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Abstract
Existing approaches usually perform spatiotemporal repre-
sentation in the spatial and temporal dimensions, respectively,
which isolates the spatial and temporal natures of the target
and leads to sub-optimal embeddings. Neuroscience research
has shown that the mammalian brain entorhinal-hippocampal
system provides efficient graph representations for general
knowledge. Moreover, entorhinal grid cells present concise
spatial representations, while hippocampal place cells repre-
sent perception conjunctions effectively. Thus, the entorhinal-
hippocampal system provides a novel angle for spatiotem-
poral representation, which inspires us to propose the Spa-
tioTemporal aware Embedding framework (STE) and ap-
ply it to POIs (STEP). STEP considers two types of POI-
specific representations: sequential representation and spa-
tiotemporal conjunctive representation, learned using sparse
unlabeled data based on the proposed graph-building poli-
cies. Notably, STEP jointly represents the spatiotemporal na-
tures of POIs using both observations and contextual informa-
tion from integrated spatiotemporal dimensions by construct-
ing a spatiotemporal context graph. Furthermore, we intro-
duce a successive POI recommendation method using STEP,
which achieves state-of-the-art performance on two bench-
marks. In addition, we demonstrate the excellent performance
of the STE representation approach in other spatiotemporal
representation-centered tasks through a case study of the traf-
fic flow prediction problem. Therefore, this work provides a
novel solution to spatiotemporal representation and paves a
new way for spatiotemporal modeling-related tasks.

Introduction
With the rapid growth of location-based web services like
Instagram and Yelp, there has been a seismic shift in how
people interact with locations around them. Through the
exploitation of Points-of-Interest (POIs) and their contexts,
successive POI recommendations can benefit users and busi-
nesses greatly. As a core of POI information utilization, en-
coding POIs into vector representation space is of great sig-
nificance for advanced POI analysis and downstream ap-
plications. Existing studies attempt to represent POI from
different perspectives and collaborate with user preference
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modeling to achieve recommendations. Since consecutive
check-ins are usually highly correlated, naturally, sequence
modeling approaches like the Markov chain model were
used to capture the check-in sequential characteristics of
POIs (Ye et al. 2011; Liu et al. 2013; Zhang 2014; Feng
et al. 2015). Employing the tensor factorization technique,
the works (Yang et al. 2017; Wang et al. 2018) modeled
target users and POIs separately by interacted features for
POI recommendation. More recently, enlightened by neu-
ral networks’ success, recurrent neural nets were remolded
to represent POIs and user preferences implicitly (Liu et al.
2016; Zhao et al. 2019; Zhu et al. 2017). Considering the ge-
ographical attributes of POIs, researchers have used power-
law distribution, Gaussian distribution, or hierarchical tiling
methods to depict the geographical influence over POI dis-
tributional features (Ye et al. 2011; Lian et al. 2014; Feng
et al. 2017; Chang and Kim 2020; Luo et al. 2020). How-
ever, the geographical modeling methods above only pro-
vide single-scale or coarse-grained manually designed rep-
resentations of POI geographical influences, which is defi-
cient in capturing the POI-specific spatial features. Also, ar-
bitrary modeling might even lead to over-parameterization.
While temporal dimension offers indeterminate auxiliary in-
formation for POI modeling, to utilize the POI temporal in-
formation within the check-ins, some works use time inter-
val, time state variables, or temporal transition vectors to
promote the POI representing (Zhao et al. 2019, 2016, 2017;
Li, Shen, and Zhu 2018; Manotumruksa, Macdonald, and
Ounis 2018; Zhao et al. 2020). However, these methods fo-
cused on utilizing general temporal patterns among all POIs
and failed to exploit the POI-specific visiting time patterns
sufficiently. Still, the POI-specific spatiotemporal character-
istics were not adequately mined and utilized.

The entorhinal-hippocampal system plays a central role
in the mammal cognition architecture. The Nobel Prize-
winning neuroscience research (O’keefe and Nadel 1978)
demonstrated that entorhinal grid cells provide an effec-
tive multi-scale periodic spatial representation (Yuan et al.
2015; Banino et al. 2018; Mai et al. 2020). Moreover,
the entorhinal-hippocampal system is also critical for the
non-spatial inference that relies on understanding the as-
sociations between perceptions from various perspectives
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(Whittington et al. 2018; Stachenfeld, Botvinick, and Ger-
shman 2018; Whittington et al. 2020). Some promising re-
search cast spatial and non-spatial problems as connected
graphs and point out that the cells inside the entorhinal-
hippocampal structure provide efficient conjunctive rep-
resentation for those graphs (Stachenfeld, Botvinick, and
Gershman 2018; Gustafson and Daw 2011). As the rep-
resentation mechanism in the entorhinal-hippocampal sys-
tem was extensively studied, it is widely accepted that con-
junctions of representations from different aspects form the
hippocampal representation for relational memory (Whit-
tington et al. 2018, 2020; Eichenbaum 2017; MacDonald
et al. 2011; Sargolini et al. 2006). For the general spatiotem-
poral embedding, various contexts can be constructed into
affinity graphs for latent representation learning. Further-
more, strategies like conjunctive representing in entorhinal-
hippocampal structure can be translated to improve the qual-
ity of the representations (see Fig.1 left part).
In this paper, borrowing inspirations from the entorhinal-

