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Abstract

Facial expression recognition (FER) models are typically
trained on datasets with a fixed number of seven basic classes.
However, recent research works (Cowen et al. 2021; Bryant
et al. 2022; Kollias 2023) point out that there are far more
expressions than the basic ones. Thus, when these models
are deployed in the real world, they may encounter unknown
classes, such as compound expressions that cannot be classi-
fied into existing basic classes. To address this issue, we pro-
pose the open-set FER task for the first time. Though there are
many existing open-set recognition methods, we argue that
they do not work well for open-set FER because FER data are
all human faces with very small inter-class distances, which
makes the open-set samples very similar to close-set samples.
In this paper, we are the first to transform the disadvantage of
small inter-class distance into an advantage by proposing a
new way for open-set FER. Specifically, we find that small
inter-class distance allows for sparsely distributed pseudo la-
bels of open-set samples, which can be viewed as symmet-
ric noisy labels. Based on this novel observation, we convert
the open-set FER to a noisy label detection problem. We fur-
ther propose a novel method that incorporates attention map
consistency and cycle training to detect the open-set samples.
Extensive experiments on various FER datasets demonstrate
that our method clearly outperforms state-of-the-art open-set
recognition methods by large margins. Code is available at
https://github.com/zyh-uaiaaaa.

Introduction
Facial expression recognition (FER) is vital in human-
centered computing as it helps machines understand hu-
man feelings (Li and Deng 2020). Existing FER models
are trained with the fixed seven basic classes. However, as
pointed out by recent research works published in Nature
and top computer vision conferences (Cowen et al. 2021;
Bryant et al. 2022; Kollias 2023), humans can display var-
ious expressions that go beyond the basic classes in real-
world deployments, such as other different expressions and
compound expressions. Close-set FER models trained on
the basic classes are unreliable when encountering new un-
known expressions as these samples are always misclassified
as one of the given classes with high confidence. This limi-
tation hinders the real-world deployment of FER models.
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Figure 1: We show the extracted features using CLIP on
CIFAR-10 and RAF-DB. CIFAR-10 (RAF-DB) has a large
(small) inter-class distance. The small inter-class distance of
FER data makes open-set samples similar to close-set sam-
ples and degrades the performance of the SOTA open-set
recognition method DIAS from 0.850 to 0.714. Our method
outperforms DIAS by large margins (over 20% improve-
ment based on the original AUROC) on the open-set FER
task of three different FER datasets.

To solve the above problem, we propose the open-set
FER for the first time, which aims to maintain the high
accuracy of FER models in the closed set while enabling
them to identify samples that belong to unknown classes.
Specifically, FER models should be able to detect samples
that do not fit perfectly into the close-set classes. However,
it is a non-trivial problem because of the overconfidence
problem (Nguyen, Yosinski, and Clune 2015; Goodfellow,
Shlens, and Szegedy 2014; Liu et al. 2023) of deep learning
models. While some open-set recognition methods (Zhou,
Ye, and Zhan 2021; Moon et al. 2022) have tried to solve
a similar problem, we argue that they fail in open-set FER.
We claim that open-set FER is a much more difficult task
because FER data are all human faces with very small inter-
class distances. This characteristic makes the open-set sam-
ples very similar to the close-set samples, which largely
degrades the performance of existing open-set recognition
methods.

