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Abstract

Large language models contain noisy general knowledge of
the world, yet are hard to train or fine-tune. In contrast cogni-
tive architectures have excellent interpretability and are flexi-
ble to update but require a lot of manual work to instantiate. In
this work, we combine the best of both worlds: bootstrapping
a cognitive-based model with the noisy knowledge encoded
in large language models. Through an embodied agent doing
kitchen tasks, we show that our proposed framework yields
better efficiency compared to an agent entirely based on large
language models. Our experiments also indicate that the cog-
nitive agent bootstrapped using this framework can generalize
to novel environments and be scaled to complex tasks.

Introduction
Large language models (LLM) such as GPT-4 (OpenAI
2023), have shown emerging capabilities after training on
internet-scale text data with human feedback, and have been
employed in robot planning (Huang et al. 2022), animal be-
havior analysis (Ye et al. 2023), human proxies (Zhang and
Soh 2023), and many more. However, they have also been
criticized for being susceptible to adversarial attacks (Zou
et al. 2023), hallucination (Casper et al. 2023), and having
diminishing returns for scaling (OpenAI 2023).

Cognitive architectures are another approach in the pur-
suit of AI that attempts to model human cognition computa-
tionally (Newell 1994). Despite the variety of architectures
developed, most of them share the same central components,
consisting of declarative memory reflecting knowledge of
the world, procedural memory dictating the agent’s behav-
ior, and short-term working memory that assists reasoning
and planning (Laird, Lebiere, and Rosenbloom 2017).

The procedural memory is represented by a set of produc-
tion rules, each with a precondition and an effect. Agents op-
erate in perceive-plan-act cycles, dynamically matching rel-
evant features of the environment to the production rules and
applying their effects. Unlike operators in symbolic plan-
ning, production rules do not represent alternative actions
but instead reflect different contextual knowledge (Laird
2022). These rules can be reinforced and modified through-
out the agent’s learning process. Despite some pioneering
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Figure 1: Overview of agent framework. It shows the agent
executing the production of attending to a new subtask of
finding a tomato when the original task is to slice a tomato
and the tomato is not in the gripper nor on the table. Dotted
lines represent the information a production rule may condi-
tion on. Solid lines represent information flow.

work on data-driven cognitive model creation (Hake, Sibert,
and Stocco 2022), almost all previous work generate their
initial set of production rules manually, limiting their appli-
cation to simple environments such as blocks world or psy-
chology experiments (Park et al. 2023).

In this work, we combine the two approaches in a com-
plementary fashion (Figure 1). LLMs encode the common
sense knowledge of the world (Madaan et al. 2022) that can
be used in place of human labor for constructing agents in
the cognitive architecture. The reasoning and learning capa-
bilities in the cognitive architecture can identify and filter the
noise in LLMs while converting the knowledge in language
to actionable productions of an embodied agent.

This combined framework separates knowledge genera-
tion and knowledge application, and this modularity is the
key to generalization. The LLM is responsible only for gen-
erating general knowledge, such as “if the task is to find an
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object, the agent should explore the places where that object
is commonly stored”. Since such knowledge can be applied
to almost all objects and environments, the LLM needs to
generate these only once, and it is the role of the cognitive ar-
chitecture to dynamically match the environment to the gen-
erated knowledge. This is significantly different from using
LLMs to generate plans directly, as the plans are grounded
to the specific instance of the task (e.g., finding a specific ob-
ject in the specific environment), and are non-trivial to gen-
eralize to novel environments without re-generation.

The contribution of this paper is threefold: 1) we propose
an agent framework that combines LLMs with customized
cognitive architecture, 2) we demonstrate how it can learn
to perform various kitchen tasks from bootstrapping, and 3)
we show that, when applied to new environments, it requires
significantly fewer tokens than querying LLM for actions. 1

Related Work
Learning Through Program Synthesis
Interactive Task Learning (ITL) (Laird et al. 2017) aims at
teaching robots new skills in a one-shot fashion. Previous
work implements this in the SOAR cognitive architecture
and has shown effective task and environment transferabil-
ity in domains such as board games (Kirk and Laird 2019)
and embodied agents (Mininger and Laird 2022). To reduce
the need for extensive human input, recent research explores
using LLM as the knowledge source (Lindes and Peter 2023;
Kirk et al. 2023), shifting human labor from specifying the
goal conditions to answering yes/no questions. In contrast,
our approach uses strategic prompting and self-reflection
mechanisms to eliminate the need for human supervision.

