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Abstract

Spiking neural networks (SNNs) exploit neural spikes to pro-
vide solutions for low-power intelligent applications on neu-
romorphic hardware. Although SNNs have high computa-
tional efficiency due to spiking communication, they still lack
resistance to adversarial attacks and noise perturbations. In
the brain, neuronal responses generally possess stochastic-
ity induced by ion channels and synapses, while the role
of stochasticity in computing tasks is poorly understood.
Inspired by this, we elaborate a stochastic gating spiking
neural model for layer-by-layer spike communication, in-
troducing stochasticity to SNNs. Through theoretical anal-
ysis, our gating model can be viewed as a regularizer that
prevents error amplification under attacks. Meanwhile, our
work can explain the robustness of Poisson coding. Exper-
imental results prove that our method can be used alone
or with existing robust enhancement algorithms to improve
SNN robustness and reduce SNN energy consumption. We
hope our work will shed new light on the role of stochas-
ticity in the computation of SNNs. Our code is available at
https://github.com/DingJianhao/StoG-meets-SNN/.

Introduction
As a representative of low-energy neural network systems,
spiking neural networks (SNN) are being studied by re-
searchers from the perspective of deep learning (Maass
1997; Zenke et al. 2021; Xu et al. 2022; Shen et al. 2023).
While traditional artificial neural networks (ANN) use float-
point values to simulate the rate coding of biological neu-
rons, SNNs take a different approach by directly commu-
nicating through spike sequences, offering a simplified rep-
resentation of the intricate dynamics of the biological sys-
tem (Gerstner et al. 2014). This simplification presents a
remarkable advantage for SNNs, enabling them to carry
out computations on neuromorphic hardware with high ef-
ficiency (DeBole et al. 2019; Pei et al. 2019). Behind the ad-
vantage is the impact that the simplified SNN gradually ap-
proaches ANN in terms of computing capability, and does
not exhibit the huge advantage of high robustness shown
by the biological nervous system. Nonetheless, researchers
continue to explore and refine SNNs, aiming to bridge the
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Figure 1: Diagram of spiking neurons with stochastic gating
in neuronal synapses and ion channels.

gap between the computational capabilities of SNNs and the
robustness observed in biological neural systems.

Typical application scenarios for SNNs include robotic
control (Bing et al. 2018) and autonomous driving (Ya-
mazaki et al. 2022), where reliable perception is safety-
critical. Malicious attacks can make neural networks give
wrong predictions (Goodfellow, Shlens, and Szegedy 2015;
Szegedy et al. 2014). These attacks are usually constructed
from derivatives that are automatically differentiated. While
SNNs possess the potential for improved robustness com-
pared to their traditional counterparts (Sharmin et al. 2020),
they are not immune to attacks due to their training with
surrogate functions (Wu et al. 2018). Recent research has
shown that SNNs can still be susceptible to adversarial at-
tacks, emphasizing the need to understand and enhance their
robustness against such threats (Liang et al. 2023; Sharmin
et al. 2019). Consequently, the quest for understanding and
improving the robustness of SNNs has become a critical and
pressing issue in the field (Liang et al. 2022). In order to un-
leash the potential invulnerability of SNN from adversarial
attacks and ensure their reliability and safety in real-world
applications, researchers are actively exploring innovative
techniques and strategies. At present, leading studies mainly
consider how to use the wisdom of generalization on toxic
samples for defense (Kundu, Pedram, and Beerel 2021), and
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stay at the discussion of simplified neurons, which is still far
from the nature of human perception.

Stochasticity is pervasive in biological coding. At present,
using stochasticity to improve the robustness of SNN has be-
come a feasible solution. Sharmin et al. stated that Poisson
coding sampling data from a Bernoulli distribution could
help SNN improve robustness (Sharmin et al. 2020). This
method has been applied to text classification (Lv, Xu, and
Zheng 2023) and sparked a discussion about the robustness
of the encoding methods (Kim et al. 2022). At the same time,
Li et al. believed that SNNs with inherent noise are more ro-
bust to input noise than ANNs (Li et al. 2020). The robust-
ness verification of the above works is mainly carried out
experimentally, lacking a theoretical explanation. For bio-
logical systems, the role of noise is more complex. Faisal et
al. reviewed the function of noise at the cellular level. How
much these noises contribute beneficially to neuronal pro-
cessing is the fundamental problem of neural coding (Faisal,
Selen, and Wolpert 2008). Thus, how to introduce meaning-
ful stochasticity to provide robustness for deep SNNs be-
comes our primary motivation. In synapses, the transmis-
sion of neurotransmitters and the opening and closing of ion
channels are both stochastic, which provoke noise to signals
and are believed to improve temporal representation (White,
Rubinstein, and Kay 2000). Inspired by this, we propose a
stochastic gating model to improve robustness. Our main
contributions are summarized as follows:
• We propose a stochastic gating model for spike transmis-

sion between layers in SNNs. This model functions sim-
ilarly to synapses by filtering spikes, while also introduc-
ing stochasticity to the network.

• We theoretically demonstrate that our gating model is
equivalent to a regularizer through the Taylor expansion
of adversarial loss, allowing us to regulate the robustness
of SNNs by controlling the probability of gate opening.

• Theoretical findings indicate that our model can be
equivalent to reducing the Lipschitz constant of SNN,
thereby preventing error amplification. Besides, the gat-
ing model can be equivalent to Poisson coding, helping
to explain why Poisson coding can promote robustness.

• Experimental results validate that our method can effec-
tively improve the robustness of SNN, and can be used
in conjunction with adversarial training and weight reg-
ularization techniques. Moreover, our approach also of-
fers the additional benefit of reducing energy consump-
tion during SNN inference.

