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Abstract

With the development of diffusion models, text-guided im-
age style transfer has demonstrated high-quality controllable
synthesis results. However, the utilization of text for diverse
music style transfer poses significant challenges, primarily
due to the limited availability of matched audio-text datasets.
Music, being an abstract and complex art form, exhibits vari-
ations and intricacies even within the same genre, thereby
making accurate textual descriptions challenging. This pa-
per presents a music style transfer approach that effectively
captures musical attributes using minimal data. We intro-
duce a novel time-varying textual inversion module to pre-
cisely capture mel-spectrogram features at different levels.
During inference, we propose a bias-reduced stylization tech-
nique to obtain stable results. Experimental results demon-
strate that our method can transfer the style of specific in-
struments, as well as incorporate natural sounds to com-
pose melodies. Samples and source code are available at
https://lsfhuihuiff.github.io/MusicTI/.

Introduction
If a picture is worth a thousand words, then every melody
is timeless. Music is an essential art form in human soci-
ety, and a change in music style can offer listeners a com-
pletely new experience and perception. For a long time, mu-
sic creation has had high barriers to entry. However, music
style transfer has opened up possibilities for ordinary indi-
viduals to achieve personalized music experiences. Music
style transfer refers to the process of transferring the style
of a given audio clip to another without altering its melody.
Sound is omnipresent in our lives, so inspired by music cre-
ators who utilize natural sounds in their compositions1, mu-
sic style transfer can be extended to encompass various types
of sound examples.

Deep learning-based music style transfer has been a hot
research topic in recent years. Some works (Alinoori and
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1How natural sounds can be involved in music produc-
tion is well explained by https://youtu.be/ixiiesRtgKU?list=
RDixiiesRtgKU; https://theworld.org/stories/2021-03-14/nature-
always-singing-now-you-can-make-your-own-music-natures-
sounds.

Tzerpos 2022; Choi and Lee 2023) can stylize music with a
specific timbre to a specific or a few instruments, while oth-
ers (Huang et al. 2019; Chang, Chen, and Hu 2021; Bonnici,
Benning, and Saitis 2022; Wu et al. 2023b) have achieved
many-to-many music style transfer but restrict the trans-
formation to a finite set of styles presented in the train-
ing data. There are efforts (Cı́fka, Şimşekli, and Richard
2020; Cı́fka et al. 2021) to explore one-shot music style
transfer, but they still have difficulties in handling natural
sounds. With the development of large language models,
some works (Forsgren and Martiros 2022; Liu et al. 2023;
Schneider, Jin, and Schölkopf 2023; Huang et al. 2023a) ex-
plore text-guided music generation and demonstrate remark-
able capacity for generating impressive results. Specially,
MusicLM (Agostinelli et al. 2023) and MUSICGEN (Copet
et al. 2023) implement music style transfer by conditioning
on both textual and melodic representations. However, exist-
ing methods can only achieve common style transfer based
on coarse descriptions of genres (e.g., “rock”, “jazz”), in-
struments (e.g., “piano”, “guitar”, “violin”), or performance
forms (e.g., “chorus”, “string quartet”). They lack the abil-
ity to handle niche instruments such as cornet or erhu. Fur-
thermore, these methods are insufficient to address complex
scenarios involving the description of natural sounds or syn-
thesized audio effects.

To alleviate all the above problems and leverage the gen-
erative capabilities of pretrained large-scale models, we pro-
pose a novel example-guided music stylization method. Our
approach aims to achieve music style transfer based on arbi-
trary examples, encompassing instruments, natural sounds,
and synthesized sound effects. Given an audio clip, we can
transfer its style to arbitrary input music which is used as
content. As illustrated in Figure 1, our method can transfer
the texture of the style mel-spectrograms to the local regions
of the content mel-spectrograms, while preserving the struc-
ture of the content mel-spectrograms.

