
Responding to the Call: Exploring Automatic Music Composition Using a
Knowledge-Enhanced Model

Zhejing Hu1, Yan Liu1*, Gong Chen1, Xiao Ma1, Shenghua Zhong2, Qianwen Luo1

1 Department of Computing, The Hong Kong Polytechnic University
2 College of Computer Science and Software Engineering, Shenzhen University

zhejing.hu@connect.polyu.hk, yan.liu@polyu.edu.hk, gong-cg.chen@polyu.edu.hk, edward-xiao.ma@connect.polyu.hk,
csshzhong@szu.edu.cn, qianwenluo@gmail.com

Abstract

Call-and-response is a musical technique that enriches the
creativity of music, crafting coherent musical ideas that mir-
ror the back-and-forth nature of human dialogue with distinct
musical characteristics. Although this technique is integral to
numerous musical compositions, it remains largely uncharted
in automatic music composition. To enhance the creativity
of machine-composed music, we first introduce the Call-
Response Dataset (CRD) containing 19,155 annotated musi-
cal pairs and crafted comprehensive objective evaluation met-
rics for musical assessment. Then, we design a knowledge-
enhanced learning-based method to bridge the gap between
human and machine creativity. Specifically, we train the com-
position module using the call-response pairs, supplementing
it with musical knowledge in terms of rhythm, melody, and
harmony. Our experimental results underscore that our pro-
posed model adeptly produces a wide variety of creative re-
sponses for various musical calls.

Introduction
Automatic music composition, a classic research topic
in computational creativity (Carnovalini and Rodà 2020;
Mateja and Heinzl 2021), has garnered significant research
attention (Dong et al. 2018; Ferreira et al. 2022; Hsiao et al.
2021; Bretan et al. 2017; Jiang et al. 2020b) and applica-
tions (Hu et al. 2020; Wesseldijk, Mosing, and Ullén 2021;
Engels, Tong, and Chan 2015). Compared to visual arts like
painting, music is inherently abstract, lacking a tangible ref-
erence such as a definitive image. Studying this abstrac-
tion allows machines to emulate human musicians, offering
promising advancements in genuine machine intelligence.
Recent trends leverage sequence-to-sequence models to cap-
ture creativity in music composition (Ramesh et al. 2021; Li
et al. 2022; Huang et al. 2018; Huang and Yang 2020; Ens
and Pasquier 2020; Muhamed et al. 2021). The effectiveness
of data-driven models largely depends on extensive training
datasets. However, the specialized nature of music composi-
tion results in smaller datasets compared to those for text and
images. This data limitation challenges the ability of these
models to master complex creative composition techniques
for evoking aesthetic and emotional depth.
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Example 3: Liquidation (“My Heart Will Go On”)

Example 5: Condensation (“The Sound of Silence”)

Example 4: Conversion (“Part of Your World”)

Example 2: Extension (“My Heart Will Go On”)

Example 1: Growth (“My Heart Will Go On”)

Figure 1: Different types of call-and-response effects to ex-
press creativity in human-composed music.

Call-and-response, a fundamental compositional tech-
nique in human-composed music, expresses creativity and
is also known as antecedent and consequent phrases in
musicology. In this technique, one musical phrase acts as
the “call” and is “answered” by a corresponding phrase
(Titon 2016; Benward 2018). Pivotal in improvisation and
choral settings (Benetatos, VanderStel, and Duan 2020;
Biles et al. 1994), this technique enriches compositional
structures, adding layers of creativity, diversity, and narra-
tive depth, especially in crafting verses or choruses (Schoen-
berg, Stein, and Strang 1967). Creativity shines through call-
and-response with effects such as growth, extension, liquida-
tion, conversion, and condensation (Figure 1). These effects
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guide human creativity, turning abstract ideas and emotions
into tangible musical expressions by offering novel interpre-
tations of the original melody and shaping new emotional
landscapes.

