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Abstract

The de-occlusion problem, involving extracting clear back-
ground images by removing foreground occlusions, holds
significant practical importance but poses considerable chal-
lenges. Most current research predominantly focuses on gen-
erating discrete images from calibrated camera arrays, but
this approach often struggles with dense occlusions and
fast motions due to limited perspectives and motion blur.
To overcome these limitations, an effective solution re-
quires the integration of multi-view visual information. The
spike camera, as an innovative neuromorphic sensor, shows
promise with its ultra-high temporal resolution and dynamic
range. In this study, we propose a novel approach that uti-
lizes a single spike camera for continuous multi-view imag-
ing to address occlusion removal. By rapidly moving the
spike camera, we capture a dense stream of spikes from
occluded scenes. Our model, SpkOccNet, processes these
spikes by integrating multi-view spatial-temporal information
via long-short-window feature extractor (LSW) and employs
a novel cross-view mutual attention-based module (CVA)
for effective fusion and refinement. Additionally, to facili-
tate research in occlusion removal, we introduce the S-OCC
dataset, which consists of real-world spike-based data. Ex-
perimental results demonstrate the efficiency and general-
ization capabilities of our model in effectively removing
dense occlusions across diverse scenes. Public project page:
https://github.com/Leozhangjiyuan/SpikeDeOcclusion.

Introduction
The presence of dense occlusions poses challenges to visual
algorithms. Recently, frame-based algorithms have been
proposed to see the background scenes through occlusions
assisted by leveraging multi-view image (Zhang et al. 2017;
Wang et al. 2020; Zhang, Shen, and Lin 2021; Li et al.
2021a; Zhang et al. 2022b; Hur et al. 2023). The task
is named Synthetic Aperture Imaging (SAI). However,
these algorithms often rely on discrete multi-view expo-
sures, which may not provide sufficient background infor-
mation. Moreover, obtaining sharp frames in high-speed sce-
narios poses further challenges. In applications such as au-
tonomous driving, effectively removing foreground occlu-
sions (e.g., fences) is crucial for enhancing environment per-
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Figure 1: Outline of occlusion removal with a single spike
camera. (a) Selected challenging occlusions, (b) Real-world
Scenes with occlusions, (c) Recovered backgrounds with the
proposed SpkOccNet, (d) We capture dataset with a fast-
moving spike camera.

ception, particularly at high driving speeds. Consequently,
the acquisition of sharp and continuous-view information in
high-speed scenarios remains a significant and ongoing chal-
lenge.

Recently, neuromorphic sensors (Gallego et al. 2020;
Brandli et al. 2014; Huang et al. 2022) show remarkable
performance in visual tasks. These sensors generate con-
tinuous signals asynchronously, enabling high temporal-
resolution sampling. Two commonly used types of neu-
romorphic sensors are event cameras and spike cameras.
Event cameras (Brandli et al. 2014; Lichtsteiner, Posch,
and Delbruck 2008) asynchronously fire events in a differ-
ential manner when the light change surpasses a threshold,
thus capturing rich motion information. Some studies have
utilized event cameras for occlusion removal tasks (Zhang
et al. 2021; Yu et al. 2022; Liao et al. 2022). However,
event-based algorithms often require refocusing events to
align them and provide accurate information for background
reconstruction. This reliance on camera intrinsic parame-
ters and distance information between objects and the cam-
era restricts its applicability. Spike cameras (Huang et al.
2022) mimic the sampling mechanism of the fovea in the
retina (Masland 2012; Wässle 2004), with each pixel cap-
turing photons and asynchronously firing spikes when the
accumulated intensity surpasses a threshold. The integration
mechanism of spikes enables the recording of absolute light
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intensity (Huang et al. 2022; Zheng et al. 2021; Zhu et al.
2019), providing more texture information for reconstruct-
ing occluded regions. Compared to frame-based cameras,
spike cameras offer more continuous and dense motion cues
for occlusion removal (as elaborated in Sec.). In this paper,
we propose, for the first time, to utilize spike cameras for
foreground occlusion removal tasks, demonstrating their po-
tential in effectively removing occlusions and reconstructing
sharp backgrounds with camera motion.