To achieve this goal, we seek to obtain an effective style
representation of the input audio. Inspired by Textual In-
version (Gal et al. 2023a), which utilizes a pseudo-word
to represent a specific concept through the reconstruction
of target images, we aim to learn a pseudo-word that rep-
resents the style audio in a similar manner. However, we
expect to avoid introducing the content of the style audio
during the stylization process. We suppose that different
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Figure 1: Music style transfer results using our method. Our approach can accurately transfer the style of various mel-
spectrograms (e.g., instruments, natural sounds, synthetic sound) to content mel-spectrograms using minimal reference data,
even as little as a five-second clip. In the style mel-spectrograms, the black box highlights the regions with prominent texture.
It can be observed in the blue boxes that the style transfer results preserve a similar structure to the content mel-spectrograms
while exhibiting similar texture to the style mel-spectrograms.

timesteps of the diffusion model focus on different levels
of features. Therefore, we propose a time-varying textual
inversion module, where the emphasis of text embedding
shifts from texture to structure of the style mel-spectrogram
as the timestep increases. Futhermore, we use a partially
noisy mel-spectrogram of the content music as the content
guidance. As a result, when using the pseudo-word as guid-
ance in the execution of DDIM (Song, Meng, and Ermon
2020), it becomes a partial denoising process. This scheme
naturally excludes structure-related timesteps, which are as-
sociated with melody or rhythm, from participating in the
stylization process. Meanwhile, it preserves the melody or
rhythm of the content mel-spectrogram. To reduce bias of
diffusion models on content preservation, we add noise to
the mel-spectrogram using the predicted noise instead of
random noise, resulting in a more stable stylization result.

Our contributions can be summarized as follows:
• We propose a novel example-based method for music

style transfer with time-varying textual inversion.
• Our approach enables the use of non-musical audio for

music style transfer and achieves highly creative results.
• Experimental results demonstrate that our method out-

performs existing approaches in both qualitative and
quantitative evaluations.

Related Work
Music style transfer. Deep learning-based music style
transfer has been widely studied as a typical mechanism
of music generation. Dai, Zhang, and Xia (2018) explores
the concept of music style transfer and analyzes its develop-
ment. Many works have conducted further research on music
style transfer using various deep learning frameworks (Grin-
stein et al. 2018; Bitton, Esling, and Chemla-Romeu-Santos
2018; Mor et al. 2019; Huang et al. 2019; Lu, Su et al.
2018; Brunner et al. 2018; Lu et al. 2019; Jain et al. 2020).
TimbreTron (Huang et al. 2019) employs image style trans-
fer techniques to achieve timbre transfer across multiple
styles. Grinstein et al. (2018) explore timbre transfer be-
tween arbitrary audios based on CNN-extracted statistical
features of audio styles. Groove2Groove (Cı́fka, Şimşekli,
and Richard 2020) adopts an encoder-decoder structure to
achieve one-shot style transfer for symbolic music. Cı́fka
et al. (2021) employs vector-quantized variational autoen-
coder (VQ-VAE) for one-shot music style transfer without
being restricted to the training data, yielding good perfor-
mance even on real-world data. Music-STAR (Alinoori and
Tzerpos 2022) explores style transfer between multi-track
pieces, but it is limited to specific instruments. Bonnici,
Benning, and Saitis (2022) utilize variational autoencoders
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(VAE) with generative adversarial networks for timbre trans-
fer in both speakers and instruments. Pop2Piano (Choi and
Lee 2023) uses transformer architecture to achieve the trans-
formation from popular music to piano covers. Chang, Chen,
and Hu (2021) and Wu et al. (2023b) implement many-to-
many timbre transfer using autoencoders. However, these
methods are seriously limited by the training data for achiev-
ing satisfactory timbre transfer results. Wu and Yang (2023)
combines Transformers and VAE to create a single model
that can generate music with both long sequence model-
ing capability and user control over specific parts. Above
methods can generate good music style transfer results, but
they can only achieve single-style transfer or require a large
amount of training data, while failing to generate high-
quality music with natural sound sources.