In this paper, different from existing methods, we pro-
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pose a new way to deal with the open-set FER. Though the
small inter-class distance of FER data degrades the exist-
ing open-set recognition methods, we turn this characteris-
tic into an advantage. Our motivation is shown in Fig. 2. We
observe that for the data with relatively large inter-class dis-
tances like CIFAR-10, the predicted pseudo labels of sam-
ples from an unknown class fall into the most semantically
similar known class. For example, following the open-set
recognition setting (Wang et al. 2021; Zhou, Ye, and Zhan
2021; Zhang, Deng, and Zheng 2023), we consider the ’cat’
class as the unknown class and train models on other closed
classes. In the test phase, the model predicts almost all un-
seen ’cat’ samples to the known class ’dog’. However, things
are different in open-set FER. We observe that the close-set
FER model predicts the samples from one unknown class to
all known classes. The same phenomenon can easily gener-
alize to the case of several open classes. This strikes us with
the concept of symmetric noisy labels (Han et al. 2018) in
the noisy label learning field, which is generated by flipping
the labels of the original class to all other classes. Symmetric
noisy labels are easy to be detected during training as they
do not contain much semantic information (Han et al. 2018).
On the contrary, asymmetric label noise which flips the la-
bels of the original class to the most semantically similar
class is difficult to be detected. For example, in the CIFAR-
10 training phase, if all ’cat’ samples are labeled as ’dog’
due to noisy labels, then the ’cat’ images are very likely to
be confidently recognized as ’dog’ after training. Thus, it is
infeasible to transform open-set recognition on CIFAR-10
or other datasets with large inter-class distances into noisy
label detection, while it surprisingly works well under the
open-set FER task.

Inspired by the aforementioned discussion, we convert
open-set FER to a noisy label detection problem for the
first time. Unlike existing methods that use softmax scores
to detect open-set samples, which tend to be overconfident,
we believe that the pseudo labels contain valuable infor-
mation that has been overlooked. Specifically, we use a
close-set trained FER model to predict pseudo labels for all
test samples, of which open-set samples will have wrong
pseudo labels across all close-set classes. We then introduce
cycle training with a cyclically set learning rate inspired
by (Huang et al. 2019) and iteratively train two FER models
to teach each other using the pseudo labels. During training,
attention map consistency (Zhang et al. 2022b) is utilized to
prevent the model from memorizing the wrong pseudo la-
bels of open-set samples. After training, the loss values of
the entire set will form a bimodal distribution, with close-set
(open-set) samples having small (large) loss values.

We compare our proposed method with state-of-the-art
open-set recognition methods on different open-set FER
datasets with different open-set classes. Extensive experi-
ment results show that our method outperforms these meth-
ods by large margins. We further show the online predic-
tion ability of our method for one given sample without re-
training. More analyses and visualization results of loss val-
ues, pseudo labels, and learned features are provided to help
further understanding.

Figure 2: We provide an illustration of our motivation by
showing the predicted pseudo labels of the close-set model
on CIFAR-10 and FER datasets. CIFAR-10 has relatively
large inter-class distances, and the close-set trained model
predicts unknown samples into the most similar known
class. For example, if the unknown class is ’cat’, the trained
model will predict almost all cat samples into the known
class ’dog’. However, FER data are all human faces. The
close-set trained FER model predicts samples of one un-
known class to all known classes, which is similar to the
concept of symmetric noisy label - a type of easy label noise
commonly encountered in the noisy label field.

• We propose the open-set FER for the first time and ob-
serve that existing open-set recognition methods are not
effective under this new task due to the small inter-class
distance of FER data.

• Based on our observation of the different distributions
of pseudo close-set labels under large and small inter-
class distances, we transform open-set FER to noisy la-
bel detection for the first time. We further design a novel
method with attention map consistency and cycle train-
ing to separate close-set and open-set samples.

• Extensive experiments on different open-set FER
datasets show that our method outperforms SOTA open-
set recognition methods by large margins.

