attributed to the pixels in
X can be denoted as Xi = (li, ci) ∈ R5, where li ∈ R2 rep-
resent the x, y coordinate location and ci ∈ R3 represent the
RGB color information. Superpixel clustering methods with
spatial coherence aim to partition (Xi)

N
i=1 into K disjoint

groups. Let Z represent the K region segmentation, zi rep-
resent the label assigned to Xi and j represent the label of
some arbitrary cluster. Where N (X;µj ,Σj) is a Gaussian
PDF with mean µj and a covariance matrix Σj of size n ∗n,
the PDF of a GMM with K components is

p(X; (µj ,Σj , λj)
K
j=1) =

K∑
j=1

λjN (X|µj ,Σj)

The mixing coefficients λj in the PDF of a GMM form a
convex combination where:

K∑
j=1

λj = 1, λj ≥ 0 ∀j

and this allows for a globally optimal clustering. Given a
Gaussian distribution j where θj = (µj ,Σj), a Bayesian
GMM with random variables (θj)Kj=1 and (λj)

K
j=1 are drawn

from p((θj , λj)
K
j=1), a prior distribution. Assuming inde-

pendence, the prior distribution can be factorized as follows

p((θj , λj)
K
j=1) = p((λj)

K
j=1)

K∏
j=1

p(θj)

Using a Normal-Inverse Wishart (NIW) for p(θj) and a
Dirichlet distribution for p((λj)Kj=1) gives us posterior dis-
tributions in the same form as the priors. Furthermore, the
updates from the priors are given in closed form.

The Bayesian GMM inference to calculate Z can be done
by performing Gibbs sampling, alternating between the fol-
lowing equations:

p((λj)
K
j=1|Z, (Xi)

N
i=1)

K∏
j=1

p((θj , λj)|Z, (Xi)
N
i=1)

p(Z|(θj , λj)Kj=1, (Xi)
N
i=1)

Subobject Region Attribution Value. We start by creating
the FullGrad (Srinivas and Fleuret 2019) attribution map for
image feature attribution. Given an image X and the fea-
ture maps generated by the FullGrad L[u, v] of width u and
height v for the model prediction, the goal of the visual at-
tention model is to identify the discriminative regions of the
image that significantly influence the class prediction score
of the predictive model usingL[u, v] pixel attribution values.

The attribution map of the FullGrad method is generated
by propagating an image through a CNN, obtaining the out-
put score before the softmax layer, and then computing the
gradients with respect to the input (input-gradients) and the
biases at each layer (bias-gradients). These gradients are
then combined, with each bias-gradient reshaped to match
the input dimensionality and all gradients summed to form
the FullGrad attribution map.

FullGrad Definition: Consider a CNN model f, with x de-
noting the input and b denoting the biases at each layer, c
representing the channels of layer k. Furthermore, given an
output of interest f(x), and a postprocessing operator ψ(·)
the FullGrad attribution map LFullGrad is defined as:

LFullGrad = ψ(∇xf(x)⊙ x) +
∑
k∈K

∑
c∈ck

ψ(f b(x)c)

To facilitate an efficient sampling of regions in the coun-
terfactual analysis, we utilize the FullGrad attribution map.

Definition 1: (Subobject Region Attribution Score) Us-
ing the attribution map of model f(X) and the subobject
regions {z1, z2, · · · , zK} created by adaptive segmentation
for the input image X, we define the subobject region attri-
bution score, {s1, s2, · · · , sK} as follows:

sk =
1

n.m

∑
n

∑
m

LFullGrad(F,X)[i, j], X[i, j] ∈ zk

Although feature attributions highlight features that are
significant in terms of how they affect the model’s ability to
predict, they do not indicate that altering significant features
would result in a different desired outcome.

