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Abstract
Cognitive Diagnosis Modeling aims to infer students’ pro-
ficiency level on knowledge concepts from their response
logs. Existing methods typically model students’ response
processes as the interaction between students and exercises
or concepts based on hand-crafted or deeply-learned inter-
action functions. Despite their promising achievements, they
fail to consider the relationship between students’ cognitive
states and affective states in learning, e.g., the feelings of
frustration, boredom, or confusion with the learning content,
which is insufficient for comprehensive cognitive diagnosis
in intelligent education. To fill the research gap, we propose a
novel Affect-aware Cognitive Diagnosis (ACD) model which
can effectively diagnose the knowledge proficiency levels of
students by taking into consideration the affective factors.
Specifically, we first design a student affect perception mod-
ule under the assumption that the affective state is jointly in-
fluenced by the student’s affect trait and the difficulty of the
exercise. Then, our inferred affective distribution is further
used to estimate the student’s subjective factors, i.e., guess-
ing and slipping, respectively. Finally, we integrate the esti-
mated guessing and slipping parameters with the basic neu-
ral cognitive diagnosis framework based on the DINA model,
which facilitates the modeling of complex exercising interac-
tions in a more accurate and interpretable fashion. Besides,
we also extend our affect perception module in an unsuper-
vised learning setting based on contrastive learning, thus sig-
nificantly improving the compatibility of our ACD. To the
best of our knowledge, we are the first to unify the cog-
nition modeling and affect modeling into the same frame-
work for student cognitive diagnosis. Extensive experiments
on real-world datasets clearly demonstrate the effectiveness
of our ACD. Our code is available at https://github.com/zeng-
zhen/ACD.

Introduction
Cognitive Diagnosis Modeling (CDM) serves as a funda-
mental task in educational data mining (Anderson et al.
2014; Nguyen 2015), aiming at revealing students’ profi-
ciency levels on specific knowledge concepts based on their
response logs (Lord 1952). The diagnosis results can effec-
tively support the downstream intelligent education tasks,
such as knowledge tracing (Piech et al. 2015; Nakagawa,
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Figure 1: The statistical correlation between student-
exercise cognitive response and affective state is illustrated
in (a) and (b) based on the ASSIST17 dataset. A toy exam-
ple of the affect-aware cognitive diagnosis is shown in (c).

Iwasawa, and Matsuo 2019; Shen et al. 2021), computer-
ized adaptive testing (Zhuang et al. 2022b; Wu et al. 2020;
Zhuang et al. 2022a), and recommendation systems.

The quality of CDM largely depends on the design of
the interaction function that models the complex interac-
tions between students and exercises or concepts. Early
methods primarily relied on manually designed interaction
models (Lord 1952; Reckase 2009). Recent methods have
achieved significant performance by incorporating deep neu-
ral networks (Wang et al. 2020) and graph neural net-
works (Gao et al. 2021; Wang et al. 2023b) into the in-
teraction functions. Currently, the mainstream paradigm for
deep interaction functions mostly adopts the classic Item Re-
sponse Theory (IRT (Lord 1952)) to model the probability of
a student correctly answering an exercise based on the stu-
dent learning ability and exercise difficulty. Despite their re-
markable achievements, existing efforts in CDM fail to con-
sider the affective states of students in learning. In this paper,
we argue that the affective states of students is an indispens-
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able subjective factor for cognitive behavior analysis.
Some early studies (Pedro et al. 2013; San Pedro et al.

2014) in the field of educational data mining have investi-
gated the relationships between affect and learning behav-
ior in tutoring systems. They found that students who were
bored or confused while answering the questions tended to
do poorly on the test, and students with high levels of con-
centration obviously tended to make fewer mistakes. Be-
sides, as shown in Figure 1, we illustrate the probability
of student practicing exercises correctly in different affect
dimensions based on the ASSIST17 dataset. Our observa-
tions are consistent with the aforementioned research find-
ings, which clearly supports our argument in this paper that
the affective factor should be carefully modeled into the in-
teraction function for CDM. How to effectively perceive the
students’ affects and further leverage the affective cue to
boost the students’ cognitive diagnosis is a crucial research
question, but has not been carefully studied so far in CDM.

To fill the research gap, we develop a novel and flexible
Affect-aware Cognitive Diagnosis (ACD) approach which
can effectively diagnose students’ knowledge proficiency
levels on specific knowledge concepts in a more accurate
and interpretable fashion. To be specific, our proposed ACD
framework mainly consists of three parts. (1) We first design
a student affect perception module under the assumption that
students’ affective states should be influenced by not only
the students’ personalized affect traits but also the difficulty
of exercises. It is inspired by the Flow theory in (Csikszent-
mihalyi 1992) stating that specific affective states emerge
depending on the degree of challenge and skill that is present
for an activity. (2) Then, we utilize the predicted affec-
tive distribution to infer the two important subjective fac-
tors of students, i.e., guessing and slipping, in the Deter-
ministic Inputs, Noisy And gate (DINA) (De La Torre 2009)
model, which is significantly different from original design
in DINA where guessing and slipping are simply treated as
two exercise-specific parameters. (3) Finally, we can easily
integrate our learned guessing and slipping parameters with
the estimated response score from basic neural cognitive di-
agnosis frameworks (Gao et al. 2021; Wang et al. 2023b)
based on the DINA model. Moreover, our affect percep-
tion module can not only be optimized in supervised learn-
ing manner on datasets with auxiliary affect annotations, but
also be extended in an unsupervised learning setting based
on contrastive learning, thereby being easily integrated with
existing CDM frameworks.

