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Abstract

Illumination variation has been a long-term challenge in real-
world facial expression recognition (FER). Under uncon-
trolled or non-visible light conditions, near-infrared (NIR)
can provide a simple and alternative solution to obtain high-
quality images and supplement the geometric and texture de-
tails that are missing in the visible (VIS) domain. Due to the
lack of large-scale NIR facial expression datasets, directly ex-
tending VIS FER methods to the NIR spectrum may be inef-
fective. Additionally, previous heterogeneous image synthe-
sis methods are restricted by low controllability without prior
task knowledge. To tackle these issues, we present the first ap-
proach, called for NIR-FER Stochastic Differential Equations
(NFER-SDE), that transforms face expression appearance be-
tween heterogeneous modalities to the overfitting problem on
small-scale NIR data. NFER-SDE can take the whole VIS
source image as input and, together with domain-specific
knowledge, guide the preservation of modality-invariant in-
formation in the high-frequency content of the image. Ex-
tensive experiments and ablation studies show that NFER-
SDE significantly improves the performance of NIR FER and
achieves state-of-the-art results on the only two available NIR
FER datasets, Oulu-CASIA and Large-HFE.

Introduction
Facial expression (FE) is one of the most powerful, natu-
ral, and universal means for human beings to convey their
emotions. In various human-computer interaction applica-
tions, automatic facial expression recognition (FER) can
provide more insights into users’ emotional states and in-
tentions, which is essential for achieving better behavioral
responses in driver fatigue surveillance, sociable robotics,
and healthcare. To improve the robustness of FER in these
real-world applications, tremendous efforts have been made
from different perspectives, such as occluded facial image
[34], noisy labels [25, 29], cross-dataset generalization [15],
and so on [30, 44]. However, FER under extreme lighting
conditions is still an open question.

As illustrated in Fig 1, it’s quite difficult for visible (VIS)
sensors to capture high-quality images in low lighting or
complete darkness conditions. The limitations of these sen-
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Figure 1: Comparison of VIS and NIR facial images under
extreme lighting. The red frame in the center of the figure is
NIR images. Even under low lighting or complete darkness,
the geometric and texture details of volunteers in NIR im-
ages are still very well preserved.

sors result in the loss of crucial geometric and textural de-
tails, especially in key areas such as the cheek or lips. Con-
sequently, even experienced annotators find it arduous to ac-
curately identify the expression type depicted in such im-
ages. Hence, it becomes exceedingly challenging to solely
rely on algorithmic enhancements to address this issue. For-
tunately, the implementation of near-infrared (NIR) imag-
ing techniques offers a low-cost and effective solution to
enhance the performance of VIS FER systems in low-light
conditions. Furthermore, given their reduced sensitivity to
visible (VIS) light illumination variations, NIR face sen-
sors have been widely used in security surveillance within
finance, transportation, and other related domains.

However, achieving better performance for NIR FER is
still a challenging problem for deep models due to the fol-
lowing two reasons: 1) Insufficient training samples. In the
field of VIS, after decades of hard work, more and more
high-quality data sets, such as CK+, RAF-DB, KDEF, etc.,
continue to emerge, and the overall amount of available
training data is also growing rapidly. In contrast, there are
currently only two NIR facial expression datasets available,
Oulu-CASIA (80 subjects) and Large-HFE (360 subjects).
2) The large modal discrepancy. VIS and NIR face images
taken of the same individual are obtained through distinct
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sensory devices with varying settings, resulting in signifi-
cant differences in their visual appearances. Thus, directly
applying deep models trained on VIS data fails to provide
satisfactory results in the NIR spectrum.

To tackle these challenges together, synthesis methods
pose opportunities to generate NIR images given input VIS
face images so that abundant label information will migrate
from VIS to NIR. However, existing methods usually syn-
thesize images without prior task knowledge. Thus, they
can not realize customizable domain transfer that allows a
controllable appearance for FER. According to (Zhang and
Tjondronegoro 2011), the feature of facial expression usu-
ally lies in subtle facial movements, which requires detailed
facial representations to be preserved in the facial expression
translation process.