Text-to-music generation. Large-scale multimodal gen-
erative modeling has created milestones in text-to-music
generation. Make-An-Audio (Huang et al. 2023b) uti-
lizes a prompt-enhanced diffusion model to implement au-
dio representation generation in the latent space. Audi-
oLDM (Liu et al. 2023) uses Latent Diffusion Model (LDM)
and CLAP (Wu et al. 2023a) to generate audio (including
music), and is the first work that can perform zero-shot text-
guided audio editing. Tango (Ghosal et al. 2023) achieves
high performance on text-to-audio task with limited data by
utilizing the training concept of InstructGPT (Ouyang et al.
2022). However, the above works tend to focus on vari-
ous sounds in the natural world, and their ability to gener-
ate music is limited. Recently, diffusion models and trans-
formers have gained significant popularity in the realm of
music generation. Riffusion (Forsgren and Martiros 2022)
exploits the image characteristics of mel-spectrograms and
fine-tunes stable diffusion models on a small-scale dataset
of aligned music mel-spectrograms and text. This approach
achieves impressive results in generating high-quality music
guided by text. Schneider (2023) proposes a text-guided la-
tent diffusion method with stacked 1D U-Nets, which can
generate multi-minute music from text. Moûsai (Schnei-
der, Jin, and Schölkopf 2023) designs a diffusion model-
based audio encoder and decoder to generate high-quality
and long-term music from text. Noise2Music (Huang et al.
2023a) utilizes Mulan (Huang et al. 2022) and cascade
diffusion models to generate high-quality 30-second mu-
sic clips. MusicLM (Agostinelli et al. 2023) leverages cas-
cade transformers to achieve impressive performance in di-
verse audio generation tasks. It builds upon the founda-
tions of Mulan (Huang et al. 2022) and AudioLM (Borsos
et al. 2023), demonstrating particular proficiency in melody-
guided music generation. MUSICGEN (Copet et al. 2023)
achieves text-conditioned music generation using a single-
stage transformer by introducing innovative token interleav-
ing patterns. These methods utilize large pretrained models
to achieve rough music stylization through text, whereas our
method can accomplish accurate music style transfer even
based on a single example.

Textual inversion. While text-guided content generation
has achieved impressive results, relying solely on text may
not provide precise control over specific aspects, such as

editing the style of a piece of music. However, certain works
in the field of image generation have explored the potential
of textual inversion techniques to personalize the generation
process of models. Gal et al. (2023a) propose a textual in-
version method that gradually updates the embedding cor-
responding to the pseudo-word in a pre-trained large lan-
guage model to represent the visual features of specific ob-
jects. There are many variants of this work (Gal et al. 2023b;
Li et al. 2023; Huang et al. 2023c; Tewel et al. 2023; Zhang
et al. 2023b; Voynov et al. 2023; Zhang et al. 2023a). Zhang
et al. (2023b) uses attention mechanisms (Guo et al. 2023)
and CLIP (Radford et al. 2021) to map images to text em-
beddings, achieving high-quality image style transfer with
a single instance. ProSpect (Zhang et al. 2023a) introduces
different embeddings to represent the pseudo-word for dif-
ferent generation stages, achieving personalized image gen-
eration with the disentanglement of attributes. Those meth-
ods provide us with insights into music style transfer.

Method
We utilize Riffusion (Forsgren and Martiros 2022) as the
backbone to achieve music stylization, as shown in Fig-
ure 2. Our work is conducted in the audio frequency domain
based on the idea of inversion (Gal et al. 2023a). During
the training stage, we employ our time-varying textual in-
version coupled with the diffusion model to iteratively re-
construct the original mel-spectrogram to obtain a pseudo-
word representing the style audio. During inference, guided
by the pseudo-word, we incorporate a bias-reduced styliza-
tion technique to achieve stable results.

Time-Varying Textual Inversion
Our approach aims to embed an audio (a piece of music or a
natural sound clip) into the latent space of a pre-trained text
encoder, obtaining a pseudo-word with text embedding that
represents its style.

Latent Diffusion Models (LDMs) (Rombach et al. 2022)
take the outputs of the text encoder of CLIP (Radford et al.
2021) as the condition for text-to-image generation. Specifi-
cally, the CLIP text encoder tokenizes natural language into
multiple indices, each corresponding to an embedding in the
embedding lookup. Once the indices are transformed into
embeddings vo, they are encoded as conditions for LDMs.In
our task, we utilize a pseudo-word “∗” to represent the style
audio, which is challenging to express accurately using nat-
ural language. The parameters of LDMs are fixed, and the
embedding vi∗ of the placeholder is iteratively updated with
the loss of the LDMs until the model can successfully recon-
struct the style mel-spectrogram.