To the best of our knowledge, we are the first to unify
the cognition modeling and affect modeling into the same
framework for student cognitive diagnosis. Overall, our pro-
posed ACD firstly demonstrates the great potential of study-
ing the relationships between affect and cognition in CDM.
Despite the simplicity of our implemented ACD approach,
we can significantly improve the strong CDM baselines, e.g.,
NCD (Wang et al. 2020) and RCD (Gao et al. 2021), in dif-
ferent settings. The main merit of this work is that we present
a simple yet effective solution to exploit the complementa-
tion of DINA model and existing IRT based CDM methods,
benefiting from the students’ affective modeling. Our key
contributions are summarized as follows:

• We propose a novel and effective affect-aware CDM ap-
proach, which clearly validates that the affective state is
an indispensable subjective factor for CDM.

• We develop a plug-and-play affect perception module
which can be optimized either in fully-supervised or un-
supervised learning setting, showing high compatibility.

• Extensive experiments and analysis on several bench-
mark datasets with different CDM baselines clearly
demonstrate the rationale and effectiveness of our ACD.

Preliminaries
We first briefly formulate the affect-aware CDM task. Con-
sidering that our ACD method depends on the DINA
paradigm, we further describe the DINA model in detail.
Problem Definition: Let M , N , K, and Z denote the num-
ber of students, exercises, knowledge concepts, and affect la-
bels, respectively. S = {s1, · · · , sM}, E = {e1, · · · , eN},
and C = {c1, · · · , cK}, denote the sets of students, exer-
cises, and knowledge concepts. Let Q = {Qij}N×K ∈
{0, 1}N×K be Q-matrix that records the relationship be-
tween exercises and knowledge concepts, where Qij = 1
if exercise ei relates to the concept cj and Qij = 0 other-
wise. The student practice records R are denoted as the set
of (s, e, r), where r ∈ {0, 1} represents the binary score of
student s on exercise e. The corresponding affect vector of
student s is denoted as a = {a1, · · · , az, · · · , aZ}, where
az ∈ (0, 1) denotes the value of z-th affect label, e.g., con-
centrating or confused while student s doing exercise e.

Given the students’ practice logs R, the Q-matrix, and the
annotation of affective state vector a, the goal of our affect-
aware cognitive diagnosis is to learn an effective affect-
aware cognitive diagnosis interaction function Fθ(·) that can
jointly estimate students’ mastery levels on each knowledge
concept through student performance prediction and also in-
fer students’ affective states in a multi-task learning manner.
DINA Model: The DINA (De La Torre 2009) model is one
of the most typical CDM theories. It introduces two exercise
factors: slipping ŝ and guessing ĝ. ŝ denotes the probability
that a student has sufficient ability but makes an incorrect re-
sponse due to a slipping error for the exercise, and ĝ denotes
the probability that the student does not know how to answer
the exercise but guesses correctly. In DINA, ŝ and ĝ are only
defined as exercise-specific factors, ignoring the individual
differences between students. Let ηij be the mastery of stu-
dent si on exercise ej , which is calculated by ηij =

∏
k θ

βjk

ik ,
where both θik and βjk are binary variables. θik denotes
whether the student sj has mastered the knowledge concept
ck. βjk means whether the exercise ej contains ck. Based
on the two factors, the probability of student si practising
exercise ej correctly is defined as:

ŷi,j = ĝ
1−ηi,j

j (1− ŝj)
ηi,j . (1)

Methodology
We provide a comprehensive overview of our Affect-aware
Cognitive Diagnosis model (ACD) based on the NCD frame-
work (Wang et al. 2020). Next, we briefly introduce how to
extend our ACD in the unsupervised setting without affect
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Figure 2: The pipeline of Affect-aware Cognitive Diagnosis.

labels. Note that our method can also be easily applied to
other cognitive diagnosis frameworks.

Affect-aware Cognitive Diagnosis (ACD)
As shown in Figure 2, ACD can be mainly divided into
three modules: student affect perception, basic cognitive di-
agnosis, and affect-aware cognitive diagnosis. The student
affect perception module aims to predict the affects of stu-
dents on specific exercises. Furthermore, through the affects,
we can predict the probabilities of their guessing and slip-
ping states. The basic cognitive diagnosis module can be an
existing cognitive diagnosis model (here we present NCD
for example) which utilizes the student’s ability and exer-
cise difficulty to predict the accuracy of response. Finally,
the affect-aware cognitive diagnosis module combines the
affect-aware guessing and slipping parameters along with
the basic cognitive diagnosis results to make the final pre-
diction of student responses based on the diagnostic formula
of the DINA model.