How do we define the spike-based SAI task? Conven-
tional cameras often suffer from motion blur when capturing
scenes in motion, which hinders the acquisition of multiple
perspective views with a single camera. Frame-based algo-
rithms rely on camera arrays to compensate for the limited
viewpoints, restricting their applicability in real-world sce-
narios. Our goal is to achieve foreground removal using only
one fast-moving spike camera without complex equipment
or calibration. Therefore, the spike-based SAI we defined
possesses the following advantages: a) The high temporal
resolution of the spike camera allows us to overcome the
constraints imposed by the motion speed of the scene; b) a
single spike camera is sufficient to capture continuous views,
eliminating the need for multiple cameras.

How do we design the model? To deal with the spike-
based SAI task, we build an end-to-end model named Sp-
kOccNet. Specifically, to exploit the rich spatial-temporal
information in spikes, we propose the Long-Short-Window
(LSW) module to excavate and ensemble spatial-temporal
features with different representations of long/short time
windows from various views. To be specific, we segment
spikes into three segments: one central and two end parts.
We then utilize dense windows to transform spikes within
three segments into dense representations while preserv-
ing their temporal characteristics, and simultaneously adopt
a longer window to transform the central segment into a
blurred image-like representation. Due to the motion dis-
placement of foreground occlusions relative to the back-
ground being more significant and various as the view
changes, spikes from different parts are complementary.
Features from various views are fused using the cross-view
mutual attention-based (Li et al. 2021b) module (CVA).

To enhance the generalization of our method in real-world
scenarios, we construct the first real spike-based occlusion
removal dataset S-OCC. As depicted in Fig.1(d), we mount
a spike camera on a slider and moved it rapidly to cap-
ture diverse outdoor scenes featuring different occlusions.
Fig.1(a) illustrates the various occlusion types included in
the dataset, while Fig.1(b) showcases the occluded scenes
contained in S-OCC. Furthermore, Fig.1(c) presents the de-
occlusion results obtained using the proposed SpkOccNet.

Our contributions are summarized as follows:

• We explore the spike-based SAI for the first time, utiliz-
ing sharp and continuous-view information from spike
streams. Our approach incorporates information from
dense viewpoints with long/short representations, lever-
aging mutual attention to fuse features.

• We contribute the first real-world spike-based dataset for
occlusion removal, verifying the algorithm’s generaliza-

tion in real-world scenes.
• Experiments demonstrate the effectiveness of our method

in occlusion removal, relying solely on a single camera
with fast motion.

Related Works
Synthetic Aperture Imaging
Image-Based SAI For frame-based cameras, an earlier
work (Vaish et al. 2004) utilized a camera array to align the
information from multiple viewpoints to a reference view-
point using coordinate relationships. However, its planar
camera array requires stringent hardware calibrations. Vaish
et al. (Vaish et al. 2006) take medians and entropy into con-
sideration and proposed a more robust cost function. Zhao et
al. (Pei et al. 2013) formulate an energy minimization prob-
lem to recognize each pixel from various views whether it
belongs to the occlusion. Zhang et al. (Zhang et al. 2017)
utilize a moving camera with its IMU data as the clue. Later
method (Yang et al. 2014) is capable of predicting all-in-
focus images. DeOccNet (Wang et al. 2020) includes a resid-
ual atrous spatial pyramid pooling module to enlarge recep-
tive fields. Zhang et al. (Zhang, Shen, and Lin 2021) use
shifted micro-lens images with a dynamic filter to explore
information in the light field. Recent works mainly utilize
stronger CNNs to remove occlusions (Li et al. 2021a; Zhang
et al. 2022b; Hur et al. 2023).
Event-Based SAI Discrete images captured with traditional
cameras fail to provide sufficient information in scenarios
with extremely dense occlusions due to limited viewpoints.
Event cameras show their potential to see through dense oc-
clusions (Zhang et al. 2021; Yu et al. 2022; Liao et al. 2022)
due to high temporal resolution. Zhang et al. (Zhang et al.
2021) propose to use SNNs as the encoder and CNNs as the
decoder. Later work (Liao et al. 2022) combines events and
images. However, the event-based SAI approaches require
the camera intrinsic. The translation matrices of the camera
and the target depth prior are complicated settings.