The learned “∗” represents the entire style audio, but the
structural information (e.g., melody or rhythm) should not
be involved in the stylization process. By analyzing the
diffusion process of the diffusion model, we observe that
different timesteps of the diffusion model focus on mel-
spectrogram features at different levels. We propose a time-
varying textual inversion, where the text embeddings of the
same pseudo-word change over different timesteps. Our ex-
periments show that the text embedding of “∗” exhibits dif-
ferentiation in the timestep dimension (Figure 3). As the
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Figure 2: An overview of our method. We adopt Riffusion (Forsgren and Martiros 2022) as the backbone network and pro-
pose a time-varying textual inversion module, which mainly consists of a time-varying encoder (TVE) as shown on the right.
Performing several linear layers on the timestep te, and then adding the output to the initial embedding vo∗, TVE gives the
final embedding vi∗ through multiple attention modules. Ms, M̂s, Mc, Mcn, ẑtp , M̂cn, M̂cs respectively represent style mel-
spectrogram, reconstructed style mel-spectrogram, content mel-spectrogram, noisy content mel-spectrogram, predicted noise,
predicted noisy content mel-spectrogam and stylized mel-spectrogram.

Chime Step 1 Step 200 Step 400 Step 800 Reconstruction

Figure 3: Our time-varying textual inversion module extends the time-step dimension of text embeddings. When reconstructing
style mel-spectrograms, the text embeddings exhibit differentiation in the time-step dimension. As the time steps increase, the
focus of the text embeddings shifts from texture to structure.

timestep increases, the text embedding gradually focuses
more on structure rather than texture. Therefore, we can treat
the text embeddings at smaller time steps of the diffusion
model as representations of style.

Specifically, we supply timestep t to the time-varying en-
coder (TVE) module. The timestep is firstly embedded as
te. After performing several linear layers on it, the output is
added to the initial embedding vo∗ as v0, and then undergoes

multiple attention modules to derive the final embedding vi∗.
The multiple attention modules start with v0, then each at-
tention layer is implemented as follows:

Attention(Q,K, V ) = softmax(
QKT

√
d

) · V. (1)

For self attention layer, Qs,Ks, V s are defined as:

Ms = WMs · v0, (2)
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where Ms can be from {Qs,Ks, V s}. As for cross attention
layer, Qc,Kc, V c are defined as:

Qc = WQc · v1,M c = WMc · v0, (3)

v1 = Attention(Qs,Ks, V s), (4)
where M c can be from {Kc, V c}.

The final embedding vi∗ are defined as:

vi∗ = Attention(Qc,Kc, V c). (5)

By performing text transformer, vi is transformed into
conditions for guiding LDMs. Our improved text encoder e
is constructed by integrating the CLIP (Radford et al. 2021)
text encoder with TVE. Based on the loss of LDMs, our op-
timization objective is defined as follows:

vi∗ = argmin
v

Ez,y,ϵ,t[∥ϵ− ϵθ(zt, t, eθ(y, t))∥22], (6)

where z ∼ E(x), ϵ ∼ N (0, 1), ϵθ and CLIP text encoder of
eθ are frozen during training to maintain the performance of
large pretrained models.

Bias-Reduced Stylization
We observe that for diffusion models, as the timestep de-
creases during the denoising process from a noisy image to a
real image, the primary structure is initially established, fol-
lowed by the gradual refinement of details. We employ the
strength mechanism during the stylization to achieve content
guidance.

Our bias-reduced stylization involves a partial diffusion
process, a determined diffusion process, and a denoising
process (see Figure 2). The partial diffusion process means
adding noise to the content mel-spectrogram Mc until the
time-step reaches tp, where tp = T · strength, and Mc is
transformed into a noisy mel-spectrogram Mcn. The deter-
mined diffusion process performs a single step denoising on
Mcn, where the predicted noise ẑtp is used to replace the
random noise when performing the diffusion process, re-
sulting in a new noisy content mel-spectrogram M̂cn. This
process can be viewed as introducing a bias into the noisy
image to counterbalance the impact of model bias. The de-
noising process progressively transforms M̂cn into M̂cs by
DDIM (Song, Meng, and Ermon 2020) with a simple prompt
“∗”. Note that both the diffusion process and denoising pro-
cess are performed in the latent space of the VAE encoder.
The denoised output requires decoding by the VAE decoder
into a Mel-spectrogram, which can subsequently be recon-
structed into audio using the Griffin-Lim algorithm.