Our work shares some high-level ideas with DreamCoder
(Ellis et al. 2021), which learns to solve new problems by
program generation and reflection. Instead of formulating it
as an informed search problem, we accelerate this process
by querying LLMs for their existing knowledge.

Madaan et al. (2022) extract common-sense knowledge
from LLMs into code form similar to how we extract pro-
ductions. But they only address the general task decomposi-
tion, not applying the information to an embodied agent.

Large Language Model for Embodied Agents
Many studies have explored using LLMs to generate code
that performs robotics tasks (Liang et al. 2023; Singh et al.
2023; Vemprala et al. 2023) and game environments (Wang
et al. 2023), which is similar to the procedural memory in
the cognitive architectures. Other works explored generat-
ing PDDL specifications (Liu et al. 2023a; Xie et al. 2023).
Unlike the situation-grounded code produced by these meth-
ods, our approach generates abstract productions with learn-
able weights. This allows more generalization capabilities
and choosing the best plan among multiple applicable plans.

Others let LLMs select the action directly (Di Palo et al.
2023; Vemprala et al. 2023) with the help of other auxil-
iary components such as affordance evaluation (Ahn et al.

1Code at github.com/zfy0314/cognitive-agents

2022), memory stream (Park et al. 2023), visual summa-
rization (Qiu et al. 2023), and knowledge base (Zhu et al.
2023). Some others explored multi-modal foundation mod-
els tailored for embodied agents (Driess et al. 2023; Xiang
et al. 2023). As LLMs are non-trivial to update from a sin-
gle instance, using more explicit production systems in our
approach enables persistent one-shot updates and more in-
terpretability. As we will show in our experiments, relying
on LLMs for every action is also not very cost-effective.

Method
Architecture Overview
Figure 1 illustrates the architecture and workflow of the
agent. The agent has four main components. A world knowl-
edge base that contains general knowledge, such as “Toma-
toes are commonly stored in the Fridge”. Environment
knowledge that reflects what the agent knows about the envi-
ronment from past observations, including both information
about the agent itself (e.g., the gripper is empty) and about
the external world (e.g., the table is clear). These two com-
ponents form the declarative memories of the agent.

Another essential component is the procedural memory
that contains all the production rules. In our work, however,
we integrate the working memory into each production by
exploiting the Python class structure, so there is no cen-
tralized working memory. And, finally, inspired by the goal
module of ACT-R (Anderson 2009) and the impasse mecha-
nism of SOAR (Laird 2022), the agent manages a task stack.

At each time step, the agent searches in its procedural
memory for any applicable production rule, considering the
current task and environment knowledge. If there is no pro-
duction applicable, the agent will summarize the current
knowledge and query the LLM for both an action sugges-
tion and a corresponding production rule, such that the agent
knows what to do in similar scenarios in the future. When at
least one production is applicable, it will sample an appli-
cable production rule, based on its utility, and execute the
proposed action, which can be either in the environment or
internally, such as adding a subtask to its task stack.

Bootstrapping Procedures
The bootstrapping process starts with a curriculum. We took
inspiration from (Wang et al. 2023), which uses an LLM
to automatically construct the curriculum for Minecraft. As
the simulator we use is not as popular as Minecraft and has
some specific constraints (e.g., can only hold one object at a
time), we find it better to specify the curriculum manually.
Unlike previous work that requires human input on the next
steps and/or goal condition for the tasks (Mininger and Laird
2022), we require only the names of the task families, so
designing the curriculum is not very labor intensive.

Another difference is that our curriculum consists of fam-
ilies of tasks (e.g., find a/an <object>) instead of
specific instances (e.g., find a/an egg). We follow the
SOAR syntax and keep all variables in angle brackets.

With a given curriculum, the following steps are used
to bootstrap a single task in the curriculum (using find
a/an <object> as an example).
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1. Fill in the variables randomly from the environment to
instantiate a concrete task (e.g., find a/an Egg);

2. Attempt the task with the existing production rules;
3. (Action Selection) If there is no production rule for a

state, or there is a cycle detected through the production
application, query an LLM for an action;

4. (Production Generation) Generate the corresponding
production rule to the action, and load it into the agent;

5. Repeat steps 1-4 sufficient times until the robot can per-
form the task with only production rules;

6. (Production Improvement) Use a critic to summarize
the end condition of the task for future use and improve
the generated productions.