Student Factors: In ACD, we design two factors hs and
ha on each student. hs denotes the mastery level of student
on knowledge concepts. ha is the latent affect trait of stu-
dent. Let xs be the one-hot vector of student, the factors hs

and ha can be obtained by multiplying xs and trainable ma-
trices A and S respectively:

hs = sigmoid(xs × S), (2)
ha = sigmoid(xs ×A), (3)

where hs ∈ (0, 1)1×K , ha ∈ (0, 1)1×d, xs ∈ {0, 1}1×M ,
S ∈ RM×K and A ∈ RM×d, and d denotes the dimension
of the latent affect trait.

Exercise Factors: The exercise factors include the knowl-
edge concepts correlation vector Qe, which represents the
knowledge concepts involved in each exercise, the exercise
difficulty hdiff, and the exercise discrimination hdisc. Let xe

be the one-hot vector of exercise, and Qe can be computed
by Qe

j = xe×Q, where Qe ∈ {0, 1}1×K , xe ∈ {0, 1}1×N .
hdiff represents the difficulty of the exercise on each knowl-
edge concept. And hdisc reflects the exercise’s capacity to

discriminate between students exhibiting high and low mas-
tery levels of knowledge concepts. We calculate them by:

hdiff = sigmoid(xe ×E), (4)

hdisc = sigmoid(xe ×D), (5)

where hdiff ∈ (0, 1)1×K , hdisc ∈ (0, 1). E ∈ RN×K and
D ∈ RN×1 are trainable matrices.

Student Affect Perception: This module is new-designed
in our method. Considering that when the student is engaged
in exercise-solving, the affect is influenced by both the af-
fect latent trait and the difficulty of the exercise. Different
students may exhibit different affects when facing the same
exercise. Even the same student would exhibit different af-
fects when facing different difficult exercises. We utilize ha

and hdiff to predict the affect of student facing exercise by a
fully connected layer:

â = sigmoid(Wa × [ha,hdiff]T + ba), (6)

where â ∈ (0, 1)Z contains the predicted value of each af-
fect. Wa ∈ RZ×(d+K) represents the weight matrix and ba
is bias. [·] denotes the concatenation operation.

Since the affects of students is labeled as continuous val-
ues ranging from 0 to 1, we choose the mean square er-
ror (MSE) loss function for the affect perception module:

La =
∑
i

||âi − ai
gt||2, (7)

where ai
gt denotes of the annotated affect vector of i-th

student-exercise interaction. The affect loss La is finally av-
eraged over the mini-batch. Note that when the affect anno-
tation is missing in the training data, the student affect per-
ception module in ACD can be optimized by unsupervised
learning, which will be detailed later.

Basic Cognitive Diagnosis: We use the NCD (Wang et al.
2020) framework as our basic cognitive diagnostic module
to implement ACD for its simplicity and effectiveness. The
student response score y∗ in NCD is predicted by an interac-
tion function composed of multiple fully connected layers.
Its input is formulated as follows:

f0 = Qe ◦ (hs − hdiff)× hdisc, (8)

where ◦ is the element-wise product. The output layer in
NCD is formulated as follows:

y∗ = sigmoid(Wn × fn−1 + bn). (9)

The weight matrices of all layers are restricted to positive
values to satisfy the monotonicity assumption.

Affect-aware Cognitive Diagnosis: Intuitively, the per-
formance of the student is often correlated with his affect
during the exercise-solving process. For example, even if a
student possesses the capability to answer an exercise cor-
rectly, a low level of concentration during interaction could
still lead to an incorrect response. To fit the influence of af-
fect on the interaction process, we model the probabilities of
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Figure 3: Unsupervised affect perception module.

student’s guessing and slipping based on the estimated affect
distribution, which are as follows:

ĝ = sigmoid(Wg × â+ bg), (10)
ŝ = sigmoid(Ws × â+ bs), (11)

where Wg,Ws ∈ R1×Z denote the weight matrices of
guessing and slipping, respectively, and bg, bs are bias terms.
ĝ ∈ (0, 1) represents the probability that the student answers
the exercise correctly due to guessing, and ŝ ∈ (0, 1) repre-
sents the probability that the student makes a mistake on ex-
ercise due to slipping. By combining ĝ, ŝ, and y∗, we adopt
the well-known DINA diagnostic formula to infer the affect-
aware student response score ŷ as follows:

ŷ = ĝ(1− y∗) + (1− ŝ)y∗, (12)

where the DINA formula in Eq. (12) is a reformulated ver-
sion in FuzzyCDM (Liu et al. 2018) which is more suitable
for predicting student’s performance using neural networks.