hippocampal system, we propose the SpatioTemporal aware
Embedding framework, namely STE, and apply it to POIs
(STEP) for successive POI recommendation. The model ar-
chitectures are shown in Figure 1. Firstly, we build context
graphs to enable unsupervised embedding learning on sparse
check-ins. Secondly, we employ a sequential model to rep-
resent POIs from the check-in sequence perspective. Most
importantly, we introduce a spatiotemporal model consist-
ing of a grid-cell spatial encoder and a visiting time en-
coder to capture the POI-specific spatiotemporal character-
istics. The spatiotemporal model learns to get the POI spa-
tiotemporal latent representations using the spatiotemporal
context graph. Finally, we implement successive POI rec-
ommendation systems based on the STEP and achieve high
performance using simple recurrent neural networks as rec-
ommenders.
The main contributions of this work are summarized as

follows:
(1) Motivated by the graph-representing strategy of struc-

tural knowledge in the entorhinal-hippocampal system, we
solve the spatiotemporal embedding learning in a graph-
based unsupervised learning manner through specific con-
text graph-building policies, especially the spatiotemporal
context graph, to fully exploit rich unlabeled data.
(2) Inspired by the conjunctive representation mechanism

in the entorhinal-hippocampal complex, we present a spa-
tiotemporal model with a grid-cell spatial encoder and a time
pattern encoder to utilize the spatiotemporal information.
The conjunctive representing approach based on a unique
spatiotemporal context graph addresses the problem of pre-
vious spatiotemporal modeling methods in which spatial
and temporal information are isolated and represented sepa-
rately.
(3) We introduce a successive POI recommendation sys-

tem by incorporating STEP and simple sequence predictors
to show the feasibility of implementing specific applications
based on the proposed STE framework. We perform exper-
iments on large real-world datasets to demonstrate the ef-
fectiveness of STEP, and our method outperforms baselines
according to experimental results. Compared with classi-

Notation Definition

tij j-th timestamp of pi
ti Visiting time pattern matrix of pi
eispa Spatial vector representation of pi
eiseq Sequential vector representation of pi
eist Spatiotemporal conjunctive representation of pi
eistep STEP vector representation of pi
� Tensor concatenation operation

Table 1: Notations and definitions in this work.

cal recommendation systems, our POI-centered solution can
avoid the ethical risks of artificial intelligence, like personal
data leakage, as it does not need access to private informa-
tion such as user preferences. Furthermore, our framework
can be applied to more valuable applications like climate
forecasting and urban traffic scheduling as a general spa-
tiotemporal modeling method.

Preliminaries
Given a set of POIs with corresponding coordinates P =
{pi}, pi = (xi, yi), a check-in sequence is one set of con-
tinuous check-ins of one user in one day, denoted as Sj =
{(p1, t11), ..., (pn, t

n
m)}. Unlike previous works, we do not

regard all check-in records of a user as one sequence since
check-ins with relatively long intervals are not very relevant.
Although we assign notation to users for generality, the user
information is not used in the training phase except to split
sequences.

We define context graphs as graphs that encode context in-
formation as affinity among POIs. Various contexts in the
check-in records can be easily built into graphs Gp =
{Vp, Ep}, where Vp is the set of POIs and Ep is the set of
edges between adjacent POIs. The edges in context graphs
represent the correlation between neighboring POIs defined
by geographical distance, relative position in check-in se-
quences, or spatiotemporal adjacent criteria. We summarize
notations in this paper using Table 1.