Machine-composed Music
Human-composed Music
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Call and response proportion within one song

Average: 0.09 Average: 0.79

Figure 2: Comparative Analysis of Call-and-Response Pro-
portions in Human-Composed and Machine-Composed Mu-
sic: A Study of 100 Pop909 Songs (Wang et al. 2020)
and 100 Machine-Composed Songs from (Agostinelli et al.
2023; Dhariwal et al. 2020; Payne 2019).

While call-and-response is foundational in human-
composed music for expressing creativity, it is underrepre-
sented in machine-composed pieces, including those pro-
duced by the most advanced music generation products
(Agostinelli et al. 2023; Dhariwal et al. 2020; Payne 2019),
as depicted in Figure 21. Though creativity is an unbounded
art, unrestricted freedom in automatic music composition
might yield pieces beyond human comprehension and ap-
preciation, diverging from music’s essence as an accessible
art form. As a result, employing the call-and-response tech-
nique to convey creativity remains a challenge for current
automatic music composition models.

To address this, we study the call-and-response technique
to enhance the creativity of machine-composed music, aspir-
ing to transition machine compositions from merely “cor-
rect” to truly “artistic”. We introduce the Call-Response
Dataset (CRD) with 19,155 annotated call-response pairs
in music, establishing a structured resource for machines to
learn and generate creative responses to human-composed
music. Alongside, we present comprehensive objective
evaluation metrics, further refining musical assessment
in computational creativity. Additionally, our innovative
Call-Response Generator (CRG) integrates a knowledge-
enhanced mechanism that focuses on rhythm, melody, and
harmony into the learning-based method, thereby bridging
the gap between human and machine creativity. Preliminary
results highlight the effectiveness of our model, adeptly pro-
ducing creative and varied responses, thereby enriching the
musical experience of machine-generated compositions.

Related Work
Automatic Music composition can be broadly divided into
two primary streams. The first stream consists of learning-
based methods (Briot, Hadjeres, and Pachet 2020; Ji, Luo,

1While products like MusicLM are prompt-based audio gener-
ation products, we include them in our comparison to highlight the
gap between human-composed and machine-composed music.

and Yang 2020) like MidiNet (Yang, Chou, and Yang 2017),
MuseGAN (Dong et al. 2018), Music Transformer (Huang
et al. 2018), and Pop Music Transformer (Huang and Yang
2020). These approaches leverage models such as CNN,
GAN, and Transformer to derive patterns from data sam-
ples. While capable of producing minute-long compositions,
these models often overlook central musical ideas and cru-
cial techniques (Hernandez-Olivan and Beltran 2022). One
solution could be to further increase the size of the music
data, but this would require more well-structured data and
a significant investment in time and resources for collec-
tion and pre-processing given the intricacy of composition.
Even if more data were used, it doesn’t ensure the capture of
specific compositional techniques, which can lead to unpre-
dictable outcomes (Wu and Yang 2020).

Recognizing that music is an art requiring both rule-based
and learning-based approaches, researchers have designed a
combination of learning-based and rule-based methods by
incorporating music theory (Medeot et al. 2018; Jiang et al.
2020a; Roberts et al. 2018; Akama 2019). This approach
reduces the reliance on vast data samples and closely em-
ulates the human process of studying composition, which
involves learning music theory and listening to numerous
music pieces. Many studies have demonstrated that com-
bining learning-based and rule-based methods can enhance
the quality of automatic music composition (Dai et al. 2021,
2023; Lu et al. 2022). Some typical knowledge-enhanced au-
tomatic music composition methods involve incorporating
knowledge such as genres (Mao, Shin, and Cottrell 2018),
music themes (Shih et al. 2022), melody structures (Wu et al.
2020), harmonic features (Zhang et al. 2022), and internal
graph structure (Zou et al. 2022) into machine learning mod-
els for composition. Recent studies have explored attention
mechanisms for improved structure and coherence (Keerti
et al. 2022; Hsiao et al. 2021; Ens and Pasquier 2020), as
well as reinforcement learning algorithms for generating
music with specific characteristics like motif and harmony
(Guo, Xu, and Xu 2022).

Despite these advancements in automatic music compo-
sition, there remains a significant deficiency in reproducing
the call-and-response technique, a cornerstone of numerous
music genres for creativity. Therefore, a refined call-and-
response generator is essential, highlighting a research gap
in this domain.