Definition 2: (Subobject Region Confidence Reduc-
tion) Given a model Y = f(X) that takes an image X
with subobject regions X = [z0, z1, ..., zn]

T and outputs a
probability distribution Y. The confidence reduction crk of
subobject region zk, (k ∈ [1, n]) towards Y is the change of
the output by masking the k-th subobject region of X , while
being classified as the same class, as follows:

crk = f(X)− f(X ◦Mask(zk))

In Sec 3.3, we present our greedy region search algorithm
which utilizes subobject region attribution score as heuris-
tics and employs confidence level for causal obfuscation us-
ing counterfactual subobject region explanations.
Counterfactual Generation Using Informed Subobject
Region Search. The previous sections lead us to the mini-
mum region masking problem. This can be computationally
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expensive to solve, as it requires the masking and analysis of
2K different combination of regions, Z of X based on Sec-
tion 3.1 . Rather than solving the problem directly, we find
an approximate solution using a greedy region search.

Given a predictive model f : X → {0, 1}, we
can define the set of counterfactual explanations for
an input x ∈ X as x′ while argminx′ d(x, x′) and
x′ = {x ∈ X | f(x) ̸= f(x′)}. In other words,
x′ = {x ∈ X | f(x) ̸= f(x′)} contains all the inputs x for
which the model f returns a prediction different from f(x)
while minimizing the distance between x and x′.

Our greedy region search, starts with us first sorting the
K regions in descending order by the average attribution
for each region which were calculated in subsection . The
greedy region search considers a subset of regions k ∈ K. k
begins with the top region by average attribution and itera-
tively expands to the top two regions by average attribution
and so on until an x′ is found such that f(x′) ̸= f(x).

Experimental Evaluation
Datasets
We evaluated our Conditional VLM and Counterfactual
Subobject Explanation methods on three datasets of real-
world harmful images to study the practical application of
counterfactual subobject explanations.
Sexually Explicit: First, we sampled a subset of images
from an NSFW images dataset (Kim 2021) consisting of
334,327 images by selecting the “porn”, “neutral”, and
“sexy” classes. We combine the “neutral”, and “sexy”
classes into a single class of “safe” images. In the proceed-
ing experiments, this dataset is denoted as SE.
Cyberbullying: Second, we used a cyberbullying im-
ages (Vishwamitra et al. 2021) dataset consisting of nearly
20,000 images belonging to the classes “cyberbullying” and
“non-cyberbullying”. In the proceeding experiments, this
dataset is denoted as CB.
Self-Harm: Third, we used a self-harm images dataset
(Bethany et al. 2023), consisting of 5000 images with classes
“self-harm” and “non self-harm”. In the proceeding experi-
ments, this dataset is denoted as SH.

Evaluation Settings
ConditionalVLM. We compare our proposed method
against other state-of-the-art image-to-text models such as

Figure 2: Examples of segmentation methods on a cyberbul-
lying image. From top to bottom: (1) BASS, (2) SLIC, (3)
SAM.

InstructBLIP (Dai et al. 2023), OFA-Large (Wang et al.
2022), and mPLUG (Li et al. 2022). We use the implementa-
tions of these methods from HuggingFace. For InstructBLIP,
we use InstructBLIP-Vicuna-13b with num beams=5,
max length=512, min length=1, top p=0.9, repeti-
tion penalty=1.5, length penalty=1.0, and temperature=1.
The image encoder for this implementation of InstructBLIP
was Vit-g/14 (Fang et al. 2023). For mPLUG, we use the
parameters do sample=True, top k=5, and max length=512.
For OFA we use the parameters of num beams=5,
no repeat ngram size=3. To demonstrate our Condi-
tionalVLM framework, we modify the InstructBLIP-
Vicuna-13b architecture to include a CIIT, which we call
ConditionalBLIP. All experiments were carried out on a
DGX 8x A100 GPU, with 80GB of VRAM each.