Related Work
Supervised training algorithms emerged in recent
years (Sengupta et al. 2019; Zhou et al. 2021; Duan
et al. 2022) influence SNN-specific attack methods (Kundu,
Pedram, and Beerel 2021; Liang et al. 2023). Early training
development is ANN-to-SNN conversion, which uses the
characteristics that ANN activation can simulate the firing
rate of SNN (Ding et al. 2021; Bu et al. 2022a,b; Hu
et al. 2023; Hao et al. 2023). Sharmin et at. conducted
conversion-based attacks by generating an ANN with
weights identical to an SNN and producing perturbation

with ReLU activation. Another popular progress in SNN
learning is backpropagation through time (BPTT) due to
its high scalability and performance (Neftci, Mostafa, and
Zenke 2019; Wu et al. 2018, 2021). BPTT overcomes the
non-differentiable spike activation problem using surrogate
functions. Liang et al. successfully constructed effective
attacks with BPTT (Liang et al. 2023). BPTT-based attacks
have proved to be more powerful than conversion-based
ones (Sharmin et al. 2019). Note that the training and attacks
for possible adversarial training of SNN in this paper are all
based on BPTT.

As for SNN robustness, some works start from the com-
putational components in SNN. El-Allami et al. proposed
to improve robustness by searching for neuron leaky pa-
rameters and inference time-steps (El-Allami et al. 2021).
Kundu et al. constructed a robust weight-tuning strategy by
training with noisy data (Kundu, Pedram, and Beerel 2021).
Ding et al. performed Lipschitz analysis on SNN and gave
a regularized training strategy (Ding et al. 2022). They also
introduced a gradient approximation called BPTR that can
also threaten SNN. Liang et al. analyzed the certified ro-
bustness of SNN and gave the corresponding training meth-
ods (Liang et al. 2022). These algorithms are improvements
based on simplified LIF neurons and do not take full ad-
vantage of biologically-inspired SNNs. Other works orig-
inate from an explicit and ubiquitous feature of the ner-
vous system: stochasticity. Dapello et al. explained that the
CNN model based on V1 stochasticity could resist per-
turbations (Dapello et al. 2020). In SNN, Poisson coding
encodes data using Bernoulli sampling. Sharmin et al. ar-
gued that this coding could bring perturbation immunity to
SNNs (Sharmin et al. 2020). Kim et al. discussed the ro-
bust superiority of Poisson coding over direct coding (Kim
et al. 2022). The current understanding of Poisson coding is
mainly experimental, lacking theoretical guidance. Besides,
we have little knowledge of the performance of SNNs under
adversarial attacks when stochasticity is imposed on the en-
tire network. Therefore, this work tries to introduce stochas-
ticity to SNNs and study the effect.

Preliminaries
Spiking Neural Networks
Neurons in SNN simplify the biological ones into three
key procedures: synaptic integration, first-order dynamics,
and neuronal firing. The most commonly used model in
the field of deep SNN is the leaky integrate-and-fire (LIF)
model (Deng et al. 2021; Kim and Panda 2021). The overall
modeling of the dynamics of neurons in layer l is presented
in Eqs. 1, 2, 3 (l = 1, 2, 3, · · · , L).

ml = W lsl−1 (t) (1)

ul (t) = λul (t− 1)⊙
(
1− sl (t− 1)

)
+ml (2)

sl (t) = H
(
ul (t)− Vth

)
. (3)

The injected electrical signal ml is the summation of spike
signals sl−1 from the preceding layer l−1 scaled by weights
W l. ⊙ performs the element-wise product. The membrane
potential ul(t) receives the injected signal and decays by the
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leaky factor of λ, which takes value in (0, 1]. The spike sig-
nal is produced by comparing the membrane potential with
Vth, which is accomplished by a Heaviside function H(·).
After the spikes are produced for some neurons, the mem-
brane potential of these neurons is set to 0.

Adversarial Attacks for SNN with Differential
Surrogates
With the help of surrogate functions, backpropagation is en-
abled in the network. The backpropagation of the gradient
is derived by unfolding the dynamics of LIF neurons and
applying surrogate functions to the non-differentiable Heav-
iside function. Please refer to supplementary materials for
detailed gradient formulations. Various surrogate functions
have been demonstrated to be effective in previous litera-
ture (Neftci, Mostafa, and Zenke 2019; Zheng et al. 2021).
In this paper, we adopt the rectangular function suggested
by (Zheng et al. 2021).

The gradient-based adversarial attack scheme will look
for a feasible attack perturbation δ in a lp-constrained neigh-
borhood B(x, ϵ) centered on the raw data x, which can be
expressed in Eq. 4.

δ = argmax
δ∈B(x,ϵ)

L (x+ δ, y) , (4)

where L is the task loss, y is the target label. The
maximization problem is typically performed via several
iterations with the support of gradient w.r.t. x, which
have evoked many works such as Projected Gradient De-
scent (PGD) (Madry et al. 2018), Fast Gradient Sign
Method (FGSM) (Goodfellow, Shlens, and Szegedy 2015),
Momentum-based Iterative Method (MIM) (Dong et al.
2018) and so on. For SNN, researchers noted that the com-
bination of gradient-based attacks and surrogate functions
had posed a significant security problem to SNN (Ding et al.
2022; Bu et al. 2023). To perform an attack on images, one
should first encode images into sequences ς (x) = s0 where
ς : RC×H×W → RT×C×H×W .T is the number of time-
steps. C,H,W are the number of channel, height, and width,
respectively. The most common coding method is to repli-
cate x in the temporal dimension (Kim et al. 2022), such
that the gradient w.r.t x can be worked out from the gradi-
ent w.r.t s0 as suggested in Eq. 5. Note that we simplify the
notation ∇xL (x, y) to ∇xL (x) in the following:

∂L
∂x

= ∇xL (x, y) =
1

T

∑
t

∂L
∂s0 (t)

. (5)

Local Linearization of Robust Training
With the condition that the perturbation δ is in the neighbor-
hood B(x, ϵ), unified modeling to the effect of perturbation
is to measure L (x+ δ) − L (x), which is the difference
of the loss value before and after perturbation. Theoretical
justifications typically process this difference with local lin-
earity techniques (Qin et al. 2019), which can be expressed
in Eq. 6:

|L (x+ δ)− L (x)| ⩽ |δ ⊙∇xL (x)|1 + g (δ,x) , (6)

where g (δ,x) is a residual item, |·|1 is l1 norm for vector. In
this case, one can consider the adversarial training methods
as minimizing the vanilla loss with a regularizer related to a
certain attack method, which is shown in Eq. 7.

minL (x+ δ) (7)
→ minL (x) + λ |δ ⊙∇xL (x)|1 + µg (δ,x) , (8)

where λ and µ are parameters. This motivates research on
exploiting regularization methods to enhance the robust-
ness (Kurakin, Goodfellow, and Bengio 2017; Ross and
Doshi-Velez 2018; Roth, Kilcher, and Hofmann 2020).

The situation for SNNs is slightly different from that
for ANNs. The perturbed x̃ = x + δ is encoded to
spike trains on which the perturbation is considered. Sup-
pose that the input can produce spike response for layer
l at time-step t through forward-propagation f1:l,t(·), then
sl (t) = f1:l,t (x), s̃l (t) = f1:l,t (x̃). The spike re-
sponse for all time-steps can be represented as sl =

concat
(
sl (1) , sl (2) , · · · , sl (T )

)
∈ {0, 1}T×Nl where Nl

is the number of neurons in layer l. Thus, when we consider
the absolute difference of task loss w.r.t. perturbed and clean
spike trains for layer l (∆Ll:L), similar to Eq. 6, we have:

∆Ll:L =
∣∣∣Ll:L

(
s̃l
)
− Ll:L

(
sl
)∣∣∣ (9)

⩽
T∑

t=1

∣∣∣ξl (t)⊙∇sLl:L

(
sl
)
(t)
∣∣∣
1
+ gl:L

(
ξl, sl

)
, (10)

where the perturbation for sl follows ξl (t) = s̃l (t)−sl (t),
Ll:L is the loss function from layer l to the last layer, gl:L is
the residual. As there are only items of 0 and 1 in sl(t) and
s̃l(t), items in ξl(t) can only take values in {−1, 0, 1}. We
denote dl:L

(
ξl, sl

)
=
∑T

t=1

∣∣∣ξl (t)⊙∇sLl:L

(
sl
)
(t)
∣∣∣
1

as
the item of first-order Taylor expansion of the adversarial
loss. We emphasize the essence of this item when the loss
function follows the local Lipschitz property such that the
residual item can be bounded by the first-order item mul-
tiplied by some positive value. In this case we can rewrite
Eq. 9 as:

∆Ll:L ⩽ Mdl:L

(
ξl, sl

)
, (11)

where M is a constant. By looking at dl:L

(
ξl, sl

)
,

we can gain some insights into improving the robust-
ness of SNNs. First, ∇sLl:L

(
sl
)
(t) can be expressed as

W l+1T∇uLl:L

(
ul+1

)
(t) according to Eqs. 1, 2. There-

fore, by constraining the norm of W l+1, the robustness can
be improved (Ding et al. 2022). However, the difficulty in
doing so lies in how to design an effective regularization to
be applied to the weights. Another straightforward and pos-
sible solution is to reduce the strength of the perturbation
ξl(t) by some means, which motivates this work. The ner-
vous system has many mechanisms to regulate the informa-
tive coding during signal transmission. The advantage of this
solution is that the proposed model can be applied to SNN
wherever spiking neurons or neural coding are used.
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Methods: Stochastic Gating for Robust SNN
In this section, we will introduce the proposed stochastic
gating model (StoG) for SNN and give relevant theoreti-
cal analysis and insights. Based on our theoretical analysis,
a corresponding training strategy with StoG models is pro-
posed.

Regulating Spike Trains with Stochastic Gating
The dynamics of LIF show that the spiking output from
the lower layer is directly integrated into the upper layer
input signal through weights (Eq. 1). However, in the ner-
vous system, the stochastic release of neurotransmitters and
the existence of voltage-gated ion channels composes a non-
deterministic signal channel. Neuronal signal transportation
relies on releases of synaptic vesicles and results in noisy
ionic currents (Faisal, Selen, and Wolpert 2008; White, Ru-
binstein, and Kay 2000). A series of complex models re-
garding the calcium, potassium, and sodium channel gating
have been proposed (Bicknell and Goodhill 2016; Lema and
Auerbach 2006; Peracchia 2004). We view the nondetermin-
istic signal channel as a gating process that can be modeled
as a continuous-time Markov process and happens before
spatial summation. To simplify the model, only two states
of the channel are considered: open or closed state. Suppose
κo;i,l and κc;i,l are values indicating the transition probabil-
ity of opening and closing, then the distribution of open and
closed states is given by:

P̄ (i, l) =

[
P̄o (i, l)
P̄c (i, l)

]
=

[
κc;i,l/ (κc;i,l + κo;i,l)
κo;i,l/ (κc;i,l + κo;i,l)