Spike-based Image Reconstruction
Spike cameras possess several advantages, including high
temporal resolution (Zheng et al. 2023b), high dynamic
range, and rich preservation of spatial texture. These ad-
vantages have led to wide applications in various down-
stream tasks, such as optical flow estimation (Hu et al. 2022;
Zhao et al. 2022; Chen, Yu, and Huang 2023), object track-
ing (Zheng et al. 2023a), and depth estimation (Zhang et al.
2022a; Wang et al. 2022). Among these tasks, the recon-
struction task (Zhang et al. 2023) serves as the fundamental
basis. In the early stages, Zhu et al. (Zhu et al. 2019) propose
to approximate the light intensity by statistically analyzing
the spike stream. Zhu et al. (Zhu et al. 2021) and Zheng et
al. (Zheng et al. 2021, 2023c) also develop biologically in-
spired reconstruction algorithms. Recently, Chen et al. ex-
plore self-supervised reconstruction methods (Chen et al.
2022) and spike-guided image deblurring (Chen et al. 2023).
Existing methods have demonstrated the advantages of spike
cameras in recovering textures from high-speed scenes.
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Figure 2: Illustration of the spike camera outputs spikes. The
voltage always increases and resets with the light change,
and spikes are read out with very short intervals.

Spike-based SAI
Theoretical Analysis
We focus on the physical imaging process to explain why
spike cameras exhibit superior potential than frame-based
cameras in addressing occlusion removal tasks. The pho-
tosensitive units of a spike camera consist of an array of
H×W pixels, with each pixel independently capturing pho-
tons continuously. The photoelectric conversion unit trans-
forms the captured photons into electrical current Ix,y(t) and
accumulates voltage Vx,y . When the voltage Vx,y exceeds
a dispatch threshold Θ, the pixel fire a spike, and subse-
quently, the voltage Vx,y is reset to zero, shown as in Fig. 2.
The entire process can be formulated as:

V +
x,y(t) =

{
V −
x,y(t) + Ix,y(t), if V −

x,y(t) < Θ,

0, otherwise,
(1)

Sx,y(k) =

{
1, if ∃t ∈ ((k − 1)η, kη], Vx,y(t) = 0,

0, if ∀t ∈ ((k − 1)η, kη], Vx,y(t) > 0,
(2)

where V −
x,y(t) and V +

x,y(t) denotes the voltage before and af-
ter receiving the electric current Ix,y(t), k ∈ R. The voltage
is read out with the very short interval η = 50µs and outputs
a spike stream S with the size of H ×W ×K after K times
readout during T µs (K = T

η ).
While capturing frame-based videos, the actual time inter-

val between successive frames is Tshutter. To reduce motion
blur, the exposure time Texpo per frame is kept shorter than
Tshutter. Therefore, the continuous changes in light dynamics
taking place during the time interval Tvoid = Tshutter − Texpo
are not captured.

Not considering the dynamic range, the image frame Bi

in i-th capture can be formulated as:

Bi =
1

Texpo

∫ Ti+Texpo

Ti

Ltdt ≃
∑Texpo/η

n=0
S(n), (3)

where Ti is the timestamp exposure begins, and the Lt is
the hidden sharp image at any exact moment t. With inap-
propriate Texpo, Bi would be blurry under fast motion from
Eq. 3. As depicted in Fig. 3(c), a moving camera during the
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Figure 3: Illustration of the advantages of spike cameras over
traditional cameras in seeing through backgrounds from the
perspective of the imaging process. Orange regions repre-
sent the visible area of a frame or spike camera.

exposure time Texpo results in motion blur, thereby causing
an enlargement of the foreground occlusion area. Due to the
integrative sampling of the spike camera, the sum of spikes
directly reflects the light intensity, thus Bi can be also ap-
proximately written in terms of S.

Imaging process comparison In Tshutter, we denoted the
quantity of information captured by frames and spikes as
Ωimage and Ωspike, which can be formulated as:

Ωimage = Bi + ∅ ,

Ωspike =
∑Texpo/η

k=0
S(k) +

∑(Texpo+Tvoid)/η

k=Texpo/η
S(k) ,

(4)

where ∅ denotes empty information. From Eq. 4, the first
term indicates that within Texpo, the image records an B,
while the spike gets S. However, B loses the temporal di-
mension, whereas S retains dense temporal information; the
second term indicates that within Tvoid, the image captures
nothing while the spike camera records continuously.