We fine-tuned a ResNet-50 classifier available in Pytorch
(Paszke et al. 2019) using pre-trained model weights trained
from the ImageNet dataset (Deng et al. 2009). The NSFW,
cyberbullying and self-harm datasets were each divided into
train, validation, and test sets, with 80% being allocated to
the train set, and 10% each allocated to validation and test
sets. We trained the models for 50 epochs and selected the
models that have the highest classification accuracies on the
validation sets. These models achieved accuracies of 98.9%,
91.9% and 97.6% respectively on the test set in our exper-
iments. We use these classifiers as the control code for the
CIIT in ConditionalBLIP.
Counterfactual Subobject Explanations for Obfuscation.
To test different segmentation methods, we experimented
with SLIC (Achanta et al. 2010), Felzenszwalb (Felzen-
szwalb and Huttenlocher 2004), and Compact Watershed
(Neubert and Protzel 2014) segmentation methods imple-
mented in the scikit-image library (van der Walt et al. 2014),
Segment Anything Model (SAM) (Kirillov et al. 2023), and
Bayesian Adaptive Superpixel Segmentation (Uziel, Ronen,
and Freifeld 2019). For our experiments, we selected the fol-
lowing parameters for each segmentation method: for SLIC,
we chose the number of segments to be 25 and compactness
equal to 1; for Felzenszwalb we selected the scale to be 500,

Data Model Human Evaluation
ConditionalBLIP 94.5

SE InstructBLIP 80.0
mPLUG 73.5
OFA-Large 13.5

ConditionalBLIP 99.5
CB InstructBLIP 23.0

mPLUG 16.0
OFA-Large 10.0

ConditionalBLIP 99.0
SH InstructBLIP 47.0

mPLUG 51.5
OFA-Large 17.0

Table 1: Quantitative results of VLM on coarse-grained im-
age descriptions.
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Data Questions InstructBLIP ConditionalBLIP
Does the image contain any sexual content or nudity? 61.1 99.2

SE Does the image contain explicit sexual content? 37.9 99.9

Does the image contain potentially offensive gestures or symbols? 59.1 80.0
Does the image contain any weapons? 99.2 94.0

CB Is there any aggressive behavior shown in the image? 56.4 98.3
Is there any text in the image that might be considered hate speech? 57.2 95.2

Are there any depictions of self-harm in the image? 27.4 98.9
SH Are there visible signs of self-harm through physical trauma? 74.2 99.2

Does the image contain symbols associated with self-destructive behavior? 30.2 81.4

Table 2: Quantitative results of VLM on fine-grained moderator questions.

sigma to be 0.5, and a minimum component size of 200; for
Compact Watershed, we chose the number of markers to be
25 and the compactness parameter to be 0.001.

We used the following attribution map methods in our
experiments: (Grad-CAM (Selvaraju et al. 2017), XGrad-
CAM (Fu et al. 2020), Grad-CAM ++ (Chattopadhay et al.
2018), FullGrad (Srinivas and Fleuret 2019), and Ablation-
CAM (Ramaswamy et al. 2020)). For the implementation of
the attribution map methods, we use the Pytorch Grad-CAM
library (Gildenblat and contributors 2021).

Evaluation Metrics
ConditionalVLM. We evaluate VLM’s ability to investi-
gate three different unsafe image categories in two phases.
In the first phase, we conduct a coarse-grained evaluation
by having human evaluators determine based off of the im-
age descriptions produced by the VLM whether a moderator
should be able to understand which dataset of unsafe im-
age the image belongs to. In this evaluation, a team of three
human evaluators who were involved in this research were
asked to evaluate whether these descriptions produced by
the VLM on the questions of ”What is happening in the im-
age?”, and ”What are the people doing?” were sufficient to
accurately categorize them into the correct dataset that the
unsafe image the image belongs to. The final labels were
assigned by majority voting.