Data description The Instagram Check-in dataset (Chang
et al. 2018) was collected from Instagram in New York, and
the data was preprocessed in the same manner as previous
works (Zhao et al. 2016, 2017). The Instagram Check-in
dataset has been pre-processed when it is made public, it in-
cludes 2 216 631 check-in records at 13 187 POIs of 78 233
users. Check-in sequences are sorted by timestamps; the first
70% is used as a training set, and the remaining 30% for
validation and testing. The Gowalla dataset is a globally-
collected large-scale social media dataset (Cho, Myers, and
Leskovec 2011). We eliminate users with fewer than ten
check-ins and POIs accessed by fewer than ten users. Then
the check-in records are sorted according to timestamps and
the first 70% check-ins are used for training and the remain-
ing latest records for testing. We perform vivid data analyses
in the Appendix due to space constraints.
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Figure 1: Representing mechanisms in the entorhinal-hippocampal system (E-H system for short) and the framework of the
spatiotemporal embedding model. The proposed STE framework consists of context graph-building strategies to construct
simplified affinity graphs; a spatiotemporal model to extract rich item-specific spatiotemporal features; and a sequential model
to extract sequential feature embeddings. The uniqueness of our spatiotemporal information usage is that we represent items
from the spatiotemporal perspective (not isolated) using observations and contexts conjunctively.

SpatioTemporal Embedding Model of POIs
We illustrate the components of STEP in order: the sequen-
tial model, the spatiotemporal model, and state the STEP-
based successive POI recommendation method. We adopt
a simple-minded (no-parameters) edge weighting policy for
constructing all context graphs. WeightAi,j = 1 if vertices i
and j are connected; this simplification avoids the necessity
of choosing edge-weighting parameters.

Sequential Model
The sequential model represents POIs using context graph
Gseq . Given one POI and its context in the check-in se-
quence, entry Ai,j in the adjacency matrix of Gseq is 1 if
pi, pj are within the same context window. This is a common
way to mine the sequential correlations of tokens like words
(Mikolov et al. 2013) or POIs (Lim, Hooi, and Wang 2020).
Our sequential model aims to predict true contextual POIs,
i.e., connected vertices in Gseq . Intuitively, minimizing the
objective function over all target-neighbor pairs guarantees
that POIs sharing similar sequential context will have shorter
distances in embedding space (Hadsell, Chopra, and LeCun
2006). To avoid the intractable summation over the whole
context space, we follow the noise contrastive sampling ap-
proach (Gutmann and Hyvärinen 2012; Mikolov et al. 2013)
to get an approximated surrogate loss

Lseq(✓seq) =�

X

pi,pj2P

⇥
I(� = 1) log �(eiseq · e

j
seq)

+ I(� = �1) log �(�eiseq · e
j
seq)

⇤
,

(1)

where � = 1 if (pi, pj) is a sequential neighboring pair and
� = �1 if not, indicator I outputs 1 when the argument con-
dition is true and otherwise 0. This unsupervised loss can
also be seen as taking expectation concerning the distribu-
tion P(pi, pj , �) over P , which is conditioned on the POI
sequential context graph Gseq .

Spatiotemporal Model
In this section, we illustrate the POI spatiotemporal conjunc-
tive embedding model in detail. The proposed spatiotempo-
ral model is composed of two key components: a POI spatial
model and a POI visiting time encoder; an intuitive illustra-
tion can be found in Fig. 1.

Spatial model The spatial sub-model takes location ob-
servations (xi, yi) and spatial context graph Gspa to pro-
duce spatial representations. Inspired by the multi-scale pe-
riodic representation of grid cells in mammals, we formu-
late our POI spatial contextual encoder to use sinusoidal and
cosinusoidal functions of different scales to encode the raw
locations of POIs in geographical space following previous
works (Gao, Xie, and Zhu 2019; Mai et al. 2020). Given a
POI pi = (xi, yi) 2 R2, the grid-cell model-based encoder
encodes the coordinates in 2-D Euclidean space into spa-
tial latent representations in Rdspa . We denote the grid cell
encoder-based spatial embedding of POI pi as

eispa = �( (xi, yi); ✓spa), (2)

where

 (xi, yi) =  1(xi, yi) · · ·� s(xi, yi) · · ·� S(xi, yi) (3)

is concatenated multi-scale representations of 6S di-
mensions, S denotes the number of grid scales and
� represents fully connected non-linear layers. Consid-
ering three unit vectors a1=[1, 0]T, a2=[�1/2,

p
3/2]T,

a3=[�1/2,�
p
3/2]T 2 R2, at each frequency, position

codes
 s(xi, yi) =  s

1 �  s
2 �  s

3 (4)
are computed via

 s
k(xi, yi) =


cos(

[xi, yi] · ak

⇢�min
), sin(

[xi, yi] · ak

⇢�min
)

�
,

k 2 {1, 2, 3}

(5)
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and ⇢ = (�max/�min)
s/(S�1). �min and �max are the min-

imum and maximum scale values, here we use S = 64 fol-
lowing the previous work (Mai et al. 2020) and set �max =
1km, �min = 0.1km.