]
,

(12)
where P̄o (i, l) and P̄c (i, l) is the converged stationary prob-
ability of open and closed states. The derivation of Eq. 12
refers to the supplementary materials. When modeling a
two-state gating model, we perform a Monte Carlo simula-
tion on the stationary distribution. In the model, a param-
eter is assigned for each neuron, indicating the probabil-
ity of gate opening. We denote this probability as P̄

l
o ={

P̄o (i, l) |i = 1, 2, · · · , Nl

}
where Nl is the number of neu-

rons. With P̄
l
o, we can sample the gating vector from a

Bernoulli distribution for each discrete time-step:

Gl (t) ∼ Bernoulli
(
P̄

l
o

)
. (13)

The items in G take values in 0 and 1. And the neuronal
charge in Eq. 1 can be altered to Eq. 14:

ml = W l
(
Gl (t)⊙ sl−1 (t)

)
. (14)

Capability of Linearly Resisting Perturbations
Recall that by linearization techniques, we can obtain the
relationship of loss, perturbation, and gradients. After ap-
plying the perturbation, the spike signals are modulated by
the proposed model, causing the actual perturbation to be
indirectly modulated as well, expressed as:

sl (t)
gating−−−−→ s′l (t) = sl (t)⊙Gl+1 (t) , (15)

ξl (t)
gating−−−−→ ξ′l (t) = ξl (t)⊙Gl+1 (t) . (16)

To simplify the discussion, we only analyze the changes in
the adversarial loss when a gating model is added to the
layer l and suppose the loss function follows the local Lips-
chitz property. Then, the first-order expansion item dl:L and
∆Ll:L can be rewritten as:

dl:L

(
ξl, sl

)
gating−−−−→ dl:L

(
ξl, sl;Gl+1

)
(17)

=
T∑

t=1

∣∣∣ξl (t)⊙Gl+1 (t)⊙∇s′Ll:L

(
s′l
)
(t)
∣∣∣
1
, (18)

where s′ replaces s in the original loss function.
From Eq. 11, we can know that ∆Ll:L is affected by the

constraint of dl:L
(
ξl, sl;Gl+1

)
. And dl:L

(
ξl, sl;Gl+1

)
is

controlled by Gl+1 (Eq. 17). Theorem 1 gives the relation-
ship of dl:L

(
ξl, sl;Gl+1

)
and Gl+1 such that by adjusting

P̄
l+1
o , ∆Ll:L can be constrained.

Theorem 1. For neurons in layer l, suppose that sl is
the spike response at time-step t (t = 1, 2, 3, · · · , T ,
l = 1, 2, 3, · · · , L), ξl(t) is the vector of perturbations

at time-step t, Gl+1 ∼ Bernoulli
(
P̄

l+1
o

)
is the gat-

ing vector. P̄
l+1
o is the probability of gate opening in

which items take values at [0, 1]. dl:L

(
ξl, sl;Gl+1

)
=∑T

t=1

∣∣∣ξl (t)⊙Gl+1 (t)⊙∇s′Ll:L

(
s′l
)
(t)
∣∣∣
1
. Then, it sat-

isfies that:

E
G∼B(P̄o)

(
dl:L

(
ξl, sl;Gl+1

))
⩽ ΩT

Nl∑
i=1

P̄
l+1
o , (19)

where Ω = max
s′,t

√∑Nl

i=1 ∇s′Ll:L (s′l) (t)
2.

Through Theorem 1, we can realize that adding a gating
model to SNN and adjusting the parameter P̄

l+1
o , we can

expect to achieve linear constraints for adversarial loss, for-
mally expressed as:

E
G∼B(P̄o)

(∆Ll:L) ⩽ M E
G∼B(P̄o)

(
dl:L

(
ξl, sl;Gl+1

))
(20)

⩽ MΩT

Nl∑
i=1

P̄
l+1
o . (21)

When reducing the value of sum
(
P̄

l+1
o

)
, the robustness of

the model is expected to improve. A special case is when
sum

(
P̄

l+1
o

)
→ 0, we have E

G∼B(P̄o)
(∆Ll:L) → 0. In this

case, no matter what perturbation is applied, the value of the
adversarial loss will not be modified. Note that sum

(
P̄

l+1
o

)
should not be too small, as this will also make the probabil-
ity of input data passing gating low, making the signal diffi-
cult to be transmitted. Therefore, to improve the robustness
of SNNs, in addition to adding stochastic gating before the
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synaptic transmission, an adaptive mechanism for acquiring
gate opening probabilities is also required, which will be de-
tailed in a joint training scheme.

Impact on Local Lipschitz Property of Neurons
We have considered the impact of stochastic gating from a
global perspective through the difference between perturbed
and clean loss. Another perspective is to consider the lo-
cal properties of the forwarding process. Researchers have
deduced the Lipschitz property of neural networks to illus-
trate the problem of error amplification in the forward pro-
cess (Cisse et al. 2017; Ding et al. 2022; Lin, Gan, and Han
2019). Here, we can also analyze the influence of channel
gating on the forward process. First, we select the metric of
the two spike sequences as D(sl, s̃l) = ∥sl − s̃l∥22, where
∥ · ∥22 in D is calculated on the spatiotemporal dimensions.
Theorem 2 shows that in a feed-forward SNN, neurons with
StoG models can alleviate the error amplification in layer-
by-layer forwarding communication.
Theorem 2. For neurons in layer l, suppose that sl and
s̃l is the clean and perturbed spike response at time-step
t (t = 1, 2, 3, · · · , T , l = 1, 2, 3, · · · , L). The metric of
the two spike sequences is defined as D(sl, s̃l) = ∥sl −
s̃l∥22. Nl is the number of neurons in layer l. Gl+1 ∼
Bernoulli

(
P̄

l+1
o

)
is the gating vector for layer l. P̄ l+1

o is
the probability of gate opening in which items take values at
[0, 1]. Vth is the threshold of neurons. Then, it satisfies that:

E
G∼B(P̄o)

[
D(sL, s̃L)

]
(22)

⩽ E
G∼B(P̄o)

[
D(sl, s̃l)

]
·
L−1∏
j=l

Tρj+1

V 2
th

Nj∑
i=1

P̄
j+1
o

+ C,

(23)

where ρl is a Lipschitz constant induced by weights for layer
l, and C is a constant.