For SAI, in Fig. 3, the orange region represents the visi-
ble area during camera motion. The spike camera, due to its
dense information as in Eq. 4, offers more clues from con-
tinuous viewpoints, allowing the observation of background
objects xa and xb, while the frame-based camera lose.

New Spike-based Dataset: S-OCC
Occlusion removal with spike cameras is a previously unex-
plored area, lacking relevant existing datasets to this work.
Thus, we are dedicated to constructing the first dataset based
on spike cameras with various occlusions and ground truths.
We name the new dataset as S-OCC.
How We Set the Camera. In contrast to event-based and
image-based approaches, this work strives for independence
from camera intrinsic and extrinsic parameters, and scene
prior knowledge, relying on a single spike camera. To record
the scene, we place a spike camera on a slider and move it
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Figure 4: Architecture of the SpkOccNet. With the spike camera moving, continuous spikes are fed into the network, processed
by the Long-Short-Window feature extractor (LSW) first then Cross-View Attention-based fusion (CVA).

quickly during each shot, taking about 0.1 seconds for each
movement.
What the Occlusions are. We set five intricate occlusions to
both enhance model robustness and unveil the potential of
spike cameras. They encompassed (1) a square iron mesh,
(2) a hexagonal iron mesh, (3) a dense iron frame, (4) a
fence, and (5) an irregular fabric net. As Fig. 1(a) visu-
ally depicted, these occlusions characterize diverse levels of
sparsity and density, thereby introducing complexity to this
work. Notably, occluding objects are allowed their own mo-
tion during the camera capturing process.
How We Construct the Dataset. We record various outdoor
scenes utilizing the aforementioned camera motion and oc-
clusion setups, yielding a total of 128 sequences. Among
these, 108 sequences are randomly picked for training, while
the remaining 20 sequences are for testing. For static scenes
without occlusion, We fix the spike camera to capture the
background scenes and obtained grayscale images by calcu-
lating the spike firing rate (Zhu et al. 2019), which served as
the ground truth for the dataset. As a result, each sample in
this dataset comprises a spike stream alongside a clear back-
ground image with no occlusions. Besides, we claim that our
dataset is captured with no sensitive, private information or
societal implications involved.

Overall Architecture
We aim to predict the background image I through continu-
ous spikes. We build the model called SpkOccNet, as shown
in Fig. 4. Each input sample is a spike stream denoted as S,
generated by the camera through rapid sliding motion. S is
in size of H ×W × T , where H ×W = 250 × 400 repre-
sents the spatial resolution and T is the number of time steps
(T = 0.1s/50µs = 2000).

With camera motion, S records the dense and continuous
changes in viewpoints. Upon the analysis from the previous
section, we assert S contains all information for reconstruct-
ing the background. In S, spikes at the two ends correspond
to the largest viewpoint change, where the motion displace-
ment of foreground occlusions relative to the background is

more significant. Thus, the background texture captured by
the spikes at the two ends is likely to complement the infor-
mation recorded by the spikes in the middle. Motivated by
this, we partition S into three segments for processing:

S = Saux
− + Sc + Saux

+ , (5)
where Saux

− = H ×W × T−, Sc = H ×W × Tc, Saux
+ =

H×W×T+, and T− ∈ [0,Waux], Tc ∈ [Waux, T−Waux],
T+ ∈ [T −Waux, T ], as shown in Fig.4. Waux is the param-
eter that controls the window length. We set Waux to 300,
which is much shorter than T .

The SpkOccNet includes two stages, long-short-window
feature extractor (LSW) and cross-view attention-based
fusion (CVA). In the first stage, each segment of spikes is
first pre-processed with image-like representations, then ex-
tracted features with various modules. Saux

+ and Saux
− is pro-

cessed with dense window reprensentaion then DeOcc ex-
tracter, and output features f+, f−. Sc is processed with two
branches, one is long window reprensentaion with DeOcc
extractor, the other is dense window reprensentaion with En-
semble Learner, then output features f long

c , f dense
c .

In the second stage, the CVA module mainly aims to com-
plement the texture of the center moment (f long

c , f dense
c ) from

the texture of two ends (f+, f−). Firstly, f long
c , f dense

c are
fused with a channel-attention layer to get f fuse

c . Then, the
CVA input with f fuse

c , f+, f− for feature fusion with the pro-
posed attention mechanism in which features are enhanced
with attention from others along both spatial and channel
dimensions. Finally, the prediction layer consisted of Conv
layers outputs the final reconstructed background image Î .