Inspired by DINA, the first part in Eq. (12) represents the
probability that student s doesn’t know how to solve exercise
e but guessed correctly, and the second part represents the
probability that, based on the student’s capability, he should
have answered the exercise correctly but made a mistake.
Given that students’ response labels r are binary (0 for in-
correct and 1 for correct), the binary cross-entropy loss is
leveraged as the loss function for cognitive diagnosis:

LCDM = −
∑
i

(ri log ŷi + (1− ri) log(1− ŷi)). (13)

Training: In our approach, we jointly train the two losses
in Eq. (7) and Eq. (13) in our ACD. The student affect per-
ception module aims to predict the student’s affective distri-
bution based on the student’s latent affect trait ha and exer-
cise difficulty hdiff. The predicted affect provides assistance
to the basic cognitive diagnosis. Specifically, the affect-
aware cognitive diagnosis module utilizes affect-related pa-
rameters to predict students’ responses and diagnose their
levels of knowledge concept mastery. Synchronously, the ac-
curacy of cognitive diagnosis results could also influence the
student affect latent traits. We optimize the two losses simul-
taneously by employing a joint loss function:

L = LCDM + λLa, (14)

where λ denotes the trade-off parameter for the affect loss.

Dataset ASSIST17 ASSIST12 Junyi
Students 1709 27633 10000
Exercises 3162 53086 835
Knowledge concepts 102 265 835
Response records 311569 2013626 220799
AVG#score 0.4365 0.6971 0.6516

Table 1: Statistics of experimental datasets.

Unsupervised Contrastive ACD Model (CACD)
In fact, not all the datasets have the affect labels. When there
are no available affect labels, it is not-trivial to optimize the
student affect perception module. Considering the statistical
correlation between the students’ affects and their cognitive
response results illustrated in Figure 1 (a) and (b), we uti-
lize the contrastive learning strategy to design an unsuper-
vised affect perception module, as illustrated in Figure 3,
to replace the student affect perception module shown in
Figure 2. We refer to this new designed model suitable for
datasets without affect labels as Contrastive ACD (CACD).
Here we assume that positive student-exercise interactions
with the response results more likely correspond to the same
affective state of students, while negative student-exercise
interactions more likely correspond to different affective
states. Under this assumption, we can collect sufficient pos-
itive pairs and negative pairs for contrastive learning to op-
timize the affect vector â in Eq. (6). To replace La, the con-
trastive affect perception loss Lca is formulated as follows:

Lca = −
∑
i

1

|Pi|
∑
j∈Pi

log
exp(sim(âi, âj)/τ)∑

k∈Ni

exp(sim(âi, âk)/τ)
, (15)

where Pi denotes the set of positive pairs constructed for
i-th student-exercise interaction, and Ni denotes the set of
negative pairs constructed for i-th interaction. sim(·, ·) de-
notes the cosine similarity between the two estimated affect
vectors, and τ is the temperature of contrastive loss.

Remarks Our approach can be regarded as a plug-and-
play module which is added to existing cognitive diagnostic
models to improve the performance.

Experiments
To demonstrate the generalization and effectiveness of affect
perception in ACD, we first compare the model incorporat-
ing affect perception with its baselines. Then we will analyze
and interpret the models.

Datasets: In order to verify the generalization, we evalu-
ate our model on three real datasets, in which two have affect
labels, while one does not. A brief overview of the datasets
is described as follows:

• ASSIST171 is collected for ASSISTments Longitudinal
Data Mining Competition in 2017.

• ASSIST122 is the data for the school year 2012-2013
with affect. The affect data was extracted by researchers

1https://sites.google.com/view/assistmentsdatamining/dataset
2https://sites.google.com/site/assistmentsdata/2012-13-school-

data-with-affect

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

623



Datasets ASSIST17 ASSIST12
Models ACC RMSE AUC ACC RMSE AUC

DINA baseline 64.84±0.09 46.66±0.02 69.64±0.06 71.45±0.07 43.80±0.04 69.49±0.11
ACD 71.15±0.26 43.62±0.18 77.72±0.29 73.76±0.08 42.12±0.05 74.21±0.06

IRT baseline 65.96±0.10 46.53±0.03 72.37±0.07 73.11±0.04 42.67±0.01 72.67±0.03
ACD 71.64±0.23 43.25±0.10 78.55±0.22 74.26±0.07 41.71±0.02 75.44±0.07

MIRT baseline 68.17±0.02 46.48±0.03 74.13±0.00 73.81±0.00 44.44±0.00 72.58±0.00
ACD 72.43±0.13 42.78±0.07 79.46±0.13 74.38±0.07 41.63±0.06 75.64±0.11

NCD baseline 69.21±0.87 45.13±0.60 75.34±1.01 74.23±0.05 41.95±0.01 74.78±0.04
ACD 72.42±0.10 42.84±0.07 79.49±0.10 74.98±0.05 41.37±0.06 76.02±0.16

RCD baseline 71.55±0.15 43.39±0.10 78.10±0.03 74.49±0.04 41.75±0.03 75.22±0.05
ACD 72.31±0.10 42.84±0.05 79.27±0.08 74.61±0.02 41.43±0.00 76.19±0.01

SCD baseline 71.59±0.10 43.35±0.05 78.19±0.01 74.64±0.03 41.48±0.02 75.94±0.04
ACD 72.69±0.05 42.79±0.02 79.40±0.07 74.70±0.01 41.37±0.00 76.10±0.02

Table 2: Experimental results on student performance prediction in percentage.

from student logs (Wang, Heffernan, and Heffernan
2015; Botelho, Baker, and Heffernan 2017). This dataset
has been widely used in research related to affect.