From Theorem 2, we can find that as the signal propa-
gates layer by layer, the influence of the perturbation is not
only controlled by the weights but also affected by P̄

l
o, and

the two effects with no interference to each other. In other
words, stochastic gating can be simultaneously applied to
SNN with weight Lipschitz constraints.

Poisson Coding as a Special Form of Stochastic
Gating
From Eq. 15, s becomes s′ after the sampling of the
Bernoulli distribution of open probability. Interestingly,
Poisson coding commonly used in SNN is also sampled
by Bernoulli distribution (Diehl et al. 2015; Sharmin et al.
2020). Compared with Eq. 15, the process of Poisson cod-
ing can be described as:

Poisson coding : s′0 (t) = 1⊙X,X ∼ Bernoulli (x) ,
(24)

where X is the encoding of the input image x. s′0 repre-
sents the output of the final Poisson coding. Poisson coding

is equivalent to using x as the probability of gate opening
P̄

1
o in the input layer. In this case, the original s0 is an input

that is always 1.
Prior to this work, Poisson coding was considered to be

able to bring inherent robustness to SNNs (Kim et al. 2022;
Sharmin et al. 2019, 2020), but it is only explained exper-
imentally. Our work shows that the robustness of Poisson
coding also has a theoretical basis from Theorems 1 and
2 by constructing the equivalence between Poisson coding
and StoG model. The adversarial loss can be affected by the
mean value of input data x.

Joint Training with Stochastic Gating
Effectively training SNNs with StoG involves two issues,
one is how to train the parameters in StoG, and the other
is how to penalize the StoG parameters for the purpose of
achieving robustness.

For the first issue, we use the Gumbel-Max reparam-
eterization trick presented in (Maddison, Mnih, and Teh
2017), and set the temperature to 0.5. When forwarding each
layer of StoG model, we sample U ∼ Uniform (0, 1) such
that G = H

(
log
(
P̄ o/

(
1− P̄ o

))
+ logU − log (1−U)

)
where H is the Heaviside function. The gradient of P̄ o is
induced by the corresponding binary concrete random vari-
able. Note that P̄ o cannot be too small, thus, we do not allow
P̄ o to be less than 0.1 during training.

For the second issue, we consider that the training loss
function is given by three parts, the task loss followed by
two regularizers, which are respectively responsible for pun-
ishing the weight W =

{
W i, i = 1, 2, 3, · · · , L− 1

}
and

StoG parameters P̄ o =
{
P̄

i
o, i = 1, 2, 3, · · · , L− 1

}
. The

overall loss can be expressed as:

L = Ltask

(
x;W , P̄ o

)
+ γRegP

(
P̄ o

)
+ βRegW (W ) .

(25)
where RegP is the penalty of P̄ o, and γ is its strength.
RegW is the penalty for the weight, and β is its strength.
In this work, we apply l2 penalty to P̄ o.

Experiments
Experimental Setup
To verify the effectiveness of our method, we conduct exper-
iments on classification tasks on the CIFAR-10 and CIFAR-
100 datasets (Krizhevsky, Hinton et al. 2009). The SNN ar-
chitecture used is VGG-11 (Simonyan and Zisserman 2015)
and Wide-ResNet-16-4 (Zagoruyko and Komodakis 2016)
(WRN-16-4 for short). The SNN accepts directly encoded
input, and the inference time-step is 8. The experiments are
conducted on GPU devices of the NVIDIA RTX 3090 with
PyTorch (v1.12.1).

We adopted three training strategies to determine the ef-
fectiveness of the method. The first is a vanilla training
scheme (BPTT), directly using raw images for training. The
second is an adversarial training strategy, which uses sam-
ples from white-box (WB) FGSM attacks (ϵ = 2/255) for
training (Goodfellow, Shlens, and Szegedy 2015) (abbrevi-
ated as AT). The third is to add a Lipschitz penalty proposed
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CIFAR-10, VGG-11
BPTT Attack Clean FGSM-UT PGD-l∞-UT FGSM-RT PGD-l∞-RT

Vanilla 93.05 12.63/86.44 0.04/99.96 28.82/71.75 12.89/86.87
Vanilla+StoG 91.64 16.22/82.32 0.28/99.69 33.38/66.40 16.97/82.67

AT 91.13 41.74/54.20 23.37/74.36 60.37/37.47 54.54/41.78
AT+StoG 90.13 45.75/49.29 27.74/69.26 65.54/30.78 59.47/36.73

RAT 90.39 48.46/46.39 28.08/68.94 63.69/33.60 62.24/33.08
RAT+StoG 88.02 55.98/36.28 39.58/54.86 70.63/23.98 68.52/25.35

CIFAR-100, VGG-11
Clean FGSM-UT PGD-l∞-UT FGSM-RT PGD-l∞-RT

Vanilla 73.38 5.30/92.82 0.04/99.95 11.96/88.16 3.59/95.67
Vanilla+StoG 70.44 8.27/88.34 0.49/99.31 15.93/81.54 8.57/89.17

AT 67.29 20.58/69.42 11.41/83.04 35.20/54.38 40.68/43.48
AT+StoG 66.37 24.45/63.03 14.42/78.15 40.00/45.51 41.50/42.43

RAT 67.41 29.23/56.65 16.52/75.49 47.51/36.14 51.59/28.54
RAT+StoG 62.26 33.40/46.55 23.15/62.99 55.95/18.10 53.40/21.45

Table 1: Performance under attacks. Items in the table follow the format of “robust accuracy/ASR”. “UT” and “RT” denote
“Untargeted” and “Random Targeted” attacks, respectively.