Long-Short-Window Feature Extractor
As in Sec. , we split the input S into three windows, Saux

− ,
Sc, Saux

+ , each of which contains continuous views. The
timestamp for reconstruction is the center of Sc. Thus, Sc

provides the spatial structure for reference while Saux
+ ,Saux

−
provides complementary information for texture in Sc.
Firstly, Saux

+ ,Saux
− are transformed with dense window rep-

resentation (ReprDW). To be specific, we split spikes into
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Figure 5: The structure of the proposed Cross-View
Attention-based fusion (CVA), consisting of two mutual
window attention (MWA) and a channel attention module.

dense groups by non-overlapping a sliding window whose
length is Wdense = 100. In each group, spikes are ac-
cumulated in Sc along the time axis and transformed into
Wdense/Waux image-like representations with one chan-
nel. After ReprDW, Saux

+ ,Saux
− are transformed to R+, R−,

then processed by the DeOcc Extracter, a U-shape network
comprised of Conv encoders and decoders, respectively. We
denote them as Menc−dec

+ , Menc−dec
− . After that, features

f+, f− are obtained. The above process is formulated as:
R+/− = ReprDW(Saux

+/−),

f+/− = fMenc−dec
+/−

(R+/− : θMenc−dec
+/−

).
(6)

For Sc, as it contains spikes from longer time intervals
around the central point, we employ two different represen-
tations for its transformation.
(A) We utilize the long window representation(ReprLW) to
transform spikes. The depth difference ensures that the fore-
ground occlusions will exhibit larger displacements on the
imaging plane than the background. For spikes at different
moments, the visible regions in the background will change
accordingly due to the variations in occlusions. Therefore,
we accumulate spikes in Sc along the time axis with the full-
length Wlong = T−2Waux, getting the representation Rlong

c .
This transforms the foreground occlusions into a blurred ef-
fect similar to a long-exposure image, allowing the occluded
background texture to have the “partially-see-through ef-
fect”. The same U-shape feature extractor Menc−dec

c re-
ceives Rc and output feature f long

c . Despite the presence of
some motion blur in f long

c , it still offers essential structural
information for reconstructing the background.
(B) Sc is also processed with the ReprDW to get repre-
sentation Rdense

c with continuous view changes. For Rdense
c ,

we employ residual Conv layers Mres
c to ensemble effec-

tive features f dense
c from dense viewpoints. Finally, we use

a channel attention (Zamir et al. 2022) to fuse the two fea-
tures (f long

c , f dense
c ) and get f fuse

c . The above process can be
formulated as:

Rlong
c , Rdense

c = ReprLW(Sc), ReprDW(Sc),

f long
c = fMres

c
(Rlong

c : θMres
c

),

f dense
c = fMenc−dec

c
(Rdense

c : θMenc−dec
c

),

f fuse
c = Fuse([f long

c , f dense
c ]),

(7)

Cross-View Attention-Based Fusion
In the second stage, we propose a novel Cross-View
Attention-Based Fusion (CVA) module to fuse and refine
the features from the first stage.

The CVA takes three features as input, f fuse
c , f+, f−. As

shown in Fig. 5, the CVA includes two modules with differ-
ent attention mechanisms: one is the channel attention (CA)
MCA that is adapted from the multi-dconv head Transposed
self-attention (MDTA) in Restormer (Zamir et al. 2022),
the other is our proposed mutual window attention (MWA)
MMWA block.

Among [f fuse
c , f+, f−], f fuse

c represents the center long-
interval textures of Sc while f− and f+ offering textures
from the shorter time windows on two ends of S. We con-
sider using the cross-view mutual attention mechanism for
the following reasons:
(A) The occluded regions in f−, f+ and f fuse

c differ due to
the differences in viewpoints. Mutual attention can help to
compensate for the occluded parts in one feature map by
referring to the non-occluded parts in other feature maps.
(B) Due to the high-speed camera motion, there can still be
some spatial displacement of the background scenes. The
mutual attention mechanism can effectively align features to
mitigate the impact of camera motion.