• junyi3 is collected from the Chinese e-learning web-
site Junyi Academy (Chang, Hsu, and Chen 2015). This
dataset is widely used in CDM.

Both ASSIST17 and ASSIST12 include four types of af-
fect: bored, concentrating, confused, and frustrated. Follow-
ing the setting in (Gao et al. 2021), we only retain the initial
response log of students, and exclude students with less than
15 response records. The processed data statistics are pre-
sented in Table 1. 80% data of each student is leveraged for
training and the remaining 20% for testing.
Baselines: We use the following baselines for experiments:

• DINA (De La Torre 2009) modeled the student and exer-
cise factors as binary vectors, incorporating guessing and
slipping parameters to estimate the performance.

• IRT (Lord 1952) modeled students and exercises as uni-
dimensional traits and utilized the logistic model to rep-
resent their interactions.

• MIRT (Reckase 2009) extended the traits of students and
exercises in IRT to multi-dimension.

• NCD (Wang et al. 2020) leveraged the neural network to
model the interactions between students and exercises.

• RCD (Gao et al. 2021) modeled the relationships be-
tween knowledge concepts and introduced GCN.

• SCD (Wang et al. 2023b) utilized self-supervised graph
learning to address the long-tailed problem in CDM.

Experimental Settings: The Prediction Accuracy (ACC),
Root Mean Square Error (RMSE), and Area Under an ROC
Curve (AUC) are selected as evaluation metrics to evaluate
the results in our method. For fairness, we use the same hy-
perparameter settings for all models. We set the coefficient
λ for the affect prediction loss in Eq. 14 to 1 to avoid over
adjusting. and the dimension of the affect latent traits for
students, denoted as d, to 128 for good performance. The

3https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=
1198

Dataset junyi
Models ACC RMSE AUC

DINA baseline 74.22 41.76 78.72
CACD 76.96 40.05 82.18

IRT baseline 67.60 42.68 77.50
CACD 77.17 39.76 82.64

MIRT baseline 75.13 41.17 79.89
CACD 77.27 39.73 82.64

NCD baseline 74.43 41.72 79.09
CACD 77.35 39.70 82.73

RCD baseline 77.16 39.63 82.62
CACD 77.42 39.56 82.94

SCD baseline 77.30 39.61 82.77
CACD 77.45 39.59 82.90

Table 3: The results on the dataset without affect labels.

network parameters are initialized using Xavier initializa-
tion following the (Wang et al. 2020). All the weights are
sampled from N

(
0, 2

nin+nout

)
, where nin refers to the in-

put dimensionality of a layer, and nout refers to the output
dimensionality. We implement all the baselines and the ACD
version by PyTorch. The experiments are conducted on the
Intel Core i9-10900X CPU and a GeForce RTX 3090 GPU.

Experimental Results and Analysis
Performance Comparison: Table 2 shows the perfor-
mance comparison on datasets with affect labels. The error
bars after ’±’ represent the standard deviations of 5 evalua-
tion runs for each model. From the table, it can be observed
that all the methods incorporating our affect perception out-
perform their respective baselines. The improvements are
particularly remarkable for the earlier methods. The supe-
rior performance of NCD (ACD) and MIRT (ACD) over
the latest baselines suggests that introducing affect percep-
tion brings greater benefits than improving the diagnostic
function. Compared with RCD and SCD, RCD (ACD) and
SCD (ACD) show relatively smaller improvements. This
is because the graph neural networks employed in SCD
and RCD, although enhancing performance, could weaken
the discriminative power of features, which conflicts with
our intention of extracting personalized parameters from
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Student Performance Affect
Models ACC RMSE AUC RMSE MAE
NCD 69.21 45.13 75.34 45.34 36.39

ACD-w/o-L 71.54 43.37 78.40 42.48 33.12
CACD 71.76 43.25 78.54 32.41 23.28
ACD 72.42 42.84 79.49 22.10 14.64

Oracle 79.84 40.27 80.35 0 0

Table 4: The results of affect prediction on ASSIST17.

student affect conception ACD RMSE AUCstudent exercise
✔ 63.54 47.19 67.83

✔ 65.51 46.35 70.59
✔ ✔ 72.42 42.84 79.27

Table 5: The results of ablation study on ASSIST17.

affect. Nevertheless, the introduction of affect perception
still leads to improvement. Table 3 shows the results on
the dataset without affect labels. The CACD indicates the
use of contrastive loss in affect perception. Even in the ab-
sence of affect labels, our approach still achieved large im-
provements. This demonstrates the effectiveness of affect at-
tributes. Without loss of generality, we opt to consider NCD
as the basic cognitive diagnosis module of ACD in the con-
text of our subsequent analysis.