Related Work
Facial Expression Recognition
Facial expression recognition (FER) is vital for human-
computer interaction, and there are numerous studies aimed
at improving FER performance (Zhong et al. 2012; Li,
Deng, and Du 2017; Li et al. 2021; Farzaneh and Qi 2021;
Zhang, Wang, and Deng 2021; Ruan et al. 2021; Li et al.
2022; Zhang et al. 2023). For instance, Li et al. (Li, Deng,
and Du 2017) use crowd-sourcing to simulate human expres-
sion recognition. Farzaneh et al. (Farzaneh and Qi 2021)
propose a center loss variant to maximize intra-class sim-
ilarity and inter-class separation. Ruan et al. (Ruan et al.
2021) acquire expression-relevant information during the
decomposition of an expression feature. Zhang et al. (Zhang,
Wang, and Deng 2021) trains FER models through rela-
tive comparison. However, these FER methods are typically
evaluated on fixed close-set datasets and they produce highly
confident close-set predictions for open-set data.
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Figure 3: The pipeline of our method. Given the input of both close-set and open-set samples, we utilize the trained close-
set model to generate pseudo labels for them. Open-set samples will get noisy close-set labels. We then cyclically train two
FER models from scratch with the pseudo labels and utilize attention map consistency loss (Cons.) to prevent the model from
memorizing the noisy close-set labels. Each model selects clean samples for another model and teaches each other cyclically.
We also utilize a cyclical learning rate (lr) to create an ensemble of models for better separation of close-set and open-set
samples. After training, the open-set samples have large classification (Cls.) loss while close-set samples have small Cls. loss.

Open-Set Recognition
There are two main streams of open-set recognition meth-
ods, based on the type of models that they use: discrim-
inative models and generative models (Geng, Huang, and
Chen 2020). The first stream typically employs K+1 way
classifiers to discriminate between close-set and open-set
data (Scheirer et al. 2012; Bendale and Boult 2015, 2016;
Wang et al. 2021; Zhou, Ye, and Zhan 2021). For example,
Bendale et al. (Bendale and Boult 2016) replace the soft-
max layer with OpenMax and calibrate the output proba-
bility with Weibull distribution. Wang et al. (Wang et al.
2021) utilize an energy-based K+1 way softmax classifier
for open-world setting. Zhou et al. (Zhou, Ye, and Zhan
2021) prepare for the unknown classes through learning
placeholders for both data and classifier. The second stream
of works leverages generative models to generate open-
set data and predict the distribution of novel classes (Ge
et al. 2017; Neal et al. 2018; Oza and Patel 2019; Per-
era et al. 2020; Moon et al. 2022). C2AE (Oza and Patel
2019) utilizes class-conditioned auto-encoders and divides
the training procedure into two sub-tasks. Perera et al. (Per-
era et al. 2020) use self-supervision and augment the inputs
with generative models to solve the task. The most recent
work by Moon et al. (Moon et al. 2022) generates open-
set samples with diverse difficulty levels to simulate real-
world conditions. While open-set recognition methods have
demonstrated good performance when inter-class distances
are large, they are not suitable for open-set FER with small
inter-class distances. Methods that work well under small
inter-class distances are needed.

Problem Definition
Facial expression recognition (FER) models are trained with
Dtr = {(xi, yi)}Ni=1, where xi is a training image and
yi ∈ Y = {1, . . . ,K} is the corresponding label, N and
K represent the number of samples and classes. However,
in the real-world test set D, there are novel classes, i.e.,
D = {(xi, yi)}Ni=1, yi ∈ Ŷ = {1, . . . ,K,K + 1}, where
class K + 1 is the novel category which may contain one

or more novel classes. We aim to detect the samples with
the label K + 1, while classifying the samples with label
yi ∈ Y . However, as FER data are all human faces, the
open-set data is very close to the close-set data. Furthermore,
FER models have the overconfidence problem, which makes
the confidence scores of both close-set and open-set samples
close to 1 and drastically degrades the performance of open-
set recognition methods. Thus, a more effective method is
needed to solve open-set FER.

Method
We notice that there is useful information from the predicted
pseudo labels of the trained close-set model, which have
been neglected, shown in Fig. 2. Unlike the large inter-class
distance datasets like CIFAR-10 where most open-set sam-
ples are predicted by the trained model into the most sim-
ilar close-set class, in FER, open-set samples are predicted
across all close-set classes, which are similar to the concept
of symmetric noisy labels in the noisy label learning field.
Symmetric noisy labels are easier to detect than asymmetric
noisy labels, which only distribute to the most semantically
similar class (Han et al. 2018; Kim et al. 2019; Zhang et al.
2022a) like the pseudo labels in CIFAR-10. Thus, for the
first time, we transform the open-set FER into noisy label
detection based on the above discussions.