Call-Response Dataset
Annotation Process
We enlisted three annotators with musical training back-
grounds to manually identify each call-response pair. Two
annotators are asked to annotate all music independently.
All pairs preserve the information from the original dataset,
which consists of three tracks: melody (lead melody), pi-
ano (primary accompaniment arrangement), and bridge (sec-
ondary melodies or lead instrument arrangements). Given
the intricate nature of this task and our commitment to
achieving precise and accurate results, we instituted a ro-
bust quality control process. The third annotator indepen-
dently scrutinized the extracted call-response pairs, vigi-
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lantly checking for any potential errors, discrepancies, or in-
consistencies in the initial annotations. In situations where
discrepancies were identified, all three annotators were en-
gaged in deliberation to discuss and resolve the inconsisten-
cies, thereby fostering consensus and maintaining the accu-
racy of the annotations. A detailed dataset collection process
is described in Appendix A1.

Dataset Exploration
Objective Evaluation Metrics We evaluate the quality
of calls and responses based on their rhythm, melody, and
harmony. We use dynamic time warping (DTW) distance
and maximum common subsequence (MCS). These metrics
have been widely used in music composition for similarity
comparisons (Collins 2012; Dai et al. 2023; Chikkamath and
Nirmala 2021; Hu et al. 2022).

For rhythm and melody evaluation, we use DTW to mea-
sure two different attributes: note position and note dura-
tion. The DTW distance of note position and note duration
between the call and the human-composed response is de-
noted as DTWP and DTWD. The DTW distance between
the input call and generated response is denoted as ˆDTWP

and ˆDTWD. Rhythm Quality (RQ) is then computed as a
normalized metric ranging from 0 to 1:

RQ = 1− 1

2
× (

|DTWP − ˆDTWP |
max(DTWP , ˆDTWP )

+

|DTWD − ˆDTWD|
max(DTWD, ˆDTWD)

) (1)

If the generated response differs significantly from the
human-composed response, RQ approaches 0; otherwise,
it is closer to 1. A similar process is applied to measure
Melody Quality (MQ) using the DTW metric, which is the
distance of the melodic pitch:

MQ = 1− |DTWM − ˆDTWM |
max(DTWM , ˆDTWM )

(2)

For harmony evaluation, we measure the MCS of chord
progressions between two music pieces. Harmony Quality
(HQ) is calculated as:

HQ = 1− |MCSH − ˆMCSH |
max(MCSH , ˆMCSH)

(3)

We use an N-gram to measure the diversity of the gener-
ated responses. The N-gram measures the average number
of times each n-gram appears in the generated music. This
is widely used for assessing the diversity of text generated
by language models (de Rosa and Papa 2021) and has been
adopted in music composition (Zhang et al. 2022). The n-
gram diversity of the pitch sequence within the generated
response Dn is defined as:

Dn =
|T |

|G| − n+ 1
, (4)

where |T | is the number of unique n-grams in all n-grams
G, and |G| − n + 1 is the number of total n-grams that can
be formed from G.

(e) Distribution of 
harmonic similarity.

(a) Distribution of note number. (b) Distribution of chord number.

(c) Distribution of 
rhythmic similarity.

(d) Distribution of 
melodic similarity.

Very Similar 
(similarity: 0.8-1.0)

Similar 
(similarity: 0.6-0.8)

Neutral 
(similarity: 0.4-0.6)

Distinct 
(similarity: 0.2-0.4)

Very Distinct 
(similarity: 0.0-0.2)

89.5%
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Average: 
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1.44

Average: 
-0.35

Average: 
16.86

Average: 
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Figure 3: CRD statistics. (a-b) Distributions of note and
chord numbers. (c-e) Distributions of similarity between
call-response pairs in terms of rhythm, melody, and har-
mony.