Reliability of Affect Perception: To explain the improve-
ments brought by the affect perception, we evaluate the ac-
curacy of the predicted affect on ASSIST17. As the affect
prediction can be regarded as the regression task, besides
the conventional metrics of ACC, RMSE and AUC on stu-
dent performance prediction, we use RMSE and Mean Ab-
solute Error (MAE) as evaluation metrics on affect pre-
diction. In comparison, in addition to the baseline model
NCD, our model ACD and CACD, we designed two vari-
ants, ACD-w/o-L and ”Oracle”. ACD-w/o-L represents the
variant where no affect prediction loss is constrained. ”Ora-
cle” means directly extracting personalized parameters from
the affect labels. Noteworthily, due to using the test set af-
fect labels as input in Oracle, it is actually an upper bounded
model and it is designed only for comparison. In NCD, as
there is no affect prediction involved, random affect was
used instead. The results are shown in Table 4. It is obvious
that a more improved accuracy in affect prediction corre-
sponds to a more accurate cognitive diagnostic results. This
suggests that the integration of student affect prediction and
cognitive diagnosis is meaningful and effective, and our stu-
dent affect prediction module can accurately predict affects.
ACD-w/o-L exhibits a significant improvement compared
with NCD, indicating that the personalized student param-
eters incorporated into our designed interaction function are
effective. While CACD shows marginal improvement in stu-
dent performance prediction compared with ACD-w/o-L, it
demonstrates a considerable enhancement in affect predic-
tion results. This suggests that CACD has stronger inter-
pretability, which aligns with the requirements of CDM.
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Figure 4: Performance on different drade-off parameter λ.
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Figure 5: The impact of predicted affect on response results.

Ablation Study on Student Affect Perception: In ACD,
we undertake the prediction of students’ affects during
exercise-solving based on two critical factors: the latent af-
fect traits of students and the difficulty of exercises. To ver-
ify the essentiality of simultaneously considering both two
factors, we conducted a comparative study by incorporat-
ing only one of these factors within the student affect per-
ception module. The results are shown in Table 5. When
only considering exercise difficulty, the model is similar to
the DINA model and the model’s performance is superior
to that achieved by solely considering student affect traits.
This indicates that different students might experience sim-
ilar affect while attempting exercises of the same difficulty.
When simultaneously incorporating both factors, i.e. ACD,
a significant enhancement in performance is achieved. This
substantiates our hypothesis that students’ affects during
exercise-answering is concurrently correlated with both stu-
dent affect traits and exercise difficulty.

Hyper-parameter Analysis: λ is the trade-off parameter
in Eq. (14). We set it from 0.001 to 10. As shown in Fig-
ure 4, as the value of λ gradually increases, the performance
of ACD improves due to more accurate affect predictions
and the optimal performance is achieved when λ is set to 1.
When λ becomes excessively large, it would lead to descent
in performance due to the neglect of crucial CDM.

Correlation Between Affect and Response Results: As
shown in Figure 1, there is a certain correlation between
students’ affects and their response. In order to verify the
interpretability of our approach, i.e., whether the predicted
affects reflect the aforementioned correlation, we computed
the distribution between the predicted affects and response
logs. We present the correct response probability on differ-
ent affects concentrating and confused predicted by ACD
on ASSIST17 in Figure 5. The Figure 5 demonstrates that
higher levels of concentrating have a positive impact on
response quality, whereas increased confused often lead to
unsuccessful responses. The impact of predicted affects on
response results remains consistent with the ground truth.
Comparing Figure 1 and Figure 5, it is obvious that there are
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Exercise #1 #2 #3 #4 #5 #6
Concept A B B C D E

Student#1 ✔ ✔ ✘ ✘ ✘ ✔
Student#2 ✘ ✘ ✔ ✘ ✔ ✔

Table 6: Response logs of two students in ASSIST12.

Student#1 Student#2
Ex-#2 Ex-#3 Ex-#2 Ex-#3

Frustrated 0.3 0.3 0.3 0.5
Confused 0 0 0 0.6

Concentrating 0.7 0.1 0.7 0.7
Bored 0.4 0.7 0.1 0.3

guessing - - - ✔
slipping - ✔ - -

Table 7: The affect of students and ACD’s prediction of
guessing and slipping probability. Instances with predictive
outcomes exceeding 0.5 are considered to have occurred and
are denoted by ✔. Note that ”Ex-” refers to ”Exercise”.

some disparities between the predicted distribution of affect
and the ground truth, the reason may be that the responses
are influenced by a combination of various affects and stu-
dent abilities rather than single affect.