Pipeline
The pipeline of our proposed method is shown in Fig. 3.
Given a pre-trained close-set FER model fclose, and the in-
put test set D, which contains both close-set and open-set
samples. We first utilize fclose to generate close-set pseudo
labels for all the samples in D. We then cyclically train
two FER models f1 and f2 from scratch with the close-set
pseudo labels. Specifically, given images from D, we first
apply random erasing (Zhong et al. 2020) to them and the
erased images are denoted as x. We then flip x to get x̃. The
classification loss is calculated only with the x as

lcls = − 1

N

N∑
i=1

(log
eWyif1(xi)∑K
j eWjf1(xi)

), (1)
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where Wyi is the yi-th weight from the FC layer, f1(xi) is
the output logits of xi. Inspired by (Zhang et al. 2022b), we
utilize attention map consistency to prevent the model from
memorizing the wrong pseudo labels of open-set samples,
leading to a large classification loss of open-set samples. The
attention maps are computed by multiplying the weight from
the FC layer and the features extracted from the last convo-
lution layer following CAM (Zhou et al. 2016). We denote
the attention maps of x and x̃ as M ∈ RN×K×H×W and
M̃, where N,K,H,W represent the number of the samples,
expression classes, height and width. The consistency loss
is calculated based on the transformation consistency of at-
tention maps according to (Zhang et al. 2022b), which reg-
ularizes the model to focus on the whole facial features and
prevents the model from overfitting the wrong pseudo labels
of open-set samples.

lcons =
1

NKHW

N∑
i=1

K∑
j=1

||Mij − Flip(M̃)ij ||2. (2)

The train loss for f1 and f2 is computed as follows,
ltrain = lcls + λlcons. (3)

We set the consistency weight λ as 5 across all experi-
ments. We further introduce cycle training to improve the
performance of open-set detection. First, we cyclically set
the learning rate as the initial learning rate every 10 epoch
inspired by (Huang et al. 2019), which is similar to an en-
semble of several models with different states to help de-
tect noisy (open-set) samples. Second, we cyclically set the
training of f1 and f2. Specifically, at the first step, we train
f1, then we utilize Gaussian Mixture Models (Li, Socher,
and Hoi 2020) to model the classification loss of f1 and
select the clean samples for the training of f2, we set the
threshold of selection as 0.5. In the second step, f2 selects
clean samples for the training of f1. We repeat the two steps
until the two models converge. After training, the open-set
samples are associated with large classification loss values
which can be easily separated from close-set samples with
small classification loss values.

Novelty and Contribution
We claim our novelty and contribution as introducing a new
FER task and designing a new pipeline, which outperforms
SOTA open-set recognition methods by large margins, along
with our new discoveries and insights instead of simply in-
troducing a new technical method. We are the first to pro-
pose the open-set FER task based on recent works (Cowen
et al. 2021; Bryant et al. 2022; Kollias 2023) and find that
existing SOTA methods do not perform well under this task.
Our discovery that pseudo labels of open-set FER samples
are similar to symmetric noisy labels is novel. Inspired by
that, we design a new pipeline and propose a new method
including cycle training and attention map consistency to
address open-set FER from a noisy label detection perspec-
tive, which has not been done before. Our approach outper-
forms SOTA open-set recognition methods by large margins.
Though with relatively small technical contribution, we be-
lieve that the new discoveries and good performance are our
main contributions.

Experiments
Datasets
RAF-DB (Li, Deng, and Du 2017) is annotated with seven
basic expressions by 40 trained human coders, including
12,271 images for training and 3,068 images for testing.

FERPlus (Barsoum et al. 2016) is extended from
FER2013 (Goodfellow et al. 2013), which consists of 28,709
training images and 3,589 test images collected by the
Google search engine. We utilize the same seven basic
classes as RAF-DB in our experiments.