Inspired by these observations, we present a novel
method, called NFER-SDE, to learn and synthesize NIR ex-
pression images of good quality from VIS. The synthesized
facial images not only preserve the high-frequency content
carrying modality-invariant information, but also contain de-
tailed facial representations that are crucial to FER tasks.
Specifically, NFER-SDE consists of two novel components,
energy functions of task-specific guidance and conditional
score matching. First, a novel energy function Eh is pro-
posed to guide the reverse stochastic differential equations
(SDE) process using facial landmark information. Thus, the
key facial structure information can be preserved through the
reverse SDE process, resulting in lower uncertainty. Encour-
aged by unique observation in the cross-modality (NIR-VIS)
facial expression translation task, the frequency sharing rule
is established to preserve more modality-invariant informa-
tion. Second, conditional score matching is introduced to
make sure that the generated NIR image can be more faithful
to the original VIS image.

In summary, our main contributions are three-fold:
(1) We develop a novel method, i.e. NFER-SDE, to trans-

late the VIS facial expression sample to NIR modality. To
the best of our knowledge, this is the first effort to synthe-
size NIR facial expression samples for the NIR FER task.

(2) We propose new task-specific energy functions to
guide the image generation process with the domain knowl-
edge of FER. We also employ a conditional score-matching
network to better focus on facial expression details from the
original image.

(3) We conduct extensive experiments on Oulu-CASIA
and Large-HFE. The results show that our method has a bet-
ter performance than the state-of-the-art image synthesis ap-
proaches.

Related Work
Facial Expression Recognition The goal of FER is to au-
tomatically encode emotional information from subtle facial
muscle changes. Inspired by the success of deep neural net-
works, extensive efforts have been made to address differ-
ent problems including occluded facial image (Xing et al.
2022), noisy labels (Wang et al. 2022), cross-dataset gener-
alization (Li and Deng 2020), dynamic FER (Zhao and Liu
2021). As discussed in [3], dealing with the challenge of il-
lumination variations is also crucial to FER in real-world

applications. NIR images provide a low-cost and effective
solution to enhance the performance of VIS FER systems
in uncontrolled or non-visible light conditions. In this paper,
we present the first approach that transforms face expression
appearance between heterogeneous modalities for NIR FER
in extreme light conditions.

Image-to-image Translation Image-to-image translation
is an image generation task to transform the images between
two different visual domains. In this field, various genera-
tive models have made great progress, including Genera-
tive adversarial networks (GAN) (Isola et al. 2017; Yang
et al. 2020), Variational AutoEncoders (VAE) (Kingma et al.
2014; Sohn, Lee, and Yan 2015; Peng et al. 2021). Recently,
diffusion models have attracted much attention due to their
remarkable image generation ability in terms of distribution
diversity (Croitoru et al. 2023), and thus are utilized in the
image-to-image translation task. ILVR (Choi et al. 2021)
proposes an iterative latent variable refinement strategy to
guide the generative process of diffusion models. EGSDE
(Zhao et al. 2022) employs a pretrained energy function to
guide the reverse process of score-based diffusion models.

Problem Definition
Let DHTR = {(x(i)

V ,x
(i)
N , y(i))|i = 1, · · · , n} denote an

NIR-VIS heterogeneous facial expression dataset, where
x
(i)
V and x

(i)
N are the VIS and NIR images of the i-th sam-

ple respectively, and y(i) is the corresponding expression
label. Let DVIS = {(x(j), y(j))|j = 1, · · · ,m} denote a
VIS facial expression dataset, where x(j) is the VIS image
of the j-th sample and y(j) is the corresponding label. The
goal of NIR facial expression synthesis is to learn a transla-
tion model F from the heterogeneous dataset DHTR, i.e., the
model can transform arbitrary facial expression image xV

of VIS modality to the NIR modality xN = F (xV ). Using
this translation model, we can create a synthesized NIR-VIS
facial expression dataset DSYS = {(x(j), F (x(j)), y(j))|j =
1, · · · , j} from the VIS dataset DVIS, where F (x(j)) is the
synthesized NIR image of the j-th sample. The final goal
for NIR facial expression image synthesis is that the FER
backbone trained on the augmented dataset DHTR∪DVIS can
achieve better performance than that only trained on DHTR.