Dataset Statistics We extracted a total of 19,155 call-
response pairs, totaling over 108 hours from Pop909 (Wang
et al. 2020). Our CRD is the first to annotate the call-and-
response technique in automatic music composition. Figure
3 (a) and (b) illustrate the distribution of note and chord
numbers in calls, responses, and call-response differences.
Most music pieces feature approximately 65 notes and 16
chords. The length difference is centered around 0, which
suggests that the lengths of call-and-response are similar
in most cases. Additionally, we demonstrate the rhythm,
melody, and harmony similarity between each call-response
pair in Figure 3 (c-e). For rhythm and melody, most call-
response pairs exhibit similar rhythm and melody patterns.
For harmony, most call-response pairs have distinct harmony
patterns.

Method
Overview
In this section, we present the CRG, a model designed for
call-and-response generation in music, as shown in Figure
4. CRG uses a music piece as input and produces a comple-
mentary response based on diverse music candidates from
music knowledge for creative results. It comprises two main
modules: a compositional encoder-decoder and a knowledge
enhancement module.

Mathematically, let X be a two-dimensional matrix of size
L1 × A, where L1 represents the length of the music call
sequence and A denotes the number of attributes. Each to-
ken of X is a natural number, so X ∈ NL1×A. We construct
music knowledge K and design a model Mθ that generates
response Y = Mθ(X,K). The response Y ∈ NL2×A has a
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Figure 4: The framework for CRG. CRG takes a call as input and utilizes knowledge as a reference to generate high-quality
responses.

length L2 corresponding to the input.

Compositional Encoder and Decoder
The compositional encoder and decoder together constitute a
sequence-to-sequence model. The encoder maps a variable-
length input music sequence (call) into a fixed-length vector
representation, while the decoder translates the vector repre-
sentation into a variable-length output music sequence (re-
sponse).

From a probabilistic standpoint, the encoder-decoder
framework learns the conditional distribution of a variable-
length sequence given another variable-length sequence:

P (Y|X) = P (y1, . . . , yL2 |x1, . . . , xL1) =

L2∏
t=1

p(yt|X, y1, . . . , yt−1). (5)

We denote the encoder process as:

HX = ENCODER(E(x1), E(x2), . . . , E(xL1
)), (6)

where E(·) is the embedding layer, and HX ∈ RL1×H is
a sequence of hidden states {hi}L1

i=1 mapped from the in-
put sequence. We use xi for simplicity, but the actual pro-
cess involves concatenating all hidden features of attributes
at position i since music has more than one attribute.

The decoding function is formally represented as:

st = DECODER(st−1, E(yt−1)), (7)

p(yt|yt−1, yt−2, . . . , y1) = softmax(FC(st)), (8)
where st is the hidden state at time t and FC(·) is a fully
connected layer. It should be noted that the initial hidden

state s0 corresponds to the hidden representation of the input
HX.

The compositional encoder and decoder can be trained as
follows:

L0(θ) = −logpθ(Y|X) = −
L2∑
t=1

log(pθ(yt|y<t,X)). (9)

Compositional Knowledge Enhancement
To effectively extract valuable information from knowledge,
we develop a method for filtering and identifying relevant
data. In the context of music theory, the phenomenon of mu-
sical call-and-response requires intelligibility, which leads
to specific correlations between the call-and-response con-
cerning rhythm, melody, and harmony (Schoenberg, Stein,
and Strang 1967; Kachulis 2004).

We propose drawing insights from similar compositions
in knowledge K. The underlying assumption is that: if a pre-
vious phrase aligns closely with the input call, its subsequent
music phrase can guide the generation of an appropriate re-
sponse. The premise for this assumption lies in observing
the patterns of music composition: if a phrase bears similar-
ity to the “call” in other musical pieces, it is plausible that
composers have employed similar techniques in crafting the
following phrases. This pattern can serve as a learning ba-
sis for the model, enabling it to generate corresponding re-
sponses.

To ensure this, we define three selection criteria grounded
in music theory, focusing on rhythm, harmony, and melody
(Schoenberg, Stein, and Strang 1967; Kachulis 2004):
1. Rhythmic selection: Music phrases should possess a

rhythmic pattern similar to the original input call.
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2. Harmonic selection: Music phrases should display a
chord progression similar to the original input call.