Spatial-neighboring definition We project the coordi-
nates in the geographical coordinate system WGS84 to the
projection coordinate system NAD27 to get locations of
POIs in R2. For each entry Ai,j in the adjacency matrix
of spatial context graph Gspa, we assign Ai,j using the
geographical distances. Specifically, we computed the ge-
ographical distances between POIs and constructed an undi-
rected spatial context graphGspa with uniform edges among
the top-ten closest POIs (nearest neighbors policy). As the
grid cell encoder can handle geographical distributions at
different scales (Mai et al. 2020), we do not use a specific ra-
dius (✏-neighborhoods policy) to filter the neighboring POIs
to fully exploit the multi-scale representation capability. The
spatial graph construction process is related to (Lim, Hooi,
and Wang 2020), in which the edges are weighted according
to average distances to enable graph attention computations.
Given a target POI pi, neighboring contextual POI set

P
+
spa and negative set P�

spa sampled from Gspa, the unsu-
pervised embedding learning can simply be maximizing the
log-likelihood of observing the true context POIs. We can
formulate this target with negative sampling via a general
objective function:

O(ctx) = �

X

pi2P

X

pj2P+
ctx

⇥
log �(ejctx · eictx)

+
1

K

X

pk2P�
ctx

log �(�ekctx · eictx)
⇤
,

(6)

where ctx indicates the context graph type and ctx 2

{seq, spa, st} in this work, � is the sigmoid function andK
denotes the number of samples in negative sample set P�

ctx.
Following Eq.6, the loss function for the spatial context em-
bedding model is:

Lspa(✓spa) = O(spa). (7)
Spatiotemporal context graph construction For con-
structing spatiotemporal context graphGst, we want to mine
the item-specific spatiotemporal conjunctions, so for each
entry Ai,j of the adjacency matrix of Gst, we assign Ai,j =
1 following the hierarchy of neighboring timestamps! tem-
poral neighboring! spatiotemporal neghboring:
1. Neighboring timestamps. Given an arbitrary timestamp

pair (t1, t2), time interval �t , |t1 � t2| and �wkd ,
|wkd(t1) � wkd(t2)| where wkd(t) = 1 if t is weekend
else 0. For one time t, its temporal-neighboring times-
tamps are those within the neighborhood window and
satisfy �wkd = 0, as shown in Fig. 2.A. h is a hyper-
parameter indicates temporal context window width and
h 2 (0, 24) hours.

2. POI temporal neighboring. POI pi and pj with corre-
sponding visiting timestamp sets Ti = {ti1, t

i
2, . . . } and

Tj = {tj1, t
j
2, . . . }. The number of neighboring times-

tamp pairs (ti, tj) > m, where ti 2 Ti, tj 2 Tj , m is a
threshold.

04-01-19-04
06-14-17-38
11-20-02-21
09-22-12-45

…

Accumulation

Normalization 

on the scale of year but fickle on the hour and date scale. In our accessing time pattern encoding217

scheme, visits of POIs are counted by hour and date, after this procedure, every POI has a visiting218

time pattern represented by a raw matrix t0 2 R24⇥366. The raw accessing time pattern matrices t0219

are normalized and applied Gaussian kernel for smoothing, this process also augment the accessing220

time data in a reasonable way. The final matrix representation t can preserve valuable information221

of day-night, weekday-weekend, and seasonal alternatives for further temporal context processing.222

Some typical accessing time patterns matrices are visualized in Figure 4 using heatmaps.223
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To conduct the POIs’ spatial-temporal conjunctive representation learning, given POI pi and corre-225

sponding visiting time pattern matrix ti, the spatial-temporal conjunctive representation is defined as226

227

eist = �✓st(�✓time(t
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implement the spatial-temporal conjunctive representation learning by maximizing the log-likelihood230

of observing true spatial-temporal neighboring POIs Pr(pj | pi), the loss function is defined as:231
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X

pi2P

X

pj2P+
st

(log �(ejst · e
i
st) +

1

K

X

pk2P�
st

log �(�ekst · e
i
st)), (10)

where P+
st is the set POIs inside spatial-temporal neighborhood of pi whereas P�

st is the set of negative232

POIs, � is the sigmoid function andK is the number of negative samples. During the optimization233

procedure, the POI spatial model is jointly optimized as a sub-model of spatial-temporal model, the234

full objective of the spatial-temporal model is235
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�spa is a weighting factor for preserving the spatial context information during the spatial-temporal236

modeling. We first sample a batch of spatial context P+
spa to optimize the spatial context loss237

Lspa to preserve geographical context. Next we sample a batch of spatial-temporal context P+
st to238

optimize the spatial-temporal loss Lst to preserve the spatial-temporal context. We repeat above239
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iterations respectively to approximate the balancing factor �spa. We240

update all parameters (✓spa, ✓time, ✓st) of spatial-temporal model in iterations until the overall loss241