The above procedures are repeated for all task families in
the curriculum. While the agent might not fully learn every
scenario of a task before moving on to the next one, it can
still query the LLM later on to generate a production rule for
a previously learned task. The training of a task is considered
complete as long as the agent has sufficient experience with
the task to generate a reasonable end condition such that fu-
ture tasks can reuse the previously learned tasks.

Action Selection
The LLM is prompted with the current task, a summary
of the current state, and a list of options available to the
robot, which include both motor actions on the environ-
ment (e.g., move to a specific location) and internal ac-
tions (e.g., attend to a new subtask). For each previously
trained subtask, we provide the end condition generated by
the critic for the LLM to evaluate its relevance. Like the
task names, the actions can also be parameterized (e.g.,
move to <receptacle>), and the LLM can replace
<receptacle> with anything as it sees fit.

We use chain-of-thought prompting (Wei et al. 2022),
which explicitly instructs the LLM to respond to the prompt
in a step-by-step manner, probing it to make the most in-
formed decision. The LLM is instructed to reflect on com-
mon strategies for approaching the task, analyze the current
situation, and evaluate the usefulness of each action before
suggesting one option for the robot to take. The LLM is also
prompted to state the purpose of the chosen action, which
will inform the production rule generation later.

Production Generation
Although the production rules are generated based on the
current state, we represent them not as plans for the current
task, but instead as underlying decision-making principles
for all similar scenarios. For example, if the current task is
to find a/an egg, instead of suggesting the action se-
quence of exploring every cabinet in the current environ-
ment, a desirable production rule would suggest “whenever
you need to find something, you should first explore the un-
explored places where that object is commonly stored”. This
is a systematic generalization that can be applied to finding
any objects, not just eggs, and also can be applied to novel
environments with different layouts and receptacle types.

Listing 1: Production interface
1 class GeneratedProduction(Production):
2 def precondition(self, agent) -> bool:
3 # Returns whether the production is

applicable given the agent
4 # Set variables as side-effects
5 def apply(self) -> str:
6 # Returns the effect
7 # Based on the variable bindings

To generate desired production rules, we use a two-step
process. The first step summarizes the action selection pro-
cess and generates the English description of the produc-
tion rule; the second step then converts it into executable
Python code (Listing 1). This separation is inspired by how
human beginners are instructed to build cognitive models
(Laird 2017), and has two benefits: 1) it allows each query to
the LLM to be of reasonable length (∼ 5k tokens), prevent-
ing LLMs from losing focus on lengthy prompts (Liu et al.
2023b); and 2) it facilitates a modular design, which en-
ables generating code from English descriptions generated
from other sources, including human feedback and post-
generation self-reflection.

For each step, we also use the chain-of-thought prompt-
ing technique. For English description generation, the LLM
is given the entire history of the action selection process, and
is instructed to take four steps: 1) identify relevant informa-
tion that leads to choosing the action; 2) generate a specific
production rule that describes the current situation; 3) iden-
tify the potentially generalizable components in the specific
rule and how they can be generalized; and 4) replace the
components to form the generalized production description.

For code generation, the LLM is given the Python inter-
face of querying declarative memory and the current task,
and is instructed to take another four steps: 1) plan what
variable bindings are needed; and how their values should
be assigned, 2) analyze the predicates in the precondition
and associate them with relevant variables; 3) plan how each
predicate should be tested using the provided function inter-
faces; and 4) fill in the production template. The code snip-
pet is parsed from the response and imported into the agent.

Production Improvement
We use three mechanisms to monitor and improve the
common interface mismatch, over-constraining, and over-
generalization problems of the LLM-generated productions.

Similar to the iterative prompting design in Voyager
(Wang et al. 2023), the agent replays the generated produc-
tion rule on the state from which it was generated, and en-
sures that its precondition check passes the current condi-
tions. This fixes most function interface mismatches, as the
generated production has to comply with a specific naming
scheme and the interface of the declarative knowledge.