Experienment
We conducted qualitative evaluation, quantitative evaluation
and ablation study to demonstrate the effectiveness of our
method, which performs well in both content preservation
and style fit.

Dataset. Currently, there is a lack of publicly available
datasets specifically tailored for music style transfer that
meet our requirements. We collected a small-scale dataset
from a website (https://pixabay.com) where all the content

is free for use. The collected data was segmented into five-
second clips, resulting in a total of 253 5-second clips, with
74 style clips and 179 content clips. The style subset con-
sists of 18 different style audios, including instruments, nat-
ural sounds, and synthesized sound effects. The content sub-
set consists of electronic music and instrument clips, distin-
guishing it from other music style transfer approaches that
primarily employ simple monophonic audio. In our experi-
ments, we did not utilize all of the style audio clips. Instead,
we selected only one sample for each natural sound and syn-
thetic sound effect. Considering the variability of musical
instrument notes, we used 3-5 clips for each instrument.

We compared our method with three related state-of-the-
art approaches:
• R+TI: We combined Riffusion (R) (Forsgren and Mar-

tiros 2022) with Textual Inversion (TI) (Gal et al.
2023a) as our baseline. R is the original stable diffusion
model v1.5, which is just fine-tuned on images of mel-
spectrograms paired with text. Additionally, it incorpo-
rates a conversion library for transformation between au-
dio and mel-spectrograms. TI is a classical method that
learns a pseudo-word for a concept within a limited num-
ber of images using an optimization-based approach.

• SS VQ-VAE (Cı́fka et al. 2021): A latest available imple-
mentation of one-shot music style transfer.

• MUSICGEN (Copet et al. 2023): A recently released
text-guided music generation method that achieves text-
guided music stylization with melody conditioning.

Implementation details. In our experiments, we fix the
parameters of LDMs and text encoder except for the TVE
module. We use the default hyperparameters of LDMs and
set a base learning rate of 0.001. The training process on
each style takes approximately 30 minutes using an NVIDIA
GeForce RTX3090 with a batch size of 1, less than the more
than 60 minutes required for TI. During inference, our ap-
proach employs two hyperparameters: strength and scale.
These parameters respectively govern the intensity of the
content and regulate the intensity of the style. We achieved
the best results when strength ranged from 0.6 to 0.7 and the
scale ranged from 3.0 to 5.0.

Qualitative Evaluation
The stylized audio samples, showcasing the comparison be-
tween our method and other approaches, can be accessed on
the static webpage provided within the supplementary ma-
terials. As shown in the Figure 4, we compared our method
with three approaches: R+TI (Forsgren and Martiros 2022;
Gal et al. 2023a), SS VQ-VAE (Cı́fka et al. 2021), and
MUSICGEN (Copet et al. 2023). The structure of the mel-
spectrogram can be seen as the content, while the detailed
texture is considered as the style.

For R+TI, we treated partial noisy content mel-
spectrogram as content guidance and used the learned
pseudo-word as text guidance for style transfer using DDIM.
It can be observed that although R+TI preserves the overall
structure well, it introduces occasional flaws in the rhythm
at the local level and exhibits weaker texture transfer com-
pared to our method. SS VQ-VAE processes audios with
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Figure 4: Qualitative comparison with state-of-the-arts methods (Forsgren and Martiros 2022; Gal et al. 2023a; Cı́fka et al.
2021; Copet et al. 2023). (a) Style mel-spectrograms, the texts on the left are the sound categories. (b) Mel-spectrograms. (c)-
(d) The stylized results of various methods. In the style mel-spectrograms, the black box highlights the regions with prominent
texture. It can be observed in the blue boxes that only our results preserve a similar structure to the content mel-spectrograms
while exhibiting a similar texture to the style mel-spectrograms.

a sampling rate of 16kHz, resulting in the loss of high-
frequency information after stylization. It introduces severe
artifacts in the mel-spectrogram, resulting in poor perfor-
mance in terms of audio quality. Regarding MUSICGEN,
we used the textual descriptions of the style audios as guid-
ance for style transfer. The results indicate that its generation
quality exhibits a high degree of stochasticity, characterized
by unstable content preservation and limited editability. Our
method can accurately preserve the structure of content mel-
spectrograms while achieving high-quality texture transfer
of style mel-spectrograms, without introducing the artifacts
observed in other methods.