Preliminaries
Diffusion Models
Diffusion models are a class of deep generative models,
which have achieved remarkable performance in image gen-
eration over previous state-of-the-art methods like genera-
tive adversarial networks (GANs) (Goodfellow et al. 2014).
The core idea of diffusion models is to gradually corrupt the
training data structure by adding noise to the input, and then
learn a reverse network to recover the original data from the
corrupted data (Croitoru et al. 2023).

The training process of diffusion models is formulated as
two stages: the forward stage and the reverse stage. In the
forward stage, random Gaussian noise is iteratively added to
the input, with the proportion of noise increasing from 0 to
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1. In other words, the input is gradually degraded into pure
noise. The reverse stage is a noise-removal process, which is
the reversal of the preceding forward noise-adding process.
In the reverse stage, the output of the forward stage is re-
covered iteratively using a denoising neural network that is
trained to predict the added noise at each step.

During sampling, random noise is sampled from the
Gaussian distribution and then directly fed into the reverse
stage to generate the corresponding sample. Therefore, dif-
fusion models can learn the distribution of training data and
generate samples from random noise by the reverse network.

Score-based Diffusion Models (SBDMs)
Score-based diffusion models (SBDMs) are a continuous
form of the generic diffusion model. By transforming the
above discrete diffusion process into a continuous form,
SBDMs utilize Stochastic Differential Equation (SDE) to
model and solve the diffusion process (Song et al. 2020).

Let {xt}Tt=0 denote the image sequence in the forward
stage, where x0 is the original image and xT is the final
degraded image. In SBDMs, the time index t is regarded
as a continuous variable t ∈ [0, T ], and the image se-
quence {xt}Tt=0 is generalized into a continuous function
xt = x(t). Thus, the forward stage can be formulated as the
corresponding SDE

dxt = f(xt, t)dt+ σ(t)dω (1)

where f is the drift coefficient of x(t) that depends on
the image x(t) and time t, σ is the diffusion coefficient of
x(t) that only depends on time t, and ω is the integral of
the white noise Gaussian process, i.e., the standard Wiener
process. According to (Song et al. 2020), general DDPM
converges to the Variance Preserving SDE as the number
of sample steps T → ∞, where f(xt, t) = − 1

2β(t)x(t),
σ(t) =

√
β(t). Thus, DDPM networks can be utilized to

implement SBDMs.
Given the forward SDE in Eq. (1), the corresponding re-

verse SDE is solved as

dxt = [f(xt, t)− σ(t)2∇xt
log p(xt)]dt+ σ(t)dω̂ (2)

where p(xt) is the marginal data distribution at time t, and
ω̂ is the reverse Wiener process from T to 0. To estimate
the marginal data distribution, SBDMs propose a score-
matching neural network s(xt, t,Θs) to parameterize the
score function ∇xt log p(xt), where Θs is the parameter of
the network. Using the Euler-Maruyama method, the reverse
SDE can be further discretized as

∆x = [f(xt, t)−σ(t)2s(xt, t,Θs)]∆t+σ(t)
√

|∆t|z (3)

where ∆t < 0 is the reverse step size, and z ∼ N (0, I)
is a standard Gaussian noise. Eq. (3) provides the iterative
rule for the reverse stage, which enables the computational
simulation of SDE for unconditional image generation.