In the second phase, we conduct a fine-grained evaluation
by having human evaluators evaluate the responses of the
VLM to curated moderator questions with respect to an un-
safe image image. These fine-grained questions ask about
specific attributes of images relating to the unsafe image
categories. In this evaluation, the same team of evaluators
were asked to determine whether the answers produced by
the VLM correctly answered these curated questions.
Counterfactual Subobject Explanations for Obfuscation.
We investigate the ability of CSE to generate a successful
counterfactual explanation on an unsafe image X to satisfy
two requirements: (1) the generated counterfactual example
X ′ must be a convincing representation of another class such
that it has a softmax score greater than a threshold T on an-
other class, and (2) the search space that the counterfactual
exampleX ′ exists in must be found by searchingN or fewer
different regions. Since, there are 2K different combinations

of regions to be analyzed inX withK number of regions, we
limit the search space to a certain number of regions in our
evaluation. In our experiments on unsafe images, we select
the threshold for softmax score T to be 0.5 and the threshold
for regions to be 10.

Results and Discussion
ConditionalVLM. The results for the coarse-grained eval-
uations of the VLM are shown in Table 1. In this table, we
present the accuracy of four models, including our model,
ConditionalBLIP, that convert images to text, specifically
focusing on their ability to identify unsafe attributes in im-
ages based on generic questions. In this experiment, a total
of 2000 unsafe image samples from each category of unsafe
image datasets were tested. The results show that Condi-
tionalBLIP is able to significantly outperform other state-
of-the-art models in identifying the unsafe image attributes
of unsafe images, simply from asking generic questions on
the image, with an average correct identification accuracy
of 98% of unsafe image attributes across the three datasets.
Compared to the 50% accuracy by InstructBLIP, 47% by
mPLUG, and 13.5% by OFA-Large, we observe that exist-
ing models are insufficient for describing unsafe images.

We present the questions and quantitative results of the
fine-grained evaluation of ConditionalBLIP in Table 2.
We compare ConditionalBLIP against InstructBLIP, which
showed the best coarse-grained results compared to other
methods that were evaluated in Table 1. Furthermore, the
InstructBLIP model is the most similar in implementation to
the ConditionalBLIP model, where the primary difference
is the usage of the CIIT in ConditionalBLIP. In Table 2, we
present the question posed to the VLM, alongside the de-
tection accuracy of InstructBLIP and ConditionalBLIP on
these questions. The fine-grained evaluation shows that im-
age conditioning significantly enhances VLMs ability to un-
derstand unsafe images, with an average improvement in ac-
curacy of 38.2% across the questions. The comparison be-
tween the performances of InstructBLIP and Conditional-
BLIP reveals significant differences in their respective abil-
ities to identify and describe unsafe content in visual data.
By employing contrastive language-image pre-training and
conditioning the language prompt using pre-trained unsafe
image classifiers, ConditionalBLIP is able to parse the un-
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safe visual embedding effectively.
Counterfactual Subobject Explanations for Obfuscation.

For the counterfactual image obfuscation experiments, we
test on 585 sexually explicit, cyberbullying and self-harm
images. We compare our method against the CSRA method,
setting numROI = 10 to match time complexity. Previous
work showed gradient-based attribution maps were unsuit-
able for obfuscating unsafe images (Bethany et al. 2023).
Our trained models show improvements of 13.9% on sex-
ually explicit, 22.0% on cyberbullying, and 39.5% on self-
harm images when comparing CSRA vs CSE.

We tested various attribution map methods with BASS
(Uziel, Ronen, and Freifeld 2019) as the constant segmenta-
tion method on unsafe image samples, with results in Table
3. The average search space required to find a counterfactual
example was presented, showing that different attribution
map methods do not significantly impact CSE, with most
generating similar highest average attribution scores in sim-
ilar areas. The exception was the FullGrad method, which
provided slightly more successful counterfactual examples,
better average search space, and fewer obfuscated regions.
This can be attributed to FullGrad’s more dispersed attri-
butions across the image, which does not restrict the search
space as much, and its unique method of satisfying local
and global importance by aggregating information from
both input-gradient and intermediate bias-gradients, thus
aiding CSE in finding suitable counterfactual explanations
more readily.