3. Melodic selection: Music phrases should showcase a
melodic pattern similar to the original input call.

We extract the rhythm information of the input call and
compare it with the rhythm information of music in knowl-
edge K. The comparison is executed by calculating the sim-
ilarity between the rhythm of the input call and all phrases
from K using Equation 1. We denote the similarity after
rhythmic selection as RhX ∈ RN , where N is the num-
ber of music pieces in K and the similarity calculation fol-
lows calculation described in Objective Evaluation Metrics.
Similarly, we can extract the melody and harmony of the
input call X and calculate the similarity, denoting them as
MeX ∈ RN and HaX ∈ RN . In addition, we define the
selection score as the summation of rhythm, melody, and
harmony:

Selection Score = RhX +MeX +HaX (10)

Next, we sort all music in knowledge in descending or-
der based on their selection score. We select the top K ele-
ments from the knowledge and construct a music candidate
list from their subsequent phrases C = {C1, C2, ...,CK},
where Ck ∈ K.

For K music candidates, the hidden representation
after the compositional encoder can be denoted as
{HC1 ,HC2 , . . . ,HCK

}, following Equation 6. Given the in-
put hidden representation HX and hidden representations
from candidates, the knowledge incorporation module cal-
culates the similarity between music candidates and the in-
put music:

Sk =
FC(HX) · FC(HCk

)T

||FC(HX)|| ∗ ||FC(HCk
)||T

, (11)

where · represents the dot product along the dimension of
hidden space H , ∗ indicates element-wise multiplication,
and || · || denotes the L2 norm.

Then, it incorporates the knowledge from music candi-
dates into the input based on similarity. The final hidden rep-
resentation fed into the decoder at time t = 0 is as follows:

H = HX +

K∑
k=1

HCk
∗ (Sk · 1⊤), (12)

where 1 represents a vector of ones with length H . Finally,
H is fed into the compositional decoder to generate the out-
put response Y.

Knowledge-enhanced Response Generation
We first design two different objectives to train the model.
Objective 1 is designed as a knowledge-enhanced objective,
where the model is trained on ({C1, . . . ,CK ,X},Y) training
examples. The objective function is:

L1(θ) = −logpθ(Y|X,K) =

−
L2∑
t=1

log(pθ(yt|y<t,X, {C1, . . . ,CK})), (13)

where K represents knowledge, and Ci can be selected
through knowledge selection.

Objective 2 is designed as an autoencoder-
based knowledge-enhanced objective, trained on
({C1, . . . ,CK ,X},Ci) training examples. The goal is
to predict music candidates instead of the ground-truth
response. The objective function is:

L2(θ) = − 1

K
∗

K∑
i=1

logpθ(Ci|X,K)

= − 1

K
∗

K∑
i=1

L2∑
t=1

log(pθ(ci,t|ci,<t,X, {C1, . . . ,CK})).

(14)
The model is optimized based on Objectives 1 and 2 on call-
response pairs. The goal can be expressed as follows:

L = λL1 + (1− λ)L2, (15)
where λ is the hyper-parameter.

During generation, the input call X is processed by CRG
to identify K music candidates. The model then sequentially
produces tokens until reaching the ⟨EOM⟩ (end of music)
token. By utilizing these candidates, CRG ensures the re-
sponse mirrors the rhythmic, melodic, and harmonic traits
of the input call, offering diverse yet coherent musical out-
puts.

Experiments
Implementation Details
In our experiment, we convert symbolic music into a se-
quence of compound words using a predefined music at-
tribute vocabulary (Hsiao et al. 2021). Each sequence is set
to a length of 256 tokens. For knowledge selection, we em-
ploy DTW and MCS to calculate the similarity between
input call and knowledge and normalize DTW between 0
and 1 by dividing the maximum possible DTW value for
each pair of sequences. We use the Pop1K7 dataset (Hsiao
et al. 2021) as music knowledge. During training, we set
the hyper-parameters λ to 0.5. Additionally, we reserve call-
response pairs from 40 songs for validation and testing pur-
poses. This experimental setup enables us to evaluate the
model’s performance and its ability to generate high-quality
musical responses.