Energy-Guided Conditional SBDMs
To generate images under specific requirements or condi-
tions, the conditional form of SBDMs is proposed to incor-
porate the conditional information into the diffusion process

(Song et al. 2020). Given a condition c, the data distribu-
tion of xt turns into the conditional distribution p(xt|c).
According to Bayesian rule, the score function of the tar-
get data distribution is formulated as ∇xt

log p(xt|c) =
∇xt

log p(xt) +∇xt
log p(c|xt). Thus, the reverse SDE in

Eq. (2) is modified as

dxt =[f(xt, t)− σ(t)2(∇xt
log p(xt)

+∇xt
log p(c|xt))]dt+ σ(t)dω̂

(4)

where ∇xt
log p(c|xt) is added to the original score func-

tion as a modification term. Given the condition representa-
tion model p(c|xt), the reverse SDE can be calculated under
the guidance of the corresponding condition. The represen-
tation model p(c|xt) is exactly matched with some special
cases like classifier guidance (Zhao et al. 2022). However,
in some more cases like image translation, the conditional
distribution p(c|xt) is intractable.

To obtain a more generalized form of guidance, the condi-
tional SBDMs further propose an energy function E(xt, c, t)
to parameterize the modification term ∇xt

log p(c|xt)
(Zhao et al. 2022). The energy function E(xt, c, t) is
trained or designed to be minimized when the condi-
tion is satisfied. Thus, the modification term is formu-
lated as ∇xt log p(c|xt) = −∇xtE(xt, c, t). Given the
score matching network s(xt, t,Θs) and the energy func-
tion E(xt, c, t), the reverse SDE is formulated as

dxt =[f(xt, t)− σ(t)2(s(xt, t,Θs)

−∇xt
E(xt, c, t))]dt+ σ(t)dω̂

(5)

With the guidance of different energy functions, Eq. (5) can
be applied to various conditional image generation tasks.

Method
In this section, we present the proposed method for VIS-
NIR facial expression image translation. Firstly, we intro-
duce the framework of the proposed method. Then, we de-
scribe the energy function of task-specific guidance and the
conditional score matching network in detail.

Model Overview
The framework of the proposed method is illustrated in Fig.
2. Specifically, the proposed NFER-SDE consists of two
main components. The first component is the newly de-
signed energy functions of task-specific guidance, which
can guide the image-generation process with the domain-
specific knowledge of facial expression, including infor-
mation on the key facial areas and the unique frequency-
sharing rule of cross-modality expression translation. The
second component is the conditional score-matching net-
work, which can make full use of the subtle facial details
in the original facial expression image by explicitly condi-
tioning it as part of the input of the score-matching network.

Energy Functions of Task-Specific Guidance
Conditional diffusion models (Choi et al. 2021; Meng et al.
2021; Zhao et al. 2022) have made great progress and
achieved significant results in general image-to-image trans-
lation tasks, such as image editing and style transfer. Yet,
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Figure 2: The main framework of the proposed NFER-SDE network for VIS-NIR facial expression translation. The framework
mainly consists of two task-specific guidance energy functions and a conditional score-matching network.

when applied to VIS-NIR facial expression translation task,
the existing methods do not perform as expected in trans-
ferring facial expression attributes. The underperformance
is partly due to the feature learning challenges in VIS-NIR
facial expression translation task (Wang et al. 2020a), which
can be summarized in the following two aspects.

Firstly, compared to general vision targets, facial expres-
sions are usually conveyed through more subtle facial rep-
resentations in specific facial areas (Zhu et al. 2023). This
requires the diffusion models to be well guided by key fa-
cial structure information that is related to facial expres-
sion. Recently, it has been widely recognized that the fa-
cial landmark coordinates can encode the facial structure
information, which is crucial for facial expression recog-
nition (Lv et al. 2019; Wang et al. 2020b). Therefore, a
novel energy function Eh is proposed to guide the reverse
SDE process using facial landmark information. Specifi-
cally, a pretrained time-dependent facial landmark detection
network H(x, t,Θh) is proposed to extract the facial land-
mark heatmap from the input image x and current step t,
with its parameter Θh fixed during training. Let ct denote
the perturbed source image in the forward SDE and xt de-
note the denoised target image in the reverse SDE both at
step t. The energy function is formulated as

Eh(xt, c, t) =
1

2
∥H(xt, t,Θh)−H(ct, t,Θh)∥22 (6)

This energy function is designed to be minimized when the
facial landmark heatmap of the target image xt is close to
that of the perturbed source image ct. Thus, the key facial
structure information can be preserved through the reverse
SDE process.