EOT-10-
AutoPGD

CIFAR-10
VGG-11

CIFAR-10
WRN-16-4

CIFAR-100
VGG-11

CIFAR-100
WRN-16-4

Vanilla 2.11/6.07 0.09/0.67 1.04/2.55 0.25/0.75
Vanilla+StoG 11.58/18.70 3.35/4.79 9.20/11.10 6.19/7.69

AT 51.33/57.09 56.40/62.73 26.18/30.95 31.34/37.26
AT+StoG 62.14/65.99 62.71/67.34 38.33/40.77 36.60/40.75

RAT 55.88/63.06 59.73/69.06 33.41/41.41 34.73/47.74
RAT+StoG 60.21/65.15 59.61/66.29 39.13/46.03 34.60/41.87

Table 2: Performance of EOT-AutoPGD attacks for different SNN architectures. Items in the table follow the format of “BPTT-
based/BPTR-based robust accuracy”.

in (Ding et al. 2022) to the weights under the adversarial
training setting (abbreviated as RAT). For all three strate-
gies, we test their robustness with and without the proposed
model. To punish P̄ o, we set γ = 5 × 10−6 by default. We
train our model with white-box FGSM adversarial examples
on each mini-batch of images. The perturbation boundary is
2/255 (Kundu, Pedram, and Beerel 2021). See our code for
the rest of the training setups.

Robustness verification employs a comprehensive ap-
proach. The basic attack method is chosen between the
fast gradient sign method (FGSM) (Goodfellow, Shlens,
and Szegedy 2015) and project gradient descent (Madry
et al. 2018), which are the most common in SNN ro-
bustness verification. We implement l2 and l∞ versions of
PGD attacks, respectively. We also extend our analyses with
the AutoPGD attack, which can produce optimal perturba-
tion (Croce and Hein 2020) and augment the gradients for at-
tack with expectation-over-transformation (EOT). The EOT
step is set to 10 by default, as recommenced in the litera-
ture (Athalye et al. 2018).

We consider several aspects of attacks: untargeted and tar-
geted settings; black-box (BB) and white-box settings; and
BPTT- and BPTR-based attack settings (suggested by Ding
et al.). We use the BB strategy from literature (Kundu, Pe-
dram, and Beerel 2021): The attacker does not know the de-

fense model’s parameters. The attacker trains an SNN model
with the same dataset and architecture as the defense model,
using BPTT with a new random seed. The black-box attacks
use BPTT-based attacks.

We use attack classification accuracy (robust accuracy)
and attack success rate (ASR) as metrics of robustness. The
attack success rate here refers to the proportion of misclas-
sifications in the originally correctly classified data. The
smaller the ASR, the better the robustness.

BPTT Attack Untargeted Targeted
Vanilla 2.11/97.73 1.10/98.82

EOT-1 Vanilla+StoG 19.33/80.24 22.36/77.11
EOT-10 Vanilla+StoG 11.56/88.54 14.63/85.48

Table 3: Performance of AutoPGD attacks with different
EOT steps. Items in the table follow the format of “robust
accuracy/ASR”.

Performance
Table 1 shows the robustness of CIFAR-10 and CIFAR-100
under FGSM and PGD-l∞ attacks. For experimental fair-
ness, the models shown in the table are trained and reasoned
with the same random seeds. The intensity of the FGSM
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Figure 2: Performance against EOT-PGD attacks with in-
creasing intensity and steps.

attack is 8/255. For the PGD-l∞ attack, the overall inten-
sity, step number, and step size are fixed to 8/255, 7, and
0.01, respectively. The results show that for the three train-
ing strategies, our proposed StoG can reduce the ASR and
improve robust accuracy. The robustness performance of the
proposed model is similar under untargeted and random-
targeted attacks. This verifies that our method can work with
and without adversarial training.

Due to randomness in our proposed method, we further
use EOT-AutoPGD attacks with 10 EOT steps, 10 PGD
steps, and an intensity of 4/255. We report our results in
Table 2, which records the robustness of different architec-
tures under untargeted EOT-AutoPGD attacks. The reported
accuracies are either from BPTT- or BPTR-based attacks.
In the table, the robust accuracy of most of the SNNs that
added the StoG model has increased. This implies that StoG
modules have the potential to increase robustness for vari-
ous SNN architectures. We also test the effect of EOT steps
and list the results in Table 3. Compared with attacks with
one EOT step, EOT-10-AutoPGD poses a stronger threat to
vanilla+StoG models. However, the performances are still
higher than in models without StoG modules.

We observe that no clear gradient obfuscation is invoked
by adding stochastic gating. In previous works (Kundu, Pe-
dram, and Beerel 2021; Ding et al. 2022) showed no obvious
obfuscation with BPTT- or BPTR-based attacks on SNNs.
Here, we use randomly initialized PGD attacks with 10 EOT
steps to check for gradient obfuscation. We apply perturba-
tions to vanilla and vanilla+StoG VGG-11 models trained
on CIFAR-10, respectively. We display the perturbation re-
sults by increasing PGD intensity and steps in Fig. 2. Our re-
sults show that model robustness decreases with more PGD
steps and reaches an asymptote after 40 steps. Also, higher
attack intensities can fail the SNN models for both BPTT-
and BPTR-based attacks.