Quantitative Evaluation
Following the previous works on music style transfer (Ali-
noori and Tzerpos 2022; Cı́fka et al. 2021), we evalu-
ate our method based on two criteria: (a) content preser-
vation and (b) style fit. Taking inspiration from MUSIC-
GEN (Copet et al. 2023) and InST (Zhang et al. 2023b),

we compute the CLAP cosine similarity between the gen-
erated mel-spectrograms and the content mel-spectrograms
to evaluate content preservation. Additionally, we calcu-
late the CLAP cosine similarity between the generated mel-
spectrograms and the corresponding textual description of
the style to evaluate style fit. We computed the CLAP co-
sine similarity between the textual descriptions and the style
mel-spectrograms as a reference, with an average value of
0.4890 and a minimum value of 0.3424. Thus, we excluded
style audios that were difficult to describe in text from the
calculation of objective metrics. This ensures the correla-
tion between our style mel-spectrograms and the evaluation
text. We evaluated our method and other approaches by ran-
domly selecting 282 content-style pairs and assessing their
performance, as shown in Table 1. Our method achieves
the best performance in both metrics, significantly surpass-
ing our baseline in terms of content preservation. While
SS VQ-VAE achieves a similar style fit to ours, it suffers
from greater content loss. MUSICGEN performs noticeably
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Objective Subjective
Method CP SF CP SF OVL
R+TI 0.3481 0.2722 2.81 3.20 2.75

SS VQ-VAE 0.2351 0.2809 3.36 2.34 2.60
MUSICGEN 0.2808 0.2370 2.81 2.70 2.83

Ours 0.4645 0.2816 3.91 3.70 3.66

Table 1: Qualitative comparison with other methods (Fors-
gren and Martiros 2022; Gal et al. 2023a; Cı́fka et al. 2021;
Copet et al. 2023). CP, SF, OVL stands for Content Preser-
vation, Style Fit, and Overall Quality, respectively.

Content Preservation Style Fit
w/o TVE 0.4506 0.2418
w/o BRS 0.4415 0.2602

Ours 0.4645 0.2816

Table 2: Ablation study of our method. TVE and BR are
Time-Varying Embedding and Bias-Reduced Stylization re-
spectively.

worse than our method in both metrics.

User study. To conduct a subjective evaluation of our
method’s performance, we designed a user study to rate the
four methods on three evaluation metrics. We randomly se-
lected 15 sets of results (excluding comparisons with MU-
SICGEN (Copet et al. 2023) for style audios that are diffi-
cult to describe with text). Before the test, we set up ques-
tions to assess the participants’ music profession level and
provided guidelines outlining the evaluation criteria for mu-
sic style transfer. During the test, each participant was pre-
sented with a style audio, a content audio, and four randomly
ordered generation results for each set of questions. Partici-
pants were asked to rate the following metrics on a scale of
1 (lowest) to 5 (highest):

• Content Preservation: consistency between the generated
audio and the content music in terms of melody, rhythm,
and similar attributes.

• Style Fit: consistency between the generated audio and
the style audio in terms of timbre, sound units, and simi-
lar attributes.

• Overall Quality: the quality related to the overall perfor-
mance of style transfer, such as the coherence of the fu-
sion between the content and style of generated music.

Our experiment involved 80 participants, out of which 72
were deemed valid (excluding participants with no knowl-
edge of music), resulting in a total of 12960 ratings. After
excluding the maximum and minimum values, We calcu-
lated the weighted average based on participants’ music pro-
fession level (four levels with corresponding weights: 1 to
4). The results, as presented in Table 1, demonstrate that our
method outperforms other approaches significantly in terms
of content preservation, style fit, and overall quality.