Secondly, the frequency sharing rule in the cross-modality
translation task is unique, as shown in Fig. 3. In the
cross-modality facial expression translation task, the high-
frequency content of the image carries more modality-
invariant information for facial expression translation, as
it contains more detailed facial expression representations.
This rule is quite different from that in general image trans-
lation tasks where the low-frequency content is regarded to
carry the domain-invariant information that should be shared
between the source and target domains (Choi et al. 2021;
Zhao et al. 2022). Thus, the low-pass filters that general im-
age translation tasks adopt to preserve low-frequency con-
tent are not suitable for the cross-modality facial expression
translation task anymore.

Figure 3: Visualization of frequency sharing rule in cross-
modality facial expression translation. It can be observed
that the high-frequency content carries more modality-
invariant information that should be preserved in cross-
modality facial expression translation.

Therefore, we propose a novel energy function based on
a high-pass filter to preserve the high-frequency content in
the reverse SDE process. Given a high-pass filter Φ(·) as
the domain-invariant feature extractor, the energy function
is formulated as

Ef (xt, c, t) = ∥Φ(xt)− Φ(ct)∥22 (7)

With the guidance of Ef , the high-frequency content can
be preserved through the reverse SDE process to preserve
the domain-invariant feature in the cross-modality transla-
tion task.

To summarize, the above two energy functions are aggre-
gated to form the final energy function

E(xt, c, t) = λhEh(xt, c, t) + λfEf (xt, c, t) (8)

where λh and λf are the weighting hyper-parameters.

Conditional Score Matching
According to (Zhang and Tjondronegoro 2011), the fea-
ture of facial expression usually lies in subtle facial move-
ments, which requires detailed facial representations to be
preserved in the facial expression translation process. Thus,
in the VIS-NIR facial expression translation task, the orig-
inal VIS image should be fully considered by the denois-
ing network s(xt, t,Θs) to ensure the faithfulness of the
generated NIR image. However, existing SDE-based models
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(Meng et al. 2021; Choi et al. 2021; Zhao et al. 2022) do not
directly take the original image information into the denois-
ing neural network at each iterative reverse step, which may
cause the generated image to lose some key facial details.

To solve the above problem, we propose to condition
the denoising neural network with the reference image c in
the cross-modality translation process. Inspired by (Saharia
et al. 2022), the reference image c is concatenated to the in-
put image xt in the channel dimension at each step t. The
concatenated vector is then fed into the score matching net-
work to generate the output

st = s([xt, c], t,Θs) (9)

where s(·, ·,Θs) is the extension of that in Eq. (5). For the
training algorithm of the proposed conditional score match-
ing network, please refer to (Nair and Patel 2023).

Using the additional input c during training, the new con-
ditioned denoising network is supervised to generate better
NIR images under the guidance of the detailed information
from the VIS source image. Thus, the generated NIR image
can be more faithful to the original VIS image.