However, passing the precondition test for a single in-
stance does not guarantee that production is ideal. As the
LLM has access to accumulated observations from the past
during the action selection process, it might include unnec-
essary conditions that happen to be true in the production’s
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precondition, over-constraining it. This is handled by a critic
LLM that summarizes the end condition of the task and pro-
vides suggestions on the existing productions.

The critic LLM is given the name of the task family
(e.g., find a/an <object>), and the English descrip-
tions, generated by the production LLM, of the existing
production rules for that task. The critic LLM is instructed
to first analyze all the production rules whose effect is the
done action, and summarize the end condition of the given
task (e.g., the robot is holding the desired
object in its gripper). These end conditions
summarize the behavior of the previously learned tasks
to inform the action selection process for future tasks.
This summary will be added to the prompt when querying
for tasks later in the curriculum to incentivize reusing
previously learned tasks. Next, for each production rule, the
LLM either keeps it as is, removes it entirely, or modifies it.
The modifications are in the English description space for
the critic, and we make use of the two-step modularity of
production generation to update the production rules.

Over-generalization happens when important features are
left out of the production’s precondition. For example, for
the pick and place task, the LLM might generate a
production rule that says:
IF task is pick and place <object> AND

<object> in field of view AND
gripper is empty

THEN pick <object>

This will make the robot pick up the object even when the
object is already in the target receptacle. To prevent the agent
from being stuck in an infinite loop, it will keep a state
transition graph during the execution process and query the
LLM for an alternative action once a cycle is detected using
a depth-first search on the transition graph. Coupled with the
production reinforcement (described below), the agent will
prioritize loop-breaking productions.

Production Reinforcement
Following previous work in visual navigation (Anderson
et al. 2018), the agent has to explicitly choose the special
done action to indicate that it has completed the current
task. We further extend this and give the agent a quit op-
tion to indicate that it believes the given task is impossible
in the given environment. This is important as we allow the
architecture to choose to attend to any subtask as it wants,
and it should be able to realize when a task is impossible.

As we do not pre-define the goal condition during the
bootstrapping process, we give a unit reward whenever the
agent decides it is done with the current task. The reward
propagates back through the shortest path to the starting
state. For example, if the state transition is

S0
P1==⇒ S1

P2==⇒ S2
P3==⇒ S0

P4==⇒ S4
P5==⇒ S5

Pdone===⇒

where S0 is the start state and Pdone is the production that
yields the done action. Then the shortest path is

S0
P4==⇒ S4

P5==⇒ S5
Pdone===⇒

Therefore only P4, P5, Pdone will receive a utility update,
using the bellman backup (Sutton and Barto 2018).

Uafter(P )← 1

N(P ) + 1

(
N(P ) · Ubefore(P ) + γ∆t

)
(1)

Where U(P ) is the utility of production P , N(P ) is the
number of times P gets applied, ∆t is the time difference
from production application to the done action, and γ is the
discount factor (which is set to 0.95 for our experiments).

When a subtask is involved, the utility is updated with
respect to each task. For example, if the state transition is

A0
P1==⇒ A1

P2==⇒ B3
Q3
==⇒ B4

Q4
==⇒ B5

Qdone
===⇒︸ ︷︷ ︸

a subtask initiated by P2

A6
Pdone===⇒

Where A and P correspond to the states and productions
of the original task respectively and B and Q correspond to
the states and productions of the subtask respectively. This
will be treated as two separate utility update pathways

A0
P1==⇒ A1

P2==⇒ A6
Pdone===⇒ and B3

Q3
==⇒ B4

Q4
==⇒ B5

Qdone
===⇒

If a subtask ends up with quit then there will be no util-
ity update, not even negative ones. Because the task might
be impossible due to environmental constraints, which has
nothing to do with the production rules.

Intuitively, the closer a production brings the agent to
choose done for its current task, the higher its utility is.
This process is not provided to the LLM, so it has no incen-
tive to “cheat” by proposing the done action all the time.
We also explicitly tell the LLM to avoid selecting done or
quit action unless it is “absolutely certain” about it. This
worked empirically in our experiments.