The MWA approximately comprises two Transformer
blocks. Specifically, the standard Transformer block takes
one input f , obtains its Q(query), K(key), and V (value) ma-
trices and operates self-attention. For our MVA, it takes two
inputs f1 and f2, obtains Q1, K1, V1 and Q2, K2, V2 matri-
ces, and operates mutual attentions as followings:

f1,2, f2,1 = fMMWA(f1, f2 : θMMWA),

= Attn(Q1,K2, V2),Attn(Q2,K1, V1).
(8)

Considering the computing cost, we adopt window-based
attention operation in the Swin Transformer blocks (Liu
et al. 2021). In the MVA, we compute mutual attention
twice, one between f fuse

c and f−, the other between f fuse
c and

f+. The process can be formulated as:

fc,−, f−,c = fMMWA(f
fuse
c , f− : θMMWA),

fc,+, f+,c = fMMWA(f
fuse
c , f+ : θMMWA).

(9)

Features are then concatenated together along the chan-
nel axis and processed by the channel attention layer which
contains one MDTA layer for attention and one Conv layer
for reducing output channels. It can be formulated as:

fCVA = fMCA({fc,−, f−,c, fc,+, f+,c} : θMCA). (10)
Finally, the prediction layer consisted of Conv layers, in-

put with fCVA, outputs the predicted background image Î .
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Figure 6: Results on S-OCC for our method compared with E-SAI (Zhang et al. 2021) and DeOccNet (Wang et al. 2020).

Experiments
We train all networks with PyTorch. L1 loss is used for opti-
mization. Quantitative metrics are peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM). Detailed informa-
tion about the S-OCC dataset, training and network imple-
mentation details, are included in the supplementary file.

Quantitative and Qualitative Results
We compare the proposed SpkOccNet with three other meth-
ods. Firstly, we use the U-shaped feature extractor used in
our model as the baseline whose output channels are set to
1. Secondly, we include DeOccNet (Wang et al. 2020), a
model that performs well in the image domain. For these
two models, we simulated images as inputs. Specifically,
we take the middle 300 spike frames (denoted as Smid

c )
of Sc and process Smid

c ,S+,S− through ReprLW to obtain
three accumulated grayscale images, which are similar to se-
quence captured by a camera with an exposure time of 15ms
(300×50µs) and the frame rate closed to 25 fps. Thirdly,
we consider the model E-SAI (Zhang et al. 2021), which is
based on event cameras and trained with a hybrid SNN-CNN
model. We split the spike S into 30 dense windows as input
according to the settings in E-SAI.

The quantitative results in terms of PSNR and SSIM are
presented in Tab. 1. The table shows the performance of each
model on the test set for five different occlusion scenarios, as

well as the average performance. It can be observed that our
model, SpkOccNet, achieves the best performance on the S-
OCC dataset compared to the other three methods. SpkOc-
cNet achieves a PSNR of 26.83 dB, which is approximately
1.76dB higher than DeOccNet and 1.32 dB higher than the
E-SAI method. It is worth noting that SpkOccNet has a
parameter size of only about 4.9M, while DeOccNet and
E-SAI have parameter size of 39.04M and 18.59M, which
are 8.0 and 3.8 times more than ours. The performance
and the parameter size demonstrate the stronger advantage
of our proposed model for spike-based occlusion removal.
Our model exhibits more pronounced advantages in deal-
ing with ‘Fence’, ‘Hexagonal Mesh’, and ‘Fabric net’ occlu-
sions. The ’Fence’ scenario involves extensive occlusions,
whereas the ’Fabric Net’ exhibits densely-packed and irreg-
ular occlusions, both of which pose substantial challenges.

Fig. 6 presents visualized results. Our method achieves
higher-quality image reconstructions. Specifically, our
method is able to recover clearer background textures and
overcome the issue of the change of illumination caused by
occlusions. Although the E-SAI can reconstruct relatively
smooth images, the reconstructed images appear blurry and
the effect of under/overexposure exists in some regions. Be-
sides, DeOccNet performs badly in removing severe occlu-
sions. The results demonstrate that our method outperforms
the other two image-domain and event-domain methods.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