Lst converges.242

3.5 Overall framework243

We present the STEP recommendation system in detail in this section, we show the architecture sketch244

in Figure 2. Taking the check-in records as input, we construct context graphs Gseq,Gspa,Gt,Gst and245

feed the check-ins into the sequential model, spatial model and spatial-temporal model to perform246

the latent factor modeling (embedding learning) on POIs. The learned embeddings are smoothed247

according to corresponding context graphs to preserve context information among POIs. Then,248

eseq, est are merged and fed into the recommender to generate a recommendation list based on the249

scores. We use concatenation operation250
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to merge the all embeddings from the sequential and spatial-temporal models. This merging method251

can preserve information from different spaces without extra-parameters and not requires the embed-252

dings to be in the same dimension (e.g. dst = dseq ) thus provides more flexibility. To perform the253

successive POI recommendation task, we adopt two-layer simple networks based on GRU unit[39]254

and LSTM unit [40] as the recommender model. Parameters in the embedding models are optimized255

according to corresponding loss function256
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the 2-norm regularizer. The predictor is then trained with the pre-trained STEP embedding model for258

the next POI recommendation task. Given a n-length check-in sequence Sj , corresponding STEP259
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Figure 2: A. Temporal neighboring examples with h = 2.
For t1, some time stamps are excluded from the temporal
neighborhood window as �wkd 6= 0. B. Schematic of the
visiting time encoding process.

3. POI spatiotemporal neighboring. If pi, pj are spatial and
temporal neighboring, they are spatiotemporal neighbor-
ing.

It is redundant for individual POI-specific temporal mod-
eling since solely relying on time information, we are not
able to recommend reasonable candidate POIs (visits may
take place contemporarily all over the world). Thus, time
is regarded as a supplementary dimension of basic spatial
information, our spatiotemporal context graph provides an
effective way to combine the POI-specific temporal and ge-
ographical information.

Visiting time pattern encoding We develop a visiting
time pattern encoding method to tensorise the temporal ob-
servations (visiting records in timestamps t) to provide ob-
servation inputs for the spatiotemporal model. Unlike pre-
vious works (Liu et al. 2016; Zhao et al. 2019; Zhu et al.
2017; Zhao et al. 2016), we focus on the POI-specific tem-
poral patterns rather than general temporal characteristics
among all timestamps. Compared with previously used time
interval-based or hard-coded methods, our encoding scheme
can tensorise the item-specific temporal information more
precisely and be able to provide a reliable decision basis
for spatiotemporal modeling. Since the visiting time pat-
terns are relatively stable on the scale of year but fickle on
the hour and the date scale, in our encoding scheme, vis-
its are counted by the check-in timestamps to raw matrices
t0 2 R24⇥366. Then, the raw matrices t0 are normalized and
applied Gaussian kernel for smoothing; this process also rea-
sonably augments the POI accessing time data. The visiting
time encoding process is shown schematically in Fig. 2. B.
The final matrix representation t = smooth(norm(t0)) re-
tains the fine-grained check-in time patterns as well as rough
item-specific visiting time features.
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Spatiotemporal conjunctive embedding learning We
formulate the spatiotemporal conjunctive representation as:

eist = �✓st(�✓time(t
i), eispa)� eispa, (8)

where � indicates fully-connected layers, following the for-
mulation in Eq.6, we implement the spatiotemporal conjunc-
tive representation learning by minimizing:

L(✓time, ✓st) = O(st). (9)

We sample P
+
st and P

�
st from Gst, where P

+
st is the set of

spatiotemporal-neighboring POIs whereas P�
st is the set of

negative POIs.
During the optimization procedure, the spatial model

is jointly optimized as a sub-model of the spatiotemporal
model; the full objective of the spatiotemporal model is

Lst = L(✓time, ✓st) + �spaLspa(✓spa), (10)

�spa is a weighting factor for preserving the spatial context
information during the spatiotemporal modeling. We first
sample a batch of spatial contextGspa to optimize the spatial
context lossLspa to preserve geographical context. Next, we
sample a batch of spatiotemporal contextGst to optimize the
spatiotemporal loss Lst to preserve the spatiotemporal con-
text. We repeat above procedures for I0 and I1 = I0/�spa

iterations respectively to approximate the balancing factor
�spa. We update all parameters {✓spa, ✓time, ✓st} of spa-
tiotemporal model in iterations until the overall lossLst con-
verges.