This utility update process helps reduce the impact of hal-
lucination in LLMs, as the knowledge is aggregated. For
example, when tasked with “explore the countertops”, the
LLM may hallucinate and propose a production Pbad that
keeps the agent exploring the cabinets after all countertops
have been explored, instead of proposing the done action,
as it should. However, when tasked with “explore the sink“
in the same bootstrapping section, the LLM may generate
a production Pgood that correctly identifies the termination
condition and proposes done when all receptacles of the
desired type have been explored. Then later, when the agent
needs to explore all the countertops (potentially as a sub-
task of another task) and all of the countertops have been
explored, both Pbad and Pgood will be applicable. The agent
will prioritize Pgood because it is guaranteed to have a higher
utility value than Pbad. On the other hand, if we use LLM to
generate plans for each task, we may get a correct plan for
the sink but an incorrect one for the countertops.

When multiple productions are applicable given the same
environment knowledge, we resolve the conflict using the
definition of noisy-optimal in previous works (Tian et al.
2023), where the probability of production Pi being selected
and applied, given the current knowledge K, is

P(Pi | K) ∝ IK(Pi) · exp(U(Pi)) (2)
where IK(p) indicates that the preconditions of production
p hold, given knowledge K.
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World Knowledge Base
For the sake of simplicity, we implemented the world knowl-
edge of the agent as a dictionary that maps natural language
statements to either true or false. Unlike many existing cog-
nitive architectures that assume an absence of knowledge
implies the negation, we explicitly differentiate between not
knowing and knowing to be false. In the future, it can also
be replaced with a real-valued vector database.

When a production rule is conditioned on a statement not
previously known to the agent, the LLM is used to evaluate
whether the statement is true, and the result will be saved
to the knowledge base to be reused later. For instance, when
bootstrapping the task of finding an egg, the agent will learn
the production rule that says “If there is an unexplored re-
ceptacle where the object is commonly stored, explore that
receptacle”. But the agent does not know whether “egg is
commonly stored in the fridge” is true or not initially, so it
will query the LLM and memorize the positive response in
its world knowledge base. Later when the agent is tasked to
put things in their common storage place, the agent can reuse
the knowledge and place eggs into the fridge. In addition to
transferring to new tasks, the knowledge can be applied to
new environments as well (e.g., eggs are commonly stored
in fridges in most American households).

This knowledge base could be easily replaced by connect-
ing it to an existing knowledge graph or ontology. But for the
purpose of this paper, we are bootstrapping it from scratch.

Experiments
Setup
Following previous works in the embodied agents domain
(Sarch et al. 2022; Trabucco et al. 2023), we evaluate
our method in kitchen environments (see Figure 2) in the
AI2THOR simulator (Kolve et al. 2017). As shown in Fig-
ure 2d, the agent has access to classification labels and at-
tributes (e.g., “is opened”) for objects that are close enough
(within 1.6m) or large enough (more than 5% of the frame).
We also assume the agent already knows the names and lo-
cations of the large receptacles (e.g., cabinets, fridges, etc.)
but does not know what objects are in the receptacles until it
actively explores them.

We use three different tasks for evaluation:

• find a/an <object>: the goal is to have the spec-
ified object in the robot’s field of view. This is a funda-
mental skill that is often overlooked or directly assumed
in many of the previous works (Singh et al. 2023). We
want to show that our framework can bootstrap very ba-
sic skills, in addition to composite actions.

• slice a/an <object>: the goal is to use a knife
to slice an object. Because the robot can hold at most
one item at a time, slicing involves a sequence of actions
including finding the target object and the knife, putting
them in the same place, and the final slice action. We
want to show that our framework can handle tasks that
involve multiple steps and tool use.

• clear the countertops: the goal is to have all
the objects on the countertops moved to suitable storage

(a) training floor plan (b) testing floor plan

(c) ego-centric view (d) instance segmentation

Figure 2: Screenshots of the AI2THOR simulator

places. This is a common household task that has also
been investigated in previous work (Andrew et al. 2022;
Sarch et al. 2022). We want to show that our framework
can handle tasks that involve repeating similar subtasks.

The goal conditions listed above are used only for evaluation
purposes, but are not provided to the LLM during training
or testing. The LLM has to infer the goal condition from the
task description only.