Subjective Metrics and Participants
We carry out a subjective evaluation on social media. The
listener evaluates the music in terms of quality, groove, co-
herence, and creativity (Zhang et al. 2022; Hu et al. 2022):
Overall Quality: Please rate the overall quality of the re-
sponse on a scale of 1 (lowest) to 5 (highest). Groove: Please
rate the fluency of the response and the appropriateness of
pauses on a scale of 1 (lowest) to 5 (highest). Coherence:
Please rate the coherence of the call-and-response connec-
tion on a scale of 1 (lowest) to 5 (highest). Creativity: Please
rate the creativity of the different responses on a scale of 1
(lowest) to 5 (highest). We collected 89 valid listener reports
by distributing a survey on social media. A detailed subjec-
tive experiment design is described in Appendix A2.
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Objective Subjective

Model RQ ↑ MQ ↑ HQ ↑ 1-gram ↑ 2-gram ↑ 3-gram ↑ Quality ↑ Groove ↑ Coherence ↑ Creativity ↑
MT (Huang et al. 2018) 0.30 0.26 0.52 0.26 0.66 0.87 2.82 2.99 2.19 2.28
CPT (Hsiao et al. 2021) 0.29 0.29 0.61 0.19 0.62 0.87 2.61 2.33 2.09 2.09
HAT (Zhang et al. 2022) 0.41 0.29 0.57 0.24 0.65 0.87 2.79 3.08 1.90 2.66

CRG 0.59† 0.57† 0.72† 0.31† 0.77† 0.92† 3.62† 3.76† 3.48† 3.91†

Table 1: Model comparison: results of the objective and subjective evaluations. † indicates statistically significant improvement
over MT.

Loss Objective Subjective

Model L0 L1 L2 RQ ↑ MQ ↑ HQ ↑ 1-gram ↑ 2-gram ↑ 3-gram ↑ Quality ↑ Groove ↑ Coherence ↑ Creativity ↑
CRG-Base ✓ ✗ ✗ 0.44 0.29 0.57 0.24 0.66 0.87 3.01 2.75 2.90 2.75

CRG-K ✗ ✓ ✗ 0.48 0.57 0.62 0.26 0.73 0.91 3.68 3.59 3.42 2.99

CRG-KM1 ✓ ✓ ✗ 0.57 0.55 0.71 0.30 0.75 0.91 3.58 3.60 3.45 2.96
CRG-KM2 ✓ ✗ ✓ 0.38 0.54 0.50 0.21 0.65 0.87 3.31 2.89 3.39 3.76

CRG-KM12 ✓ ✓ ✓ 0.59† 0.57† 0.72† 0.31† 0.77† 0.92† 3.62† 3.76† 3.48† 3.91†

Table 2: Ablation study: results of the objective and subjective evaluations. † indicates statistically significant improvement over
CRG-Base.

Model Comparison
We compared our model’s performance with three promi-
nent automatic music composition models: Music Trans-
former (MT) (Huang et al. 2018), CP-Transformer (CPT)
(Hsiao et al. 2021), and HAT (Zhang et al. 2022). Although
none specifically target call-and-response, they represent
varied approaches in the field.

Table 1 highlights the superior performance of our model
in both objective and subjective experiments. This improved
quality stems from our unique approach of selecting and in-
corporating music candidates to enhance the learning pro-
cess, which provides additional and useful information for
response generation. Furthermore, the diverse music candi-
dates from our knowledge base amplify creativity. In con-
trast, other models rely on a standard reconstruction set-
ting, learning solely from input music without external ref-
erences, restricting their creativity. The coherence score fur-
ther illustrates that these models often fail to produce re-
sponses that effectively echo the call, hindering artistic cre-
ativity in machine-generated music.

Ablation Analysis
We designed five model variants to assess our approach’s
components: CRG-Base uses Transformer settings, trained
on call-response pairs with L0. CRG-K: Our main model
with a knowledge mechanism trained on L1. CRG-KM1:
Incorporates the knowledge mechanism, trained with L0

and then on L1. CRG-KM2: Uses the knowledge mecha-
nism, trained on L2. CRG-KM12: Combines the knowledge
mechanism and trains on both L1 and L2.