Successive POI Recommendation with STEP
We present the STEP (STE of POIs)-based recommenda-
tion method in detail in this section. Taking the spatiotem-
poral data as input, we construct context graphs G and feed
the observations (locations and time patterns) into the STEP
model to perform embedding learning. The embeddings are
smoothed according to corresponding context graphs to pre-
serve contextual information. Then, POI vector representa-
tions (embeddings) eseq, est are merged as spatiotemporal
embedding estep and fed into the recommender to generate
an estimated embedding ê. Specifically, we use concatena-
tion

eistep = eiseq � eist (11)
to merge the two sequential and spatiotemporal embeddings.
This merging policy can preserve information from different
spaces without extra parameters and not require the embed-
dings to be in the same dimension (e.g. dst = dseq ) thus
providing more flexibility. We adopt two-layer recurrent net-
works as the recommender model.

Embedding model optimization Parameters in the STEP
embedding model are optimized according to the corre-
sponding loss function L(✓⇤) = L⇤ + ↵||✓⇤||2, where L⇤ 2

{Lseq,Lst}, ✓⇤ 2 {✓seq,⇥st}, ⇥st = {✓spa, ✓time, ✓st}. ↵
is the weighting factor of the 2-norm regularizer.

Recommender model optimization The predictor is then
optimized with the pre-trained STEP embedding model
for the next POI recommendation task. During the train-
ing phase, given an n-length check-in sequence Sj , we

can get corresponding STEP embedding series of POIs
{e(1)step, . . . , e

(gt)
step}, the last POI is regarded as the recom-

mendation target. The target of the recommender is to pre-
dict the representation êstep similar to the embedding of true
successive POI e(gt)step, formally described as:

argmax
✓pred

X

Sj2S
sim

⇣
êstep, e

(gt)
step

⌘
. (12)

The objective function of the recommender is:

Lpred(✓pred) = �

X

Sj2S

h
log �0

⇣
sim(e(gt)step, êstep)

⌘

� log(
X

pi2P
�0(sim(eistep, êstep)))

i
,
(13)

where �0 = exp(LeakyReLU(·)) and sim(·, ·) = a·b
||a||·||b|| .

During the testing phase, we compute the cosine similarity
scores to rank the candidate POIs to generate recommenda-
tion lists.

Experiments
We perform the successive POI recommendation task on the
Instagram Check-in dataset, the Gowalla dataset, and the
traffic flow forecasting task on TaxiBJ15 and TaxiBJ.

Successive POI Recommendation Task
Metrics During the system inferencing phase, the recom-
mendation system recommends a POI list according to the
estimated scores of candidate POIs for every trial sequence.
We apply widely-used metrics HIT@K (if the ground truth
is within the top-k of the list, a score of 1 is awarded, else 0),
k = 1, 5, 10, and MRR (Mean Reciprocal Rank) for evalu-
ation. These metrics reflect different aspects of the recom-
mendation lists, HIT@K measures the rate of valid recom-
mendation among all trials, whereas MRR scores the quality
of the entire recommendation list.

Hyper-parameter settings We set the hyper-parameters
of our proposed method to the following default values. We
set context window size in the POI sequential model to 2
and adopt h = 2, m = 11 for building Gst. We utilize Adam
optimizer with batch size 512,�1 = 0.9,�2 = 0.999 and
set the initial learning rate to 0.001 followed by a reduce-
on-plateau decay policy, the decay factor is 0.1 during the
training. Weighting factors ↵,�spa are set to 1⇥ 10�4, 0.2
and the embedding dimensions {dseq, dspa, dst} are set to
{32, 64, 96}.
We compare the STEP-based successive POI recommen-

dation method with representative methods:

• Two-stage approaches.We choose six methods consist-
ing of three embedding models and two recommenders.
For the embedding model, we use the following embed-
ding models. (1) Random, (2) Skip-Gram (Liu, Liu, and
Li 2016), (3) CAPE (Chang et al. 2018) and (4)Geo (Mai
et al. 2020). For the recommender model, two-layer net-
works based on (1) GRU unit (Merri and Fellow 2014)
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DATASET Instagram Check-in Gowalla

METHOD\METRIC HIT@1 HIT@5 HIT@10 MRR HIT@1 HIT@5 HIT@10 MRR

Random+GRU 0.1197 0.2207 0.2726 0.1792 0.0715 0.0725 0.0732 0.0727
Random+LSTM 0.1207 0.2225 0.2751 0.1805 0.0722 0.0736 0.0749 0.0737
Skip-Gram+GRU 0.1356 0.2419 0.3040 0.1919 0.1090 0.2111 0.2617 0.1612
Skip-Gram+LSTM 0.1318 0.2344 0.2984 0.1875 0.1085 0.2101 0.2585 0.1594
CAPE+GRU‡ 0.1390 0.2433 0.3079 0.1953 N/A N/A N/A N/A
CAPE+LSTM‡ 0.1381 0.2412 0.3054 0.1939 N/A N/A N/A N/A
Geo+GRU 0.1619 0.2616 0.3248 0.2093 0.1267 0.2309 0.2834 0.1684
Geo+LSTM 0.1622 0.2594 0.3128 0.1875 0.1233 0.2296 0.2811 0.1701