642



Occlusions Methods PSNR ↑ SSIM ↑

Fense

Baseline U-Net 25.89 0.774
DeOccNet (2020) 26.06 0.782

E-SAI (2021) 26.68 0.767
SpkOccNet 28.38 0.792

Raster

Baseline U-Net 22.71 0.690
DeOccNet (2020) 23.60 0.686

E-SAI (2021) 25.13 0.745
SpkOccNet 26.28 0.746

Square Mesh

Baseline U-Net 26.63 0.766
DeOccNet (2020) 25.60 0.762

E-SAI (2021) 28.26 0.772
SpkOccNet 27.35 0.745

Hexagon Mesh

Baseline U-Net 28.42 0.713
DeOccNet (2020) 28.17 0.759

E-SAI (2021) 27.48 0.776
SpkOccNet 29.67 0.846

Fabric Net

Baseline U-Net 19.50 0.640
DeOccNet (2020) 20.90 0.660

E-SAI (2021) 19.69 0.626
SpkOccNet 22.33 0.683

Total

Baseline U-Net 24.60 0.761
DeOccNet (2020) 24.77 0.771

E-SAI (2021) 25.51 0.765
SpkOccNet 26.83 0.805

Table 1: Comparison of various de-occlusion methods on S-
OCC. The table shows results on five occlusion types.

Menc−dec
c,+,− Mres

c MMVA PSNR ↑ SSIM ↑
! 25.53 0.773

! 23.72 0.737
! ! 26.11 0.789
! ! ! 26.83 0.805

Table 2: Ablation study of the proposed modules.

Ablation Studies
Ablation on Modules. To validate the effectiveness of the
proposed modules in SpkOccNet, we first conduct ablation
experiments on modules, and the results are shown in Tab.2.

The effectiveness of the LSW is validated through Row
1∼3. Specifically, in the Row 1, only Rlong

c , R+, R−are used
as inputs which are processed through their Menc−dec

c,+,− and
the output features are simply concatenated for fusion. In
the Row 2, only the dense representation Rdense

c of Sc is
used as input and processed by the residual feature extractor
Mres

c to obtain features. Row 3 combines the approaches
from the previous two rows. Row 1 and Row 3 demon-
strate that the dense representation of spikes preserves tem-
porally dense viewpoint information, thereby enhancing per-
formance. Row 2 and Row 3 verify the effectiveness of the
representations of the viewpoints at both ends and the longer
time window representation in the middle.

Row 3 and Row 4 validate the effectiveness of the CVA in
the second stage. In Row 4, when performing feature fusion,
the proposed MMVA in CVA is used, while in Row 3, both

Occluded View Le� End Right End Center

Figure 7: Visualized dense window representations of two-
end spikes and long window representation of center spikes.

Input Length 45ms 75ms 105ms Image
PSNR ↑ 26.42 26.77 26.83 25.90
SSIM ↑ 0.795 0.807 0.805 0.794

Table 3: Ablation study of input length of spikes and com-
parison with images as input.

simple concatenation and the Conv layer are employed for
fusion. These two rows illustrate the effectiveness of CVA in
facilitating feature complementarity across different view-
points. Fig. 7 illustrates the dense window representations
of Saux

+ and Saux
− , along with the long window representa-

tion Rc of Sc. It is evident that Saux
+ and Saux

− encompass
complementary information from occluded viewpoints (red
and yellow circles). Rc simulates the overall blurred texture
similar to a “long exposure” effect.

Analysis on Input. We conducted experiments on the in-
put spike length which represents the extent of viewpoint
changes during camera motion. Additionally, to contrast the
advantages of spike cameras against frame-based cameras,
we simulated images as inputs of SpkOccNet, as described
in Sec. . As reported in Tab. 3. In general, even with spikes
only recording 45 ms (equivalent to only the time of one cap-
tured by a frame-based camera), the performance remains
superior to that of image inputs. The result underscores the
significance of viewpoint continuity in background recon-
struction. As the input length increases, the PSNR improves,
indicating that the magnitude of viewpoint changes also in-
fluences background reconstruction.

Conclusion
We explore the first spike-based SAI, utilizing spikes for
recovering backgrounds from dense occlusions. Our model
SpkOccNet integrates information from different view-
points and window lengths, employing mutual attention for
effective fusion and refinement. We contribute the first real-
world spike-based dataset S-OCC for occlusion removal.
Remarkably, our algorithm achieves impressive occlusion
removal results using a single camera with fast motion.
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