For find and slice, 5 target objects are chosen for
each task, and we run 3 trials for each object where the ini-
tial locations of the objects are shuffled. For clear the
countertops we run 3 trials each with 5 objects on the
countertops that need to be put away. The specific objects
and locations vary between trials, and the success of the
agent is evaluated based on how many objects originally on
the countertops have been relocated to other places. This re-
sults in 15 specific goal instances for each task family.

We use GPT4-0613 (OpenAI 2023) for our experiments
as previous works have shown that GPT3.5 is insufficient for
code generation (Olausson et al. 2023; Wang et al. 2023). We
set temperature to the 0 for the most deterministic response.

Conditions
For the experimental condition, we bootstrapped our agent
with the following curriculum in the training floor plan:

1. explore <receptacle>
2. find a/an <object>
3. pick and place a/an <object>

in/on a/an <receptacle>
4. slice a/an <object>
5. put things on the countertop away
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This process generated 27 production rules in total. During
test time, the agent can query the LLM for an immediate ac-
tion if it does not have an applicable production rule for the
current situation, but it cannot learn new production rules.

For the baseline condition of using LLMs to query only
the actions, we omit the production generation steps and
only use the action selection process within our framework.
This ensures the prompts used by both conditions are the
same, so LLM should suggest actions of similar quality. If
the action proposed by the LLM leads to an affordance er-
ror, we query the LLM another two times, and if none of the
actions are viable by the agent, then it raises a failure.

Although many works address the rearrangement task
(Sarch et al. 2022; Wu et al. 2023a), they are not appropri-
ate baselines as their architectures already encode the gen-
eral strategies (e.g., first determine the target receptacle for
each object, then navigate to the target area, etc.) while our
approach bootstraps everything from scratch. Similarly, a
hand-coded cognitive agent by human experts may perform
even better but that defeats the purpose of eliminating the
need for manual coding of knowledge. Other code gener-
ation works cannot handle multiple instances of the same
kind (Singh et al. 2023) or understand the slicing precondi-
tions (Song et al. 2022) without non-trivial modifications.

Results
Table 1 shows the quantitative results of different types
of agents performing each kitchen task. The action-only
baseline successfully completes all tasks but one, where it
assumes find a/an mug is equivalent to find a/an
cup, and ends the search pre-maturely without exploring
the sink where the mug is actually located. On the other
hand, our bootstrapped agent is able to finish most tasks
completely using its learned production rule. The only ex-
ceptions are when it is tasked to find an object that was not
part of its training environment. But with very limited addi-
tional queries, the bootstrapped agent is able to successfully
complete those tasks as well. This shows that the knowledge
in the bootstrapped agent can be easily transferred to new
objects in new environments.

The success rate and number of query tokens show two
advantages of our framework. First, it is verifiable such that
it does not make false assumptions (e.g., confusing mugs
with cups). Second, it is much more efficient to be deployed
into new environments as the production rules it learns can
be easily transferred and require minimal further assistance
from the LLM, saving computations and costs.

We use a paired sample t-test to compare the number of
steps taken by both agents. No significant evidence suggests
that the two agents perform differently in find or slice
tasks (p-values 0.446 and 0.347, respectively). This is not
surprising as the knowledge source of both agents is the
same LLM.

However, the bootstrapped agent is taking longer in the
clearing task with significance (p-value 0.001), which re-
sults from a stylistic difference between the two agents.
As shown in Figures 3a and 3b, the bootstrapped agent
places everything into an individual cabinet while the base-
line places multiple objects in the same cabinets. This is

(a) bootstrapped clearing (b) action-only clearing

(c) bootstrapped slicing (d) action-only slicing

Figure 3: Examples of task execution. The first row shows
the bootstrapped agent put each object in their own cabinet
while the baseline agent put multiple objects in the same
cabinet. The second row shows the bootstrapped agent sliced
the apple on the countertop while the baseline agent sliced
the apple at its current location.

because one of the productions generated is “if there is an
object on the countertop and there is an empty receptacle,
attend to the subtask pick up the object, and place it into the
empty receptacle”. This production gets reused repeatedly,
requiring the agent to seek a unique empty receptacle be-
fore placing each object instead of putting every object in
the same cabinet. By contrast, the baseline agent is making
decisions on a case-by-case basis, so it does not enforce that
the target receptacle has to be empty.