Case Study: In order to conduct a more comprehensive
analysis of the role of affect, here we present a diagnosis ex-
ample of NCD and ACD on ASSIST12. Table 6 displays
a part of the response logs. Figure 6 illustrates the diag-
nostic results of NCD and ACD. Both models show sim-
ilar diagnostic results for the two students across all con-
cepts except for concept B. However, in the context of con-
cept B, NCD did not provide interpretable diagnostic re-
sults. Student#1 answered exercise#2 correctly but failed on
exercise#3, while student#2 exhibited the opposite pattern.
The diagnostic results from NCD indicate a similar profi-
ciency for concept B of both students, which fails to pro-
vide a satisfactory explanation for this phenomenon. In fact,
all CDMs based on the IRT paradigm are confronted with
this issue. Different form them, our ACD takes students’ af-
fects into account. Table 7 presents not only the labels of
affect, but also the prediction of ACD on guessing and slip-
ping probability based on students’ affects. For student#1,
when answering exercise#3, ACD concludes that although
student#1 answered exercise#3 incorrectly, he actually pos-
sesses a solid understanding of concept B but made a slip-
ping. In contrast, student#2, even though he answered ex-
ercise#3 correctly, ACD suggests that student#2 might have
guessed the answer without a true grasp of concept B. As a
result, student#1 possesses a higher proficiency on concept
B compared to student#2.

Related Work
Cognitive Diagnosis Modeling: Cognitive diagnosis mod-
eling (CDM) is a fundamental task in intelligent educa-
tion. Existing work primarily derives from IRT (Lord 1952)
and DINA (De La Torre 2009) paradigms. IRT (Lord 1952)
aimed to project the latent features of students and items and
predict the performance with a manually designed function.

A
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C D

E

A
Student#1
Student#2

(a) NCD

A

B

C D

E

A

(b) ACD

Figure 6: The diagnosis results of NCD and ACD.

It is the basic model in CDM. Then, MIRT (Reckase 2009)
expanded the features of the IRT (Lord 1952) model into
multidimensional vectors to enhance its expressive power.
NeuralCD (Wang et al. 2020) replaced the manually de-
signed function with neural networks to fit the interactions
between students and items. RCD (Gao et al. 2021) pio-
neered the application of graph networks in cognitive di-
agnosis and modeled the relationships between knowledge
concepts. Lately, SCD (Wang et al. 2023b) enhanced the
model’s performance on long-tailed problem. As another
foundational paradigm, DINA (De La Torre 2009) mod-
eled the student and exercise factors as binary vectors, in-
corporating guessing and slipping parameters to estimate
the performance. However, existing works based on the
DINA (De La Torre 2009) model (e.g., FuzzyCDM (Liu
et al. 2018)) considered guessing and slipping parameters
as factors associated with the exercises, ignoring the person-
alized response patterns of individual students.
Student Affect Related Research: Affect as the expres-
sion of personalized states is involved in our method. Exist-
ing works (San Pedro et al. 2013; Ocumpaugh et al. 2014;
Wang, Heffernan, and Heffernan 2015) primarily focused on
detecting affect states during students’ exercise-solving pro-
cesses based on their interaction logs. (Botelho, Baker, and
Heffernan 2017) refitted the detectors with deep learning.
However, existing works mainly focused on utilizing the in-
teraction logs between students and exercises to label the af-
fect. There has been no work specifically addressing affect
perceptive cognitive diagnosis.

Conclusion
This paper presents an affect-aware cognitive diagno-
sis (ACD) model. Specifically, we design a student affect
perception module to predict the affects exhibited by stu-
dents during exercise solving and extract personalized in-
teraction parameters from the predicted affects to enhance
the interaction process in CDM. We then introduce a con-
trastive loss based on response results to extend the model
to datasets without affect labels. Extensive experiments val-
idate the effectiveness and generality of our model. In the
future, we will integrate more techniques, such as domain
generalization (Wang et al. 2023a; Chang et al. 2023) or fed-
erated learning (Dai et al. 2023) to enhance our ACD model.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

626



Acknowledgments
This work is supported by National Natural Science
Foundation of China (Grant No. 62106003, 62206003,
62272435, U22A2094, U21A20512), National Key Re-
search and Development Project (NO. 2018AAA0100105),
and the University Synergy Innovation Program of Anhui
Province (Grant GXXT-2022-047).