Experiment Setup
Evaluation Settings
To obtain comprehensive evaluation of NFER-SDE, we fol-
low previous works in heterogeneous translation (Yang et al.
2020; Nair and Patel 2023) and design two settings as fol-
lows: improved NIR FER performance and VIS-NIR trans-
lation quality. For improved NIR FER performance, extra
VIS facial expression samples are translated to NIR modal-
ity, and then added to the NIR training samples of the origi-
nal NIR&VIS facial expression dataset. The augmented NIR
training samples are utilized to train FER benchmarks. The
well-trained FER benchmarks are then evaluated on the orig-
inal NIR test set and the accuracy and macro F1 score are
reported as the improved NIR FER performance. For VIS-
NIR translation quality, the NIR images generated from
the VIS test samples of the original NIR&VIS facial expres-
sion dataset are compared with the ground-truth NIR test
samples of the original dataset according to the image qual-
ity metrics including Learned Perceptual Image Patch Simi-
larity (LPIPS) (Zhang et al. 2018), Peak Signal-to-Noise Ra-
tio (PSNR), Structural Similarity (SSIM).

Datasets
For NIR&VIS facial expression datasets, we select the only
two available ones: Oulu-CASIA (Zhao et al. 2011) and
Large-HFE. Oulu-CASIA is a laboratory-controlled dataset
that consists of video sequences captured with both visi-
ble and near-infrared lights from 80 subjects. Large-HFE
is also captured in the laboratory environment, with a larger
size of 360 subjects. In both datasets, only the six basic ex-
pressions are considered. For each dataset, we employ the
subject-independent strategy to split it into a train set of 80%
subjects and a test set of 20% subjects.

For extra VIS facial expression dataset, we select CFEE
(Du, Tao, and Martinez 2014) dataset. CFEE captures fa-
cial expression images in the laboratory with visible light

from 230 subjects, in which only the 6 basic expressions are
used in our experiments. The full set of CFEE is utilized to
be transformed into NIR modality by the proposed model
and the transformed samples are added to the training set
of Oulu-CASIA or Large-HFE to jointly train the NIR FER
benchmark.

Baselines

To comprehensively evaluate the proposed method, We
select the following image-to-image translation baselines
for comparison, including the GAN-based methods and
diffusion-based methods. For GAN-based methods, we se-
lect the state-of-the-art methods in image translation, includ-
ing pix2pix (Isola et al. 2017), CycleGAN (Zhu et al. 2017),
HiFaceGAN (Yang et al. 2020). For diffusion-based meth-
ods, we select the state-of-the-art methods in image restora-
tion, including two parts: the denoising diffusion probabilis-
tic models (DDPMs) and score-based diffusion models (SB-
DMs). The DDPM baselines used in this paper include ILVR
(Choi et al. 2021), SR3 (Saharia et al. 2022), and T2V-
DDPM (Nair and Patel 2023). The SBDM baselines include
SDEdit (Meng et al. 2021) and EGSDE (Zhao et al. 2022).
Among these baselines, HiFaceGAN and T2V-DDPM are
specially designed for heterogeneous face translation, while
the others are general image translation methods. For a fair
comparison, we train all the baselines on the same training
set and evaluate them on the same test set.

Implementation Details

The proposed method is implemented by Pytorch 1.8, and
the model training and image sampling procedure is pro-
cessed on NVIDIA GeForce 4090 card. All images are first
cropped to 256× 256 using the face detector (Bulat and Tz-
imiropoulos 2017) and then both NIR&VIS facial expres-
sion datasets are divided into the training set and testing
set. The training set is used to train the backbone model.
The backbone conditional score matching network is imple-
mented by U-Net. During training, the batch size is set to 16
and the learning rate is set to 1 × 10−5. After the model is
ready, we can sample images using our method from CFEE
and KDEF for NIR FER performance experiment and from
the testing set for VIS-NIR translation quality experiment.
The hyperparameter λh is set to 100 and λf is set to 0.5,
which are roughly selected based on the image generation
quality. For each experiment setting, the datasets are ran-
domly divided into five parts for five independent experi-
ments, and averaged results are reported in the following
part.