A similar difference is also found in the slice task
where the bootstrapped agent always moves the objects to
the countertops before slicing while the baseline agent slices
objects at their current location (Figures 3c and 3d).

Production Analysis
The following are some learned productions:

• IF the current task is to find a/an <object> AND the
<object> is located on <location> AND the robot
is not at <location> THEN choose motor action:
move to <location>.

• IF the current task is to slice a/an <sliceable>
AND the robot is holding a/an <sliceable> AND
there is no <tool> in the spatial knowledge or object
knowledge THEN choose ’attend to subtask: find a/an
<tool>’.

• IF the current task is to clear objects from
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Task Agent Success ↑ Success w/o LLM ↑ Steps ↓ Tokens ↓

find a/an <object>
action-only 14/15 - 15.67 54754.20
bootstrapped (ours) 15/15 12/15 15.80 916.87

slice a/an <object>
action-only 15/15 - 28.20 102806.60
bootstrapped (ours) 15/15 15/15 29.13 0.00

clear the countertops
action-only 15/15 - 5.13 18924.87
bootstrapped (ours) 15/15 15/15 7.47 0.00

Table 1: Result of experiments on household tasks. Completion steps and tokens are averaged over all task instances

close open move to location pick up put down

explore

find

slice in view pick and place

clear countertops slice

Figure 4: The hierarchy of tasks learned. Gray nodes denote
the built-in functions of the robot, and white nodes represent
the tasks learned from the curriculum. For built-in actions
that involve an object (e.g., close), the object has to be within
the field of view for the action to be taken. Special actions
(i.e., done and quit) are omitted due to space constraints.

a/an <receptacle type> AND all the
<receptacle type> are empty THEN choose
special action: ’done’.

These show that the agent is able to represent different as-
pects of the given tasks using production rules. The first rep-
resents a common strategy for finding things, namely how
to find things with a known location. The second represents
decomposing complex tasks and reusing previously learned
tasks. The third is a correct termination condition for the ex-
ploration task that is generated directly by the LLM.

Figure 4 shows the task hierarchy learned by the agent
after training on the given curriculum. It shows how pre-
viously learned tasks are used to perform new tasks. This
reduces the number of queries needed for the LLM, fosters
generality, and ensures the scalability of our approach.

Discussion
Explainability
Our framework touches upon all three aspects of explain-
ability as defined by Milani et al. (2022). The preconditions
of the productions directly specify the feature that is being
used (feature importance). Each production rule corresponds

to a specific scenario during the bootstrapping process when
it is created, which helps determine the training points that
influence the learned policy (learning process). Lastly, the
production application process can be easily converted to a
verifiable decision tree by merging the precondition checks
of productions (policy-level explainability). As the produc-
tion rules can be formally verified, they are preferable to
black-box LLM models in safety-critical situations.

Limitations
In this work, we explore only the high-level decision-making
process of the agent and rely heavily on having a well-
defined interface for low-level actions, such as navigation
and object manipulation. There will likely be a considerable
sim-to-real gap when applying this to physical agents.

Additionally, the English description generation step re-
quires the decision-making process to be articulable to be
converted to production rules. This is hard for skills that can-
not be fully expressed using language (e.g., sculpting).

Future Work
There are more learning opportunities in cognitive archi-
tectures such as updating the preconditions of productions
or using separate productions for conflict resolutions. Also,
large vision models can be used to generate production rules
without separate perception modules (Wu et al. 2023b).

Additionally, it is well-acknowledged that human values
and preferences are hard to represent with reward functions
(Casper et al. 2023). However, the production rules are in-
terpretable and can be modified to suit each individual with-
out extensive computation. As they are also modular, updat-
ing one specific production rule does not affect the others.
It would interesting to examine whether this framework will
facilitate personalization in human-AI collaboration tasks.
Specifically, the user can iteratively update the production
rules to fit their preference without having to worry about
the agent forgetting about how to perform the task.

Conclusion
This paper presents a framework for bootstrapping a cog-
nitive architecture from the existing noisy knowledge in
LLMs, with minimal human inputs. We demonstrated how
such an agent could efficiently learn to perform kitchen tasks
and be applied to new environments. This work generalizes
using LLMs to generate plans and provides an alternative to
purely data-driven foundation models. And finally, we shed
light on how it will benefit personalized agents in the future.
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