AffectNet (Mollahosseini, Hasani, and Mahoor 2017) is
a large-scale FER dataset, which contains eight expressions.
There are 286,564 training images and 4,000 test images.

Implementation Details
Following open-set recognition setting (Geng, Huang, and
Chen 2020), open-set samples should be semantically dif-
ferent from close-set samples while they do not have the
domain gap. Specifically, we construct close-set and open-
set from the above FER datasets. We set some classes as
open-set classes and the rest are close-set classes follow-
ing (Geng, Huang, and Chen 2020; Moon et al. 2022). For
training, we utilize close-set samples of the train set. The
test set is the original test set containing both open-set and
close-set samples plus the remaining open-set samples of
the train set. We utilize ResNet-18 as the backbone. The
learning rate η is set to 0.0002 and we use Adam (Kingma
and Ba 2014) optimizer with weight decay of 0.0001. The
max training epoch Tmax is set to 40. As our method does
not affect the classification accuracy of the original close-
set FER performance, we mainly focus on the detection
of open-set data. Close-set classification accuracy of dif-
ferent methods is shown in the Supp. material. We utilize
two widely used metrics AUROC (Liang, Li, and Srikant
2018) and FPR@TPR95 (Hendrycks and Gimpel 2017) in
the open-set recognition field, they both range from 0 to 1.
AUROC is the area under the Receiver Operating Character-
istic (ROC) curve, the higher the better, while FPR@TPR95
measures the false positive rate (FPR) when the true positive
rate (TPR) is 0.95, the lower the better.

Open-Set FER With One or Several Basic Classes
The open-set recognition performance is reported in Ta-
ble 1. The baseline method is MSP (Hendrycks and Gim-
pel 2017) utilizing softmax score to detect open-set samples.
EOW (Wang et al. 2021), PROSER(PROS) (Zhou, Ye, and
Zhan 2021), DIAS (Moon et al. 2022) are state-of-the-art
open-set recognition methods. Results show that our method
not only outperforms all other methods on the mean perfor-
mance but also achieves the best performance with different
open-set classes. Furthermore, the improvements brought
by our method are significant. For example, the mean per-
formance of the baseline on the RAF-DB dataset is 0.497
AUROC, which is similar to a random guess. There is AU-
ROC lower than 0.5 as we maintain the range meaning of
the softmax score across different experiments, a lower soft-
max score always means the sample is more like open-set
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Metric AUROC (↑) FPR@TPR95 (↓) Metric AUROC (↑)

Method Baseline EOW PROS DIAS Ours Baseline EOW PROS DIAS Ours Method Baseline EOW PROS DIAS Ours

R Sur. 0.517 0.648 0.806 0.725 0.918 0.926 0.897 0.730 0.850 0.608 F Sur. 0.406 0.641 0.676 0.710 0.933
R Fea. 0.411 0.577 0.706 0.660 0.907 0.980 0.946 0.882 0.918 0.444 F Fea. 0.370 0.581 0.664 0.634 0.899
R Dis. 0.473 0.609 0.788 0.728 0.910 0.925 0.914 0.730 0.863 0.462 F Dis. 0.352 0.596 0.771 0.711 0.871
R Hap. 0.554 0.606 0.695 0.703 0.892 0.852 0.904 0.881 0.823 0.528 F Hap. 0.476 0.645 0.731 0.726 0.855
R Sad. 0.506 0.654 0.738 0.668 0.911 0.930 0.940 0.798 0.879 0.519 F Sad. 0.413 0.575 0.681 0.665 0.862
R Ang. 0.450 0.720 0.704 0.734 0.906 0.937 0.814 0.877 0.857 0.684 F Ang. 0.410 0.578 0.798 0.753 0.891
R Neu. 0.566 0.606 0.803 0.778 0.917 0.866 0.977 0.777 0.819 0.587 F Neu. 0.544 0.529 0.852 0.767 0.864

Mean 0.497 0.631 0.749 0.714 0.909 0.917 0.913 0.811 0.858 0.547 Mean 0.424 0.592 0.739 0.709 0.882