Results and Analysis
In this section, we first compare the proposed method with
the baselines in terms of NIR FER performance and VIS-
NIR translation quality. Then we conduct ablation study to
analyze the effectiveness of each component in the proposed
method. Finally, we visualize the generated NIR images to
have qualitative evaluation of the compared methods.
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Method
Performance Image Quality

Acc (%) F1 (%) LPIPS (↓) PSNR (↑) SSIM(↑)

Without translation 61.11 61.44 0.6369 48.45 0.9069

GAN-based
pix2pix (Isola et al. 2017) 63.06 63.07 0.5392 52.61 0.9372
CycleGAN (Zhu et al. 2017) 66.57 66.86 0.4582 53.52 0.9507
HiFaceGAN (Yang et al. 2020) † 66.94 67.00 0.4937 55.29 0.9922

Diffusion-based

ILVR (Choi et al. 2021) 56.94 57.19 0.7163 48.51 0.9072
SR3 (Saharia et al. 2022) 61.20 60.41 0.7958 51.84 0.9189
SDEdit (Meng et al. 2021) 64.91 64.72 0.6462 49.16 0.9117
EGSDE (Zhao et al. 2022) 64.26 64.26 0.6008 48.75 0.9081
T2V (Nair and Patel 2023) † 66.48 66.46 0.2713 59.70 0.9920
Ours (proposed) 70.19 70.28 0.1827 65.75 0.9994

Table 1: The performance of the compared methods on Oulu-CASIA. † denotes methods specially designed for heterogeneous
face translation. The best results are highlighted in bold.

Method
Performance Image Quality

Acc (%) F1 (%) LPIPS (↓) PSNR (↑) SSIM(↑)

Without translation 67.07 67.16 0.5364 50.88 0.9417

GAN-based
pix2pix (Isola et al. 2017) 67.17 67.02 0.5657 52.69 0.9589
CycleGAN (Zhu et al. 2017) 72.49 72.52 0.4801 54.03 0.9677
HiFaceGAN (Yang et al. 2020) † 69.68 69.75 0.4142 55.26 0.9962

Diffusion-based

ILVR (Choi et al. 2021) 68.67 69.05 0.6053 50.88 0.9420
SR3 (Saharia et al. 2022) 65.86 65.54 0.5687 54.59 0.9691
SDEdit (Meng et al. 2021) 69.88 69.76 0.5534 51.11 0.9439
EGSDE (Zhao et al. 2022) 70.78 70.91 0.5704 50.94 0.9423
T2V (Nair and Patel 2023) † 72.59 72.87 0.3965 56.12 0.9830
Ours (proposed) 74.90 74.91 0.3878 58.98 0.9963

Table 2: The performance of the compared methods on Large-HFE. † denotes methods specially designed for heterogeneous
face translation. The best results are highlighted in bold.

Comparison with State-of-the-art Methods
To evaluate the proposed method, we compare it with the
state-of-the-art methods in the settings of improved NIR
FER performance and VIS-NIR translation quality on Oulu-
CASIA and Large-HFE. The quantitative results are shown
in Table 1 and Table 2 respectively. From the results, we
have the observations as follows.

(1) The proposed method shows consistent advantages
over the state-of-the-art baselines in terms of improved
NIR FER performance and VIS-NIR translation quality on
both datasets. Compared to the best baseline, the proposed
method achieves the improvement of accuracy by 3.25% and
2.31%, and F1 score by 3.28% and 2.04% on Oulu-CASIA
and Large-HFE. This indicates that the proposed method
can translate VIS facial expression images to NIR modal-
ity with satisfying image quality and joint training with the
translated images can effectively enhance the performance
of NIR FER benchmark. This is mainly due to introduc-
tion of task-specific energy functions and conditional score
matching, which guide the model to focus on subtle yet key
facial representations that are related to facial expression.

(2) Among the baselines, T2V and HiFaceGAN tend
to show consistent effectiveness in image quality on both
datasets. This is because T2V and HiFaceGAN are spe-

cially designed for heterogeneous face translation, and thus
can generate more realistic NIR images of the facial details
than the other baselines. CycleGAN also produces relatively
competitive results, since the detailed original VIS image is
considered by the GAN-based network. The other diffusion-
based models, including ILVR, SDEdit, and EGSDE, per-
form not as expected, which is mainly due to the ignorance
of details in the original image information in translation.