ST-RNN† 0.1054 0.2019 0.2426 0.1681 0.0519 0.0953 0.1304 0.2187
STGN† � � � � 0.0256 0.0784 0.1144 0.0590
STGCN† � � � � 0.0424 0.1134 0.1625 0.0842
LSTPM† 0.1261 0.2134 0.3121 0.1957 0.1468 0.2506 0.2983 0.1998
STP-DGAT† � � � � 0.1344 0.2414 0.2653 0.1856
STP-UDGAT† � � � � 0.1475 0.2911 0.3285 0.2130

STEP+RNN 0.2458 0.3170 0.3502 0.2822 0.1495 0.2878 0.3634 0.2222
STEP+GRU 0.2467 0.3057 0.3336 0.2781 0.1490 0.2912 0.3636 0.2233
STEP+LSTM 0.2454 0.3204 0.3556 0.2835 0.1539 0.2968 0.3728 0.2282

Table 2: Comparisons with baselines on two datasets, we mark best values with bold fonts and underline the suboptimal ones.
CAPE-based methods are not applicable on Gowalla (since no tweets were provided), and we do not report the results of some
methods on Instagram Check-in as they cannot be reproduced faithfully. †: requiring user preference information, ‡: requiring
additional semantic content information.

AVERAGE VALUE Instagram Gowalla

Records per POI 168.1 34.2
Eseq per POI 66.2 35.5
Espa per POI 10.0 10.0
Est per POI 0.997 0.596

Table 3: Context graphs statistics of two datasets, E stands
for edge.

and (2) LSTM unit (Hochreiter and Schmidhuber 1997)
are used.

• One-stage approaches. We choose representative one-
stage methods as baselines. (1) ST-RNN (Liu et al. 2016).
(2) STGN (Zhao et al. 2019), an LSTM variant that mod-
els visit preferences with time and distance consider-
ations, and the improved variant STGCN. (3) LSTPM
(Sun et al. 2020) is a LSTM-based method. (4) STP-
DGAT and STP-UDGAT (Lim, Hooi, and Wang 2020)
are spatial-temporal-preference user dimensional graph
attention networks.

Comparison results According to results in Table 2, our
method outperforms the baselines by significant margins on
both datasets, and the gains in recommendation accuracy
are especially substantial on the Instagram dataset with rich
temporal information (according to Table 3, POIs in Gowalla
have less visiting timestamps). The one-stage recurrent
network-based methods, such as ST-RNN, LSTPM surpass
basic embedding-based methods by more sufficient exploita-
tion of user-preference spatiotemporal properties. However,
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Figure 3: Effect of hyper-parameters h, m, �spa on Instagram
Check-in and Gowalla datasets. The means and standard de-
viations are computed over five runs using different random
seeds.

these methods remain inferior to STEP-based ones, although
the STEP stands without user preference consideration. The
advantageous performance of our method over the competi-
tors can be attributed to its efficient use of the item-specific
spatiotemporal nature. We observe significant performance
improvements of the STEP-based methods in terms ofMRR,
indicating the STEP-based methods provide better candidate
lists on both datasets and benefit from the efficiency of the
proposed spatiotemporal embedding model. The usage of
LSTM units in recommender slightly improves the perfor-
mance compared with basic RNN cells because of their ad-
vantages in gate functions of recurrent connections. More-
over, the basic RNN recurrent net equipped with STEP em-
bedding can also outperform one-stage SOTAs. This also
proves the effectiveness of our brain-inspired spatiotemporal
embedding model.

Effect of hyper-parameters We study the effect of newly-
introduced hyper-parameters h, m, �spa, and report the re-
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HIT@1 HIT@5 HIT@10 MRR
In
st
ag
ra
m

FULL 0.2454 0.3204 0.3556 0.2835
W/O (1) 0.2433 0.2544 0.2607 0.2504
W/O (2) 0.2452 0.3151 0.3442 0.2798
W/O (3) 0.2399 0.3037 0.3305 0.2727
W/O (4) 0.2298 0.2531 0.2674 0.2451
only (5) 0.2466 0.2840 0.3021 0.2664

G
ow

al
la

FULL 0.1539 0.2968 0.3728 0.2282
W/O (1) 0.1461 0.2825 0.3540 0.2174
W/O (2) 0.1509 0.2921 0.3664 0.2248
W/O (3) 0.1006 0.2169 0.2922 0.1657
W/O (4) 0.0973 0.2117 0.2866 0.1610
only (5) 0.1252 0.2142 0.2519 0.1683