Table 1: The detection performance of state-of-the-art open-set recognition methods on open-set FER. We start with the one-
class open-set FER and utilize two common metrics AUROC (higher the better) and FPR@TPR95 (lower the better) for evalua-
tion. The expression class listed on the left is the open-set class (Sur.: Surprise, Fea.: Fear, Dis.: Disgust, Hap.: Happiness, Sad.:
Sadness, Ang.: Anger, Neu.: Neutral). ’R’ represents RAF-DB and ’F’ represents FERPlus. ’PROS’ is ’PROSER’ for short.
Our method outperforms the state-of-the-art open-set recognition methods on open-set FER tasks with very large margins.

Open class Baseline EOW PROSER DIAS Ours

Sur.+Fea. 0.436 0.561 0.763 0.706 0.916
Fea.+Dis. 0.445 0.583 0.764 0.688 0.884
Dis.+Hap. 0.575 0.632 0.727 0.700 0.887
Hap.+Sad. 0.609 0.536 0.726 0.717 0.865
Sad.+Ang. 0.486 0.691 0.718 0.702 0.879
Ang.+Neu. 0.552 0.634 0.825 0.769 0.895

Sur.+Fea.+Dis. 0.497 0.588 0.769 0.731 0.893
Fea.+Dis.+Hap. 0.592 0.534 0.667 0.685 0.880
Dis.+Hap.+Sad. 0.649 0.624 0.743 0.723 0.815
Hap.+Sad.+Ang. 0.637 0.698 0.705 0.718 0.840
Sad.+Ang.+Neu. 0.630 0.750 0.829 0.802 0.883

Mean 0.555 0.621 0.749 0.722 0.876

Table 2: The detection performance (AUROC) of differ-
ent methods with two or three open classes. Our method
achieves the best results under all settings.

samples. PROSER (discriminative method) and DIAS (gen-
erative method) improve the baseline to 0.749 and 0.714, re-
spectively. Our method further improves the AUROC from
around 0.7 to around 0.9, which is impressive.

We further carry out experiments to validate the effec-
tiveness of our method when the open-set data contains
more than one class with results displayed in Table 2. Our
method outperforms other methods under all settings. We
find that the number of open-set classes has little effect on
our method. For instance, our method achieves a mean AU-
ROC of 0.876 with more than one open class, which is only
slightly lower than 0.909 with one open class.

Compound Classes and Different Classes
In the real-world deployment, FER models will encounter
compound expressions, which cannot be simply classified
into the basic classes (Du, Tao, and Martinez 2014). We uti-
lize all basic expression images of RAF-DB as the close-
set and all compound expression images of RAF-DB as the
open set. Results in Table 3 illustrate that the performance of

Dataset Baseline EOW PROSER DIAS Ours

Compound 0.665 0.679 0.648 0.674 0.771
AffectNet 0.552 0.507 0.610 0.551 0.674

Table 3: The AUROC of different methods on compound
classes and AffectNet. Compound classes are very similar to
the basic classes and AffectNet is a large-scale FER dataset
with lots of label noises. They both degrade the open-set de-
tection performance, while our method still achieves the best
performance.

all methods drops compared with open basic classes. Com-
pound classes usually contain several basic expressions,
which are more similar to close-set classes than unseen basic
classes. Though detecting compound expressions is harder,
our method still achieves the best performance of 0.771 AU-
ROC and outperforms other methods with large margins.

To simulate the situation when different classes are en-
countered. We use the seven basic classes of AffectNet as
close-set classes and the contempt class of AffectNet as the
open-set class. In Table 3, our method reaches the best AU-
ROC of 0.674. The detection performance of all methods
drops as the labels of AffectNet are very noisy, leading to a
low close-set classification accuracy of around 60%, which
is significantly lower than the accuracy of around 90%
achieved on RAF-DB. As claimed by work (?), a good close-
set classifier leads to high detection performance, which
means the performance drops of all methods on AffectNet
are reasonable.