Ablation Study
The proposed method mainly consists of two parts, i.e., the
conditional score-matching network and the task-specific
energy guidance. To analyze the effectiveness of each com-
ponent, we conduct ablation study on Oulu-CASIA and
Large-HFE under the following settings:

• Baseline: Basic SBDM (unconditional score-matching
network and no task-specific energy function).

• Cond: Conditional score-matching network.
• Cond+Eh: Conditional score-matching network with en-

ergy function Eh in Eq. (6).
• Cond+Ef : Conditional score-matching network with en-

ergy function Ef in Eq. (7).
• Cond+Eh+Ef : The proposed NFER-SDE method.
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Figure 4: Visualization of generated samples from the compared methods on Oulu-CASIA.

Method
Oulu-CASIA Large-HFE

Acc (%) F1 (%) Acc (%) F1 (%)

Baseline 62.55 62.75 69.12 69.43
Cond 65.76 66.06 71.99 72.17
Cond+Eh 67.78 68.98 72.39 72.49
Cond+Ef 68.24 68.57 73.59 73.53
Cond+Eh+Ef 70.19 70.28 74.90 74.91

Table 3: The ablation study results on Oulu-CASIA and
Large-HFE. The best results are highlighted in bold.

The ablation study results are shown in Table 3. Observa-
tions can be drawn from the results as follows.

(1) The baseline of unconditional score-matching network
and no task-specific energy function performs the worst,
which is due to a lack of detailed facial representations and
lack of knowledge guidance in the reverse process.

(2) Adding conditional score-matching network signifi-
cantly improves the performance. This is because the added
condition of the source facial expression image provides
the score-matching network with key facial details to gener-
ate more realistic NIR facial expressions. Adding two task-
specific energy functions further improves the performance,
which can guide the generation process toward more realis-
tic NIR facial expressions with satisfying quality.

(3) The proposed method that jointly combines the above
components achieves the best performance. This indicates
that both the task-specific energy guidance and the condi-
tional score-matching network are effective in improving the
performance of NIR FER benchmark.

Visualization of Generated Samples
For qualitative evaluation results, we present the trans-
lated samples of the proposed method and the baselines on

Oulu-CASIA in Fig. 4. As shown in the figure, the pro-
posed method can generate NIR images with satisfying qual-
ity, while the baselines cannot. Methods including ILVR,
pix2pix, SDEdit, and EGSDE generate human facial images
with varying degrees of distortion on both datasets. Among
them, ILVR performs the worst, since even fails to trans-
late VIS images to NIR-like images. All other methods can
meet the basic requirements of VIS-NIR translation. How-
ever, they still have some disadvantages compared to our
proposed method. Images generated from CycleGAN and
HiFaceGAN still suffer from black square artifact on Large-
HFE, and on Oulu-CASIA, CycleGAN misses expression-
related facial details (as in Angry), while HiFaceGAN re-
mains the background in VIS images. SR3 and T2V im-
ages have a paler color tone compared to real NIR images,
which can be seen more clearly on Oulu-CASIA. Further-
more, SR3 fails to generate images of the same person on
Large-HFE in some cases (As in Angry, Surprised, Dis-
gusted). In conclusion, the qualitative analysis results are
consistent with the quantitative results, which further veri-
fies the effectiveness of the proposed method.

Conclusion

In this paper, we propose a novel framework named NFER-
SDE on top of the score-based diffusion models to translate
VIS facial expression samples to the NIR domain, so that
the performance of NIR FER task can be improved with the
translated training images. The framework consists of the
energy functions of task-specific guidance and the condi-
tional score-matching network, which guide the score-based
diffusion models to capture subtle yet key facial representa-
tions for FER. Extensive experiments on two existing NIR
FER datasets demonstrate the effectiveness of our method.
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