Abaltion Study
Time-varying embedding (TVE). We fix the text embed-
ding of the pseudo-word at a specific time step during in-
ference and use it as the text guidance for mel-spectrogram
generation, as shown in Figure 3. As the timestep increases,
the text embeddings gradually shift their focus from the tex-
ture of the mel-spectrogram to the structure. This aligns with
our expectation that the diffusion model first constructs the
rough structure of the image during denoising and then opti-
mizes the details. The reconstructed results reflect the high-
quality reconstruction due to the fusion of features across
different timesteps. To further demonstrate the effectiveness
of the TVE module, we evaluate our method without it, as
shown in Table 2. Although the difference in content preser-
vation is not significant after removing TVE, there is a no-
ticeable decrease in style fit, indicating that TVE contributes
to better style learning.

Bias-reduced stylization. We evaluate the impact of re-
moving the bias-reduced stylization technique on content
preservation and style matching. It can be observed that
there is a decrease in both metrics, indicating that it is help-
ful in terms of preserving content and facilitating style trans-
fer.

Discussions and Limitations
Our method enables music style transfer using diverse audio
sources, including instruments, natural sounds, and synthe-
sized sound effects. Nevertheless, it is crucial to recognize
that certain limitations may arise in specific contexts. For in-
stance, when the content music encompasses multiple com-
ponents, our method may encounter challenges in accurately
performing style transfer on each individual component, po-
tentially leading to partial content loss. Furthermore, when
the style audio incorporates white noise like rain or wind
sounds, it becomes challenging to capture the inherent mu-
sicality within those elements and transfer it effectively to
the content reference.

Conclusion
In this paper, we propose a novel approach for music styl-
ization based on diffusion models and time-varying textual
inversion, which effectively embeds style mel-spectrograms.
Our experiments demonstrate the generality of our method
for various types of audio, including musical instruments,
natural sounds, and synthesized sound effects. Our approach
achieves style transfer with a small amount of data, gen-
erating highly creative music. Even when applied to non-
musical style audio, our method produces results with a
high level of musicality. We believe that leveraging pre-
trained models with stronger generative capabilities would
further enhance the performance of our method. In the fu-
ture, we aim to investigate more interpretable and attribute-
disentangled music style transfer.

Acknowledgements
This work was supported by the National Natural Science
Foundation of China under nos. 61832016 and 62102162.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

553



References
Agostinelli, A.; Denk, T. I.; Borsos, Z.; Engel, J.; Verzetti,
M.; Caillon, A.; Huang, Q.; Jansen, A.; Roberts, A.;
Tagliasacchi, M.; et al. 2023. MusicLM: Generating Music
from Text. arXiv preprint arXiv:2301.11325.
Alinoori, M.; and Tzerpos, V. 2022. Music-STAR: a Style
Translation system for Audio-based Re-instrumentation. In
International Society for Music Information Retrieval Con-
ference (ISMIR), 419–426.
Bitton, A.; Esling, P.; and Chemla-Romeu-Santos, A. 2018.
Modulated variational auto-encoders for many-to-many mu-
sical timbre transfer. arXiv preprint arXiv:1810.00222.
Bonnici, R. S.; Benning, M.; and Saitis, C. 2022. Tim-
bre Transfer with Variational Auto Encoding and Cycle-
Consistent Adversarial Networks. In International Joint
Conference on Neural Networks (IJCNN), 1–8. IEEE.
Borsos, Z.; Marinier, R.; Vincent, D.; Kharitonov, E.;
Pietquin, O.; Sharifi, M.; Roblek, D.; Teboul, O.; Grang-
ier, D.; Tagliasacchi, M.; et al. 2023. Audiolm: a language
modeling approach to audio generation. IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing.
Brunner, G.; Konrad, A.; Wang, Y.; and Wattenhofer, R.
2018. MIDI-VAE: Modeling dynamics and instrumenta-
tion of music with applications to style transfer. In Interna-
tional Society for Music Information Retrieval Conference
(ISMIR), 747–754.
Chang, Y.-C.; Chen, W.-C.; and Hu, M.-C. 2021. Semi-
supervised many-to-many music timbre transfer. In Inter-
national Conference on Multimedia Retrieval (ICMR), 442–
446.
Choi, J.; and Lee, K. 2023. Pop2Piano: Pop Audio-Based
Piano Cover Generation. In IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 1–5.
IEEE.
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