Online Application for One Given Sample
As our method needs to train a model from scratch, one may
ask whether our method is suitable for the online detection
of only one given test sample at a time. We show that once
trained, our method can be utilized for online detection as
the test time classification loss can still indicate whether a
sample is open-set. The experiment details are in the Supp.
material and the results are shown in Table 4. We train the
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Open class AUROC Open class AUROC

Surprise 0.918/0.894 Sadness 0.911/0.882
Fear 0.907/0.870 Anger 0.906/0.898
Disgust 0.910/0.899 Neutral 0.917/0.889
Happiness 0.892/0.846 Mean 0.909/0.883

Table 4: Offline/Online detection performance of our
method. The offline method achieves better performance,
while it is slightly less efficient than the online method.
The mean AUROC drops 2.6%, which is acceptable, as our
online version still achieves better AUROC of 0.883 com-
pared with other state-of-the-art open-set recognition meth-
ods, whose best AUROC is 0.749.

Figure 4: Confidence scores of different methods. AUROC
of each method is marked below. The baseline method fails
as FER data have small inter-class distances, making open-
set data have the same range of confidence scores as close-
set data. Close-set and open-set data are separated by DIAS
and PROSER while they still overlap a lot. Our method
transforms open-set FER to noisy label detection and effec-
tively separates close-set and open-set samples.

model only once and evaluate it on the fly to simulate the
online detection of one test sample at a time. The mean AU-
ROC of seven classes drops from 0.909 to 0.883 (2.6%),
which is acceptable. Though with slightly lower AUROC,
the online version is more efficient as we do not need to re-
train our model each time we encounter new open-set data.
Note that the online version achieves an AUROC of 0.883,
which still outperforms other state-of-the-art open-set recog-
nition methods as their best AUROC is 0.749 in Table 1.

Further Analyses
Visualization of Confidence Scores
We visualize the confidence scores, which are utilized to de-
tect open-set data in Fig. 4. The confidence score of our
method is the classification loss value. We normalize con-
fidence scores to [0, 1] to make comparisons. The results in
Fig. 4 demonstrate that when no open-set recognition meth-

Attention Cycle LR Cycle Training AUROC

0.517
✓ 0.885
✓ ✓ 0.912
✓ ✓ ✓ 0.918

Table 5: The ablation study of our method.

Figure 5: Hyperparameters analyses of our method on
ResNet-18 and ResNet-50. ResNet-50 generally has better
performance than ResNet-18. Our method is not sensitive to
hyperparameters as AUROC slightly changes from 0.87 to
0.93. The best consistency weight is 5 and the best training
epoch number is 40.

ods are used, the confidence scores of close-set and open-set
samples overlap considerably. Although open-set recogni-
tion methods such as DIAS (generative) and PROSER (dis-
criminative) perform better than baseline, they still have sig-
nificant overlap. In contrast, our method achieves the best
performance and effectively separates close-set and open-
set samples. This is because we view open-set FER from
a unique perspective of noisy label detection. By utilizing
the useful information from pseudo labels, which implicitly
encode the information of close/open set, we are able to mit-
igate the overconfidence problem.

Ablation and Hyperparameter Study
To show the effectiveness of each of the modules in our
method, we carry out an ablation study on RAF-DB utiliz-
ing surprise as the open-set class. The AUROC in Table 5
illustrates that the most effective module in our method is
the attention map consistency (Attention), which can prevent
the FER model from memorizing the wrong pseudo labels
of open-set samples. Cycle learning rate (LR) improves the
performance by setting the learning rate cyclically to make
an ensemble to detect wrong pseudo labels (Huang et al.
2019). Cycle training further utilizes two FER models to se-
lect clean samples to iteratively teach each other for better
performance. Each of the introduced modules contributes to
the good performance of our method.