References
Anderson, A.; Huttenlocher, D.; Kleinberg, J.; and
Leskovec, J. 2014. Engaging with massive online courses.
In Proc. Int. Conf. World Wide Web, WWW, 687–698.
Botelho, A. F.; Baker, R. S.; and Heffernan, N. T. 2017. Im-
proving sensor-free affect detection using deep learning. In
Artificial Intelligence in Education, 40–51. Springer.
Chang, H.-S.; Hsu, H.-J.; and Chen, K.-T. 2015. Modeling
Exercise Relationships in E-Learning: A Unified Approach.
In EDM, 532–535.
Chang, T.; Yang, X.; Zhang, T.; and Wang, M. 2023. Domain
Generalized Stereo Matching via Hierarchical Visual Trans-
formation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 9559–9568.
Csikszentmihalyi, M.; and Csikszentmihalyi, I. S. 1992.
Optimal experience: Psychological studies of flow in con-
sciousness. Cambridge university press.
Dai, R.; Yang, X.; Sun, Y.; Shen, L.; Tian, X.; Wang, M.; and
Zhang, Y. 2023. FedGAMMA: Federated Learning With
Global Sharpness-Aware Minimization. IEEE Transactions
on Neural Networks and Learning Systems.
De La Torre, J. 2009. DINA model and parameter esti-
mation: A didactic. Journal of educational and behavioral
statistics, 34(1): 115–130.
Gao, W.; Liu, Q.; Huang, Z.; Yin, Y.; Bi, H.; Wang, M.-C.;
Ma, J.; Wang, S.; and Su, Y. 2021. Rcd: Relation map driven
cognitive diagnosis for intelligent education systems. In SI-
GIR - Proc. Int. ACM SIGIR Conf. Res. Dev. Inf. Retr., 501–
510.
Liu, Q.; Wu, R.; Chen, E.; Xu, G.; Su, Y.; Chen, Z.; and Hu,
G. 2018. Fuzzy cognitive diagnosis for modelling examinee
performance. ACM Trans. Intell. Syst. Technol., 9(4): 1–26.
Lord, F. 1952. A theory of test scores. Psychometric mono-
graphs.
Nakagawa, H.; Iwasawa, Y.; and Matsuo, Y. 2019. Graph-
based knowledge tracing: modeling student proficiency us-
ing graph neural network. In IEEE/WIC/ACM International
Conference on Web Intelligence, 156–163.
Nguyen, T. 2015. The effectiveness of online learning: Be-
yond no significant difference and future horizons. MER-
LOT Journal of online learning and teaching, 11(2): 309–
319.
Ocumpaugh, J.; Baker, R.; Gowda, S.; Heffernan, N.; and
Heffernan, C. 2014. Population validity for educational data
mining models: A case study in affect detection. British
Journal of Educational Technology, 45(3): 487–501.

Pedro, M. O.; Baker, R.; Bowers, A.; and Heffernan, N.
2013. Predicting college enrollment from student interac-
tion with an intelligent tutoring system in middle school. In
EDM.
Piech, C.; Bassen, J.; Huang, J.; Ganguli, S.; Sahami, M.;
Guibas, L. J.; and Sohl-Dickstein, J. 2015. Deep knowledge
tracing. Advances in neural information processing systems,
28.
Reckase, M. D. 2009. Multidimensional item response the-
ory models. In Multidimensional item response theory, 79–
112. Springer.
San Pedro, M. O.; Ocumpaugh, J.; Baker, R. S.; and Hef-
fernan, N. T. 2014. Predicting STEM and Non-STEM Col-
lege Major Enrollment from Middle School Interaction with
Mathematics Educational Software. In EDM, 276–279.
San Pedro, M. O. Z.; Baker, R. S. d.; Gowda, S. M.; and
Heffernan, N. T. 2013. Towards an understanding of affect
and knowledge from student interaction with an intelligent
tutoring system. In Artificial Intelligence in Education, 41–
50. Springer.
Shen, S.; Liu, Q.; Chen, E.; Huang, Z.; Huang, W.; Yin, Y.;
Su, Y.; and Wang, S. 2021. Learning process-consistent
knowledge tracing. In Proc. ACM SIGKDD Int. Conf.
Knowl. Discov. Data Min., 1452–1460.
Wang, F.; Liu, Q.; Chen, E.; Huang, Z.; Chen, Y.; Yin, Y.;
Huang, Z.; and Wang, S. 2020. Neural cognitive diagnosis
for intelligent education systems. In Proc. AAAI Conf. Artif.
Intell., AAAI, volume 34, 6153–6161.
Wang, S.; Chen, Y.; He, Z.; Yang, X.; Wang, M.; You, Q.;
and Zhang, X. 2023a. Disentangled Representation Learn-
ing with Causality for Unsupervised Domain Adaptation. In
Proceedings of the 31st ACM International Conference on
Multimedia, 2918–2926.
Wang, S.; Zeng, Z.; Yang, X.; and Zhang, X. 2023b. Self-
supervised Graph Learning for Long-tailed Cognitive Diag-
nosis. In Proc. AAAI Conf. Artif. Intell., AAAI, volume 37(1),
110–118.
Wang, Y.; Heffernan, N. T.; and Heffernan, C. 2015. To-
wards better affect detectors: effect of missing skills, class
features and common wrong answers. In Proceedings of
the fifth international conference on learning analytics and
knowledge, 31–35.
Wu, Z.; Li, M.; Tang, Y.; and Liang, Q. 2020. Exercise
recommendation based on knowledge concept prediction.
Knowledge-Based Systems, 210: 106481.
Zhuang, Y.; Liu, Q.; Huang, Z.; Li, Z.; Jin, B.; Bi, H.; Chen,
E.; and Wang, S. 2022a. A Robust Computerized Adaptive
Testing Approach in Educational Question Retrieval. In SI-
GIR - Proc. Int. ACM SIGIR Conf. Res. Dev. Inf. Retr., 416–
426.
Zhuang, Y.; Liu, Q.; Huang, Z.; Li, Z.; Shen, S.; and Ma,
H. 2022b. Fully adaptive framework: Neural computerized
adaptive testing for online education. In Proc. AAAI Conf.
Artif. Intell., AAAI, volume 36(4), 4734–4742.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

627