Finally, we test how the accuracy changes when the mod-
els encounter l2 and BB attacks. We use EOT-PGD as an at-
tack model and change the attack intensity. The PGD step
size α satisfies α = 2.5ϵ/K where K is the number of
PGD steps. The results of BPTT- and BPTR-based attacks
are shown in Fig. 3. For VGG and WRN architectures, they
both show similar trends in robustness. For CIFAR-10 VGG-
11 and ϵ = 8/255, the BB BPTR-based robust accuracy
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Figure 3: Performance under EOT-PGD attacks with l2 and
black-box settings.
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Figure 4: Effect of stochastic gating models on WRN-16-4
architectures.

for vanilla+StoG SNN is higher than that of vanilla SNN by
10.75%.

Effect of Stochastic Gating
The StoG model brings robustness by filtering spikes, thus
potentially having low power consumption. We visualize
the mean of P̄ o, clean and robust accuracy (attacked by
FGSM(ϵ = 2/255)), and estimate of energy consumption
for different γ settings ([0, 1×10−5]). We estimate the SNN
energy consumption by the number of Spike Operations
(SOP) suggested in (Kundu et al. 2021). Compared to the
improvement in robust accuracy, γ has little effect on clean
accuracy. At the same time, a larger γ results in a smaller P̄ o

and fewer SOP. We display results for WRN-16-4 in Fig. 4.
For VGG-11, γ = 1 × 10−5 reduces the average opening
probability to 0.52 and the SOP by 1.428×.
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Conclusions and Discussions
Conclusion: To improve SNN robustness, we propose a sim-
ple yet effective method to simulate the stochastic gating
process and filter the perturbed spike sequence. Theoretical
analyses show that our method can be regarded as adding
regularization to SNN training. At the same time, our theo-
rems can be used to explain why Poisson coding can bring
natural robustness to SNN. We hope that this method will be
used in SNN applications with low energy budgets and high
robustness.
Limitation: The limitation of the designed method is that
it sacrifices a little accuracy in order to enhance robust-
ness. When there is low opening probabilities, it is conceiv-
able that almost all signals are filtered out, which makes
it difficult to improve the model’s performance. It is im-
portant to find a method that is more adaptable, allowing
for the joint optimization of accuracy, robustness, and per-
formance. Also, the SNN-specific gradient attacks are not
very well studied, which points out another future direction.
Robustness-enhanced methods evaluated using large EOT
steps should be investigated.
Broader Impact: In neuroscience, the stochastic channel is
commonly seen as a cause of neural noise. However, the dy-
namics of neurons can counteract this noise. Our research
indicates that channel gating, despite introducing noise to
the signal, can actually enhance the resilience of complex
cognitive processes like recognition and decision-making.
By employing SNNs as research tools, we can contribute
valuable insights to ongoing discussions in neuroscience re-
garding robustness.

Supplementary Material
Proofs
Proof for Theorem 1 is given as follows.

Proof. By observing the equation of dl:L, the l1 norm can
be expressed as multiplying two vectors and taking their ab-
solute value, and can be rewritten using Cauchy’s inequality.

dl:L

(
ξl, sl,Gl+1

)
=

T∑
t=1

∣∣∣ξl (t)⊙Gl+1 (t)⊙∇s′Ll:L

(
s′l
)
(t)
∣∣∣
1
,

⩽
T∑

t=1

√√√√ Nl∑
i=1

ξli (t)
2
Gl+1

i (t)
2

√√√√ Nl∑
i=1

∇s′Ll:L (s′l) (t)
2
,

=
T∑

t=1

√√√√ Nl∑
i=1

∣∣∣ξli (t)∣∣∣Gl+1
i (t)

√√√√ Nl∑
i=1

∇s′Ll:L (s′l) (t)
2
.

(26)

In the above formula, Gl+1 (t)
2 can replace Gl+1 (t) as the

items in Gl+1 (t) can only take values at 0 or 1.
∣∣∣ξli (t)∣∣∣ can

replace ξli (t)
2 as the items in ξli (t) can only take values at

-1 or 1.

Treat the second square root term in Eq. 26 on the right

as a whole, that is,
√∑Nl

i=1 ∇s′Ll:L (s′l) (t)
2. In this term,

there are two variables. One is s′l, which is the output of
layer l after gating, s′l ∈ {0, 1}T×Nl . The second is the
time-step t, whose value is between 1 and T. Thus, we con-
sider the term bounded, and this upper bound must be greater
than 0. Here we denote the upper bound as Ω, which can be
formulated as:

Ω = max
s′,t

√√√√ Nl∑
i=1

∇s′Ll:L (s′l) (t)
2
. (27)

In this case, we have

dl:L

(
ξl, sl,Gl+1

)
⩽ Ω

T∑
t=1

√√√√ Nl∑
i=1

∣∣∣ξli (t)∣∣∣Gl+1
i (t). (28)

Considering that
∣∣∣ξli (t)∣∣∣ is binary. This means that any se-

quence multiplied by
∣∣∣ξli (t)∣∣∣ and then summed will not be

greater than the direct addition of the sequence. Then, Eq. 28
can continue to be transformed into:

dl:L

(
ξl, sl,Gl+1

)
⩽ Ω

T∑
t=1

√√√√ Nl∑
i=1

Gl+1
i (t). (29)

Take the expectation of the Bernoulli distribution on both
sides of Eq. 29, it gives:

E
(
dl:L

(
ξl, sl,Gl+1

))
⩽ Ω · E

 T∑
t=1

√√√√ Nl∑
i=1

Gl+1
i (t)

 .