Our method has two main hyperparameters, which are
the weight of consistency loss and the training epoch num-
ber. We carry out experiments with the consistency weight
ranges from 1 to 10 and training epoch number ranges from
10 to 50, as shown in Fig. 5. Overall, our method is not
sensitive to the two hyperparameters as the AUROC only
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Figure 6: We design a comparison group to study the effect
of the pseudo-label distribution. Our motivation is that the
pseudo labels of open-set samples distribute across all close-
set classes. The comparison group has the pseudo labels of
open samples belonging to the most similar close-set class.
The detection performance drops from 0.918 to 0.803. This
illustrates that our method works well because the pseudo
labels distribute across all close-set classes instead of cen-
tering to the class with the largest number of pseudo labels
(happiness in the comparison group).

changes from 0.87 to 0.93 under two different backbones
and all different hyperparameters. ResNet-50 performs bet-
ter than ResNet-18. However, in order to fairly compare with
other methods, we report the performance using ResNet-18
in Table 1. As for the consistency weight, the performance
increases and then decreases as a small consistency weight is
not enough to prevent the model from memorizing the open-
set (noisy) samples and a very large consistency weight im-
pedes the optimization of classification loss. We set the con-
sistency weight as 5 in all our experiments. Training epoch
number has little effect on the performance. We simply set
the training epoch number as 40 in all our experiments.

Analyses of Pseudo Label Distributions
To dig deeper into why our method works well in open-set
FER, we provide more analysis of the pseudo labels. We
argue that our method is effective because it utilizes infor-
mation from the pseudo labels which are neglected by pre-
vious methods. We first plot the distribution of the predicted
pseudo labels of open-set samples in Fig. 6. We observe
that the pseudo labels of the surprise (open-set) class are
distributed across all close-set classes. To exclude the in-
fluence of the happiness class with the largest number of
pseudo labels, we design a comparison group with all the
pseudo labels of open-set (surprise) samples lying in the
happiness class. Shown in Fig. 6, the open-set recognition
performance drops from 0.918 to 0.803. We observe that
though some open-set samples are correctly detected, there
are many open-set samples confused with close-set samples.
The results illustrate that semantically similar label noise,
e.g., labeling all surprise samples to happiness, is harder to
detect. They also demonstrate that our method works well
because the pseudo labels distribute across all classes in-

Figure 7: The learned features of baseline and our method.
The features are shown with the latent truth. Open-set fea-
tures are marked as red. The learned open-set features of the
baseline method are mixed with close-set features, while our
method does not overfit the wrong pseudo labels of open-set
samples and separates open-set features from close-set fea-
tures.

stead of centering on one class with the largest number of
pseudo labels.

Visualization of Learned Features

We utilize t-SNE (Van der Maaten and Hinton 2008) to
visualize the learned features. The results are shown in
Fig. 7, which implies that the baseline method memorizes
the wrong pseudo labels and the learned open-set features
(marked as red) are mixed with other close-set features af-
ter training. However, our method prevents the model from
memorizing the wrong labels of open-set samples, which
avoids pushing open-set features into the close-set feature
clusters. After training, the model learns useful features
from the given samples and set the open-set features apart
from the other close-set features.

Conclusion

We propose a new topic named open-set facial expression
recognition (FER) to address the overconfidence problem of
FER models and maintain their ability to reject unseen sam-
ples. As FER data have small inter-class distances, existing
open-set recognition methods are not well suited for open-
set FER. However, we find that due to this characteristic, the
pseudo labels assigned to open-set samples are distributed
across all close-set classes, which is similar to the concept of
symmetric noisy labels. Inspired by that, we propose a novel
method to convert open-set FER into a noisy label detection
problem. Utilizing extra information of pseudo labels and
together with cycle training and attention map consistency,
our method gets rid of the overconfidence problem of soft-
max scores and effectively detects the open-set samples. Ex-
tensive experiments on different open-set FER datasets and
open-set classes show that our method outperforms state-of-
the-art open-set recognition methods by large margins. We
believe that our work will enlighten more research works on
the relationship between the open-set recognition field and
the noisy label detection field.
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