Exposing the Deception: Uncovering More Forgery Clues for Deepfake Detection

Authors

  • Zhongjie Ba State Key Lab. of Blockchain and Data Security, Zhejiang University, Hangzhou, China ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
  • Qingyu Liu State Key Lab. of Blockchain and Data Security, Zhejiang University, Hangzhou, China ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
  • Zhenguang Liu State Key Lab. of Blockchain and Data Security, Zhejiang University, Hangzhou, China ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
  • Shuang Wu Black Sesame Technologies, Singapore
  • Feng Lin State Key Lab. of Blockchain and Data Security, Zhejiang University, Hangzhou, China ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
  • Li Lu State Key Lab. of Blockchain and Data Security, Zhejiang University, Hangzhou, China ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
  • Kui Ren State Key Lab. of Blockchain and Data Security, Zhejiang University, Hangzhou, China ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China

DOI:

https://doi.org/10.1609/aaai.v38i2.27829

Keywords:

CV: Computational Photography, Image & Video Synthesis, CV: Biometrics, Face, Gesture & Pose, CV: Representation Learning for Vision

Abstract

Deepfake technology has given rise to a spectrum of novel and compelling applications. Unfortunately, the widespread proliferation of high-fidelity fake videos has led to pervasive confusion and deception, shattering our faith that seeing is believing. One aspect that has been overlooked so far is that current deepfake detection approaches may easily fall into the trap of overfitting, focusing only on forgery clues within one or a few local regions. Moreover, existing works heavily rely on neural networks to extract forgery features, lacking theoretical constraints guaranteeing that sufficient forgery clues are extracted and superfluous features are eliminated. These deficiencies culminate in unsatisfactory accuracy and limited generalizability in real-life scenarios. In this paper, we try to tackle these challenges through three designs: (1) We present a novel framework to capture broader forgery clues by extracting multiple non-overlapping local representations and fusing them into a global semantic-rich feature. (2) Based on the information bottleneck theory, we derive Local Information Loss to guarantee the orthogonality of local representations while preserving comprehensive task-relevant information. (3) Further, to fuse the local representations and remove task-irrelevant information, we arrive at a Global Information Loss through the theoretical analysis of mutual information. Empirically, our method achieves state-of-the-art performance on five benchmark datasets. Our code is available at https://github.com/QingyuLiu/Exposing-the-Deception, hoping to inspire researchers.

Published

2024-03-24

How to Cite

Ba, Z., Liu, Q., Liu, Z., Wu, S., Lin, F., Lu, L., & Ren, K. (2024). Exposing the Deception: Uncovering More Forgery Clues for Deepfake Detection. Proceedings of the AAAI Conference on Artificial Intelligence, 38(2), 719-728. https://doi.org/10.1609/aaai.v38i2.27829

Issue

Section

AAAI Technical Track on Computer Vision I