Table 4: Effectiveness of using (1) temporal information, (2)
visiting time encoder, (3) grid-cell encoder, (4) spatial em-
bedding preserving, and (5) the spatiotemporal model. We
mark the best ones with bold fonts and underline the subop-
timal ones.

sults using HIT@1 and MRR in Fig. 3. The parameters
h and m control the sparsity of the spatiotemporal context
graph and �spa regulates the importance of the spatial con-
text smoothness term in the spatiotemporal model objective
function. We alter h to build spatiotemporal context graphs
with decreasing sparsity as larger h corresponds to coarse
temporal-neighboring condition. The increasing h within a
certain range results in performance improvements but ap-
pears detrimental to the precise top-1 recommendation. The
best performance (determined by MRR) is obtained when
h = 2. The choice of h is task-related; according to our
results on two datasets, h = 2 can be a good initial value
for POI recommendation. This value can be further adjusted
for different application scenarios or datasets to build spa-
tiotemporal context graphs with desired sparsity. We set m
from 3 to 15, and larger m leads to a sparser spatiotemporal
context graph. We observe the performance slightly changes
after increasing the threshold m, when m = 11, the best
performance is obtained. We also investigate the effect of
the balancing factor �spa for spatiotemporal model training,
the recommendation system achieves the best performance
when �spa = 0.2 and further increases only bring minor
improvements. Thus we select 0.2 as a default value in this
work, this also helps reduce unnecessary iterations during
the model training.

Ablation study We study the effectiveness of STEP mod-
ules by performing successive POI recommendation tasks
with LSTM recommender, the method using the standard
STEP embedding model is referred to as FULL. After the
removal of (1) POI-specific time information processing
module, the spatiotemporal model degenerates into a spatial
model. According to Table 4, the method performs worse
without (1) on both datasets. According to Table 3, POIs
in Gowalla have sparser specific observation ts and con-
textual information from Gst. This results in more signifi-
cant performance improvements on the Instagram set than
on Gowalla. We replace POI visiting time pattern matrices
t with random-initialized matrices in R24⇥366. We note that

the use of (2) POI visiting time encoder improves the recom-
mendation performance on both datasets, and the improve-
ment is positively correlated with the temporal information
abundance of the dataset. We use a one-layer neural network
location encoder  0(x, y) to replace (3) grid-cell encoder in
the STEP to demonstrate its effectiveness. Results in Table 4
demonstrate that the grid-cell encoder improves the quality
of STEP representation and leads to better successive POI
recommendation performances on both datasets. We observe
noticeable performance drops after the removal of (4) spa-
tial embedding preserving in Table 4 since the spatiotempo-
ral conjunctive representation integrates spatial and tempo-
ral attributes at the cost of spatial information loss (due to
the dimensional reduction). The use of (4) spatial embed-
ding information preserving alleviates this problem to a cer-
tain extent.
A simple LSTM recommender can achieve competitive rec-
ommendation performance without check-in sequential in-
formation consideration (Table 4 only (5) rows), demon-
strating the effectiveness of the spatiotemporal model in
STEP. As visiting sequential information provides relatively
coarse-grained POI depictions, the removal of the sequen-
tial model even leads to HIT@1 improvement on the Insta-
gram dataset. Also, the metric fallen on Gowalla (-18.6%,
-27.8%, -32.4%, -26.2%) is more significant than those on
Instagram set (+3.1%, -11.4%, -15.0%, -6.0%), exactly op-
posed to their temporal information abundance, quantita-
tively evaluated by average timestamps per POI.

Traffic Flow Forecasting with STE

To demonstrate the generalizability of STE, we perform the
traffic flow forecasting task with the proposed spatiotempo-
ral embedding methods. The relevant content is presented in
detail in the Appendix.

Conclusion and Discussion

In this paper, we propose the spatiotemporal embedding
framework STE and apply it to POIs (STEP). To the
best of our knowledge, this is the first work that trans-
lates entorhinal-hippocampal representing mechanisms to
the spatiotemporal embedding. Inspired by the graph-
representing policy in the brain entorhinal-hippocampal sys-
tem, STEP captures sequential and spatiotemporal repre-
sentation from unlabeled sparse data through context graph
building and graph-based embedding learning. Moreover,
STEP provides a highly efficient spatiotemporal model mo-
tivated by grid cells’ multi-scale spatial representation and
place cells’ conjunctive representation, which overcomes the
problem caused by frequently used separate representing.
STEP-based successive POI recommendation method out-
performs baselines and SOTAs on two real datasets without
user preference invasion. Furthermore, this work presents
a practical framework for effective spatiotemporal model-
ing of general items, enabling more valuable spatiotemporal
tasks such as climate forecasting and urban traffic manage-
ment.
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