(30)
Apparently,

E


√√√√ Nl∑

i=1

Gl+1
i (t)

 < E

(
Nl∑
i=1

Gl+1
i (t)

)
. (31)

Thus,

E
(
dl:L

(
ξl, sl,Gl+1

))
⩽ Ω · E

 T∑
t=1

√√√√ Nl∑
i=1

Gl+1
i (t)


⩽ Ω · E

(
T∑

t=1

Nl∑
i=1

Gl+1
i (t)

)
= ΩT

Nl∑
i=1

P̄
l+1
o . (32)

Proof for Theorem 2 is given as follows.

Proof. Due to the addition of the StoG model, the spike in-
put is modulated to:

s′l (t) = sl (t)⊙Gl+1 (t) . (33)

We assume that Gl+1 takes the same matrix when passing
the noisy spike response as it did without noise. According
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to the implication from previous work (Lin, Gan, and Han
2019; Ding et al. 2022), the layer-by-layer error amplifica-
tion of SNN can be characterized as:

D(sl+1, s̃l+1) ⩽
ρl+1

V 2
th

D(sl ⊙Gl+1, s̃l ⊙Gl+1) + Γ l+1.

(34)
In Eq. 34, ρl+1 is the Lipschitz constant for layer l + 1. Its
value only relates to the weights in layer l+1, and satisfies:

ρl+1 ⩽ argmax
s∈{−1,0,1}Nl

∥∥∥W l+1s
∥∥∥2
2
/ ∥s∥22 . (35)

To obtain the relation between D(sl+1, s̃l+1) and D(sl, s̃l),
we take a deeper look at D(sl⊙Gl+1, s̃l⊙Gl+1). According
to the inequality of norms, we have:

D(sl ⊙Gl+1, s̃l ⊙Gl+1) =
∥∥∥(sl − s̃l

)
⊙Gl+1

∥∥∥2
2

⩽
∥∥∥(sl − s̃l

)∥∥∥2
2

∥∥∥Gl+1
∥∥∥2
2
= D(sl, s̃l)

∥∥∥Gl+1
∥∥∥2
2
. (36)

Since each item in the matrix Gl+1 can only take a value of

0, 1,
∥∥∥Gl+1

∥∥∥2
2

is actually calculating:

∥∥∥Gl+1
∥∥∥2
2
=

T∑
t=1

Nl∑
i=1

Gl+1
i (t). (37)

Substituting Eq. 36 and Eq. 37 into Eq. 34, and taking ex-
pectations on both sides of the formula, we get:

E
[
D(sl+1, s̃l+1)

]
≤ ρl+1

V 2
th

E
[
D(sl, s̃l)

]
E

(
T∑

t=1

Nl∑
i=1

Gl+1
i (t)

)
+ Γ l+1

=
Tρl+1

V 2
th

E
[
D(sl, s̃l)

] Nl∑
i=1

P̄
l+1
o + Γ l+1. (38)

We can simplify the above formula to:

E
[
D(sl+1, s̃l+1)

]
≤ AlE

[
D(sl, s̃l)

]
+Bl, (39)

where Al = Tρl+1

V 2
th

∑Nl

i=1 P̄
l+1
o , Bl = Γ l+1. Thus,

E
[
D(sl+2, s̃l+2)

]
⩽ Al+1E

[
D(sl+1, s̃l+1)

]
+Bl+1

= Al+1 ·Al · E
[
D(sl, s̃l)

]
+Al+1Bl +Bl+1. (40)

By analogy, we have:

E
[
D(sL, s̃L)

]
⩽ E

[
D(sl, s̃l)

]
·
L−1∏
j=l

Aj + C. (41)

where C is a constant related to Al+1, · · · , AL−1, Bl, · · · ,
BL−1.

The derivation of Eq. 12 is given as follows.
Ki,l is the transition probability matrix between open and

closed states. P (t; i, l) is the vector of the probability of
open and closed states for neuron i in layer l.

P (t+∆t; i, l) = Ki,lP (t; i, l) , (42)

Ki,l =

[
1− κo;i,l∆t κc;i,l∆t
κo;i,l∆t 1− κc;i,l∆t

]
(43)

The state transition matrix reveals the Markov chain’s ir-
reducibility, allowing access to another state. The Renewal
Theorem (Alsmeyer 1994) can be used to calculate station-
ary probabilities:

P̄ (i, l) =
[
P̄o (i, l) , P̄c (i, l)

]T
, (44)

P̄ (i, l) = Ki,lP̄ (i, l) , (45)

P̄o (i, l) + P̄c (i, l) = 1. (46)

Thus, we can obtain:

P̄o (i, l) = κc;i,l/ (κc;i,l + κo;i,l) , (47)

P̄c (i, l) = κo;i,l/ (κc;i,l + κo;i,l) . (48)

Adversarial Attacks for SNN with Differential
Surrogates
The network’s backpropagation of gradient is achieved by
unfolding LIF neuron dynamics and applying surrogate
functions to the non-differentiable Heaviside function, as de-
scribed in Eqs. 1, 2, and 3 in the main text.

∂L
∂W l

ij

=
∂L

∂ul
i (t)

sl−1
j (t) , (49)

∂L
∂ul

i (t)
=

∂L
∂sli (t)

h
(
ul
i (t)

)
+

∂L
∂ul

i (t+ 1)

∂ul
i (t+ 1)

∂ul
i (t)

.

(50)

where L is the task loss, W l
ij is the synaptic weight that con-

nects neuron i in layer l and neuron j in layer l−1. h
(
ul
i (t)

)
is the surrogate gradient of the Heaviside function, which is
used to substitute ∂sl

i(t)

∂ul
i(t)

to overcome the non-differentiable
problem.
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