Table 2 indicates that the integration of knowledge and
the utilization of multiple objectives enhance performance.

This observation corroborates that the inclusion of musical
knowledge improves model performance by providing addi-
tional valuable information. Incorporating L0 aids the model
in learning the musical content within the sequence, while
L2 guides the model to generate creative responses.

Knowledge Analysis
Knowledge Candidate Type Different types of knowl-
edge can impact model performance, as they provide vary-
ing information to the model. In our experiment, we ana-
lyzed three knowledge types: Random knowledge: Candi-
dates are randomly chosen. Distinct knowledge: Candidates
have unique composition skills compared to the input call.
Similar knowledge: Candidates’ skills resemble input calls.

Tables 3 and 4 show that while all knowledge types im-
prove performance, similar knowledge offers the most sig-
nificant boost. This finding is consistent with music theory
emphasizing the connection between calls and responses.

Type Music Quality
RQ ↑ MQ ↑ HQ ↑

Random 0.55±0.19 0.54±0.39 0.71±0.22
Distinct 0.56±0.19 0.52±0.39 0.71±0.22
Similar 0.57±0.20 0.57±0.39 0.72±0.22

Table 3: Objective evaluation on different knowledge types:
music quality.

Knowledge Candidate Number Figure 5 displays the
music quality and diversity as the number of knowledge in-
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Type Music Diversity
1-gram ↑ 2-gram ↑ 3-gram ↑

Random 0.29±0.11 0.72±0.12 0.89±0.08
Distinct 0.30±0.10 0.73±0.11 0.90±0.07
Similar 0.31±0.11 0.76±0.11 0.92±0.06

Table 4: Objective evaluation on different knowledge types:
music diversity.

creases. A trade-off between music diversity and music qual-
ity is observed when increasing the number of knowledge
candidates.

K=1 K=3 K=5 K=8

Quality Diversity

Va
lu

e

Figure 5: Objective evaluation on different knowledge can-
didate numbers: music quality and diversity.

Comparison with Human-Composed Music

A comparison between human-composed music and
machine-composed music from CRG is shown in Figure 6.
Although human-composed music received higher ratings
than the proposed model in terms of quality, groove, and
coherence, the subjects perceived greater creativity in the
music generated by CRG. Figure 7 demonstrates the adapt-
ability of CRG in generating a variety of outcomes tailored
to a specific call. In a typical pop song, the human composer
generally employs 1-3 response effects, and in this exam-
ple, the human version only has one response type to main-
tain consistency and reinforce the main theme. The CRG can
produce five different and creative response effects that have
never been heard before. This characteristic is not meant to
suggest that it generates music with greater overall creativity
than human composers; rather, it highlights its ability to in-
troduce creativity within the context of a single piece. This
capacity for generating diverse and creative responses can
serve as a valuable tool for arrangement or style transfer and
has the potential to inspire and complement human creativ-
ity during the composition process. By offering different ef-
fects, the CRG serves as a valuable resource for composers
seeking fresh ideas or novel perspectives while crafting their
musical pieces.
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Figure 6: Subjective evaluation between human-composed
music and machine-composed music (CRG).
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Figure 7: Demonstration of responses.

Conclusion
To the best of our knowledge, this is the first work that
employs the call-and-response technique to improve com-
putational creativity in music. We introduce a new dataset
consisting of 19,155 call-response pairs. In addition, we de-
fine three objective metrics for musical evaluation. Based on
this dataset, we propose a novel CRG with a knowledge-
enhanced mechanism that incorporates more creative train-
ing data, in addition to the ground-truth call-response labels.
Compared to existing learning-based models, our proposed
model has significantly improved the quality of machine-
composed music in terms of rhythm, melody, and harmony.
In addition, our model shows promising results in generat-
ing creative responses given a call. In the future, we plan
to explore bias in evaluation methods (Déguernel and Sturm
2023) and enhance our approach by including the control
process of response effects. The code and dataset are avail-
able at https://github.com/hu-music/Call-Response.
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