We tested different segmentation methods with FullGrad
as the constant attribution map method on unsafe image
samples, and the results are in Table 4. The choice of seg-
mentation method significantly impacted the number of suc-
cessful counterfactual explanations, average search space,
and average number of regions obfuscated. BASS was the
most effective, with a combination of BASS and FullGrad
yielding 81.8% successful counterfactual examples, a search

Data Attr Map CF Avg Depth Avg Obf
FullGrad 90.6 5.8 35.0
Ablation-CAM 90.6 5.8 35.2

SE Grad-CAM 90.6 5.8 35.2
Grad-CAM++ 90.6 5.8 35.2
XGrad-CAM 90.6 5.8 35.2

FullGrad 82.0 5.2 35.2
Ablation-CAM 79.5 5.1 34.2

CB Grad-CAM 79.5 5.1 34.2
Grad-CAM++ 79.5 5.1 34.2
XGrad-CAM 79.5 5.1 34.2

FullGrad 72.8 5.6 50.1
Ablation-CAM 72.8 5.6 50.1

SH Grad-CAM 72.8 5.6 50.1
Grad-CAM++ 72.8 5.6 50.1
XGrad-CAM 72.8 5.6 50.1

Table 3: Quantitative results of CSE using different attribu-
tion map methods.

Data Segmentation CF Avg Depth Avg Obf
BASS 90.6 5.8 35.0
SLIC 76.6 7.6 33.0

SE Felzenswalb 19.9 7.5 12.2
Watershed 51.2 7.9 31.9
SAM 29.5 7.4 33.2

BASS 82.0 5.2 35.2
SLIC 60.0 6.3 25.9

CB Felzenswalb 20.5 6.3 17.6
Watershed 50.0 6.6 23.9
SAM 50.0 6.6 40.2

BASS 72.8 5.6 50.1
SLIC 33.4 6.6 26.3

SH Felzenswalb 38.4 6.5 47.5
Watershed 33.1 6.8 24.6
SAM 39.5 6.2 70.6

Table 4: Quantitative results of CSE on different segmenta-
tion methods.

depth of 5.5, and an average of 40.1% of the image obfus-
cated. The segmentation’s effect on counterfactual examples
can be seen in Figure 2, and as Table 4 showed, methods like
BASS are key for successful counterfactual explanations, as
they break the image into non-intersecting, color and spa-
tially coherent subobjects.
Ablation Study. To evaluate our vision-language model’s
conditioning, we conducted an ablation study by changing
unsafe classifier guidance on the Image Instruction-guided
Transformer or CIIT model’s instruct prompt embedding
from 1 to 0. This conditioning on zero-shot instruct embed-
dings yielded acceptable results for unsafe images by allow-
ing CIIT to match and parse the unsafe visual embedding
effectively, while also providing more explicit control over
unsafe visual feature correlation with conditioned instruct
prompt. For instance, the LLM decoder’s output for an un-
safe image changed to suggest “women are performing po-
tential erotic dance in a bar” vs. “women dancing in a bar”.
These results suggest that conditioning is a promising ap-
proach for vision language models.

Conclusion
In this work, we have presented ConditionalVLM, a vi-
sual reasoning framework that generates accurate rationales
for unsafe image descriptions by leveraging state-of-the-
art VLMs conditioned on pre-trained unsafe image clas-
sifiers, and CSE, a counterfactual visual explanation tech-
nique to obfuscate the unsafe regions in unsafe images for
safer sharing. We evaluated these two methods on three cat-
egories of unsafe images. An implementation of Condition-
alVLM, which we called ConditionalBLIP showed supe-
rior performance compared to other state-of-the-art image-
to-text models on describing unsafe images. We also com-
pare CSE against another recent unsafe image obfuscation
method and show how our approach is effective in generat-
ing causal explanations for obfuscating unsafe images.
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