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Abstract

Text-based Person Search (TBPS) aims to retrieve the person
images using natural language descriptions. Recently, Con-
trastive Language Image Pretraining (CLIP), a universal large
cross-modal vision-language pre-training model, has remark-
ably performed over various cross-modal downstream tasks
due to its powerful cross-modal semantic learning capacity.
TPBS, as a fine-grained cross-modal retrieval task, is also
facing the rise of research on the CLIP-based TBPS. In order
to explore the potential of the visual-language pre-training
model for downstream TBPS tasks, this paper makes the first
attempt to conduct a comprehensive empirical study of CLIP
for TBPS and thus contribute a straightforward, incremen-
tal, yet strong TBPS-CLIP baseline to the TBPS commu-
nity. We revisit critical design considerations under CLIP,
including data augmentation and loss function. The model,
with the aforementioned designs and practical training tricks,
can attain satisfactory performance without any sophisti-
cated modules. Also, we conduct the probing experiments of
TBPS-CLIP in model generalization and model compression,
demonstrating the effectiveness of TBPS-CLIP from various
aspects. This work is expected to provide empirical insights
and highlight future CLIP-based TBPS research.The code is
available at https://github.com/Flame-Chasers/TBPS-CLIP.

1 Introduction
Text-based Person Search (TBPS) retrieves the person im-
ages from a large-scale image database given a textual de-
scription. It is gradually gaining extensive attention (Jiang
and Ye 2023; Bai et al. 2023a) due to its potential applica-
tions in searching for suspects, locating lost children, etc. As
a fine-grained retrieval task, it shows challenges in achieving
effective cross-modal alignment and efficient cross-modal
retrieval, which are crucial for practical applications.

In reply to these challenges, many methods (Zhang and
Lu 2018; Ding et al. 2021) focus on projecting representa-
tions extracted from each modality into one shared space.
However, most of them only utilize unimodal pre-trained
models as the backbones and ignore the powerful Vision-
Language Pre-training (VLP) models equipped with an ad-
equate understanding of cross-modal alignment. Recently,
VLP methods (Lu et al. 2019; Li et al. 2022) have verified
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Figure 1: Overview of the empirical study on CLIP.

excellent performance on various cross-modal downstream
tasks. Consequently, it has become the dominant paradigm
for solving these tasks. Considering that the research under
VLP for TBPS (Bai et al. 2023b,a) is now in its infancy, this
paper aims to fully exploit the potential of VLP for TBPS.

CLIP (Radford et al. 2021) stands out among VLP meth-
ods and has verified impressive performance on various
downstream tasks (Wang et al. 2022b,a). Notably, CLIP of-
fers efficient retrieval capabilities by encoding each modal-
ity independently. These inspire some researchers to explore
CLIP-based TBPS methods (Wang et al. 2023; Jiang and Ye
2023). These methods focus on combining complex mod-
ules into CLIP to improve performance, lacking the full
exploitation of CLIP’s pre-trained knowledge and power-
ful cross-modal semantic learning capacity. This paper re-
focuses on the essence of CLIP and explores its fine-tuning
potential for TBPS. We conduct a thorough empirical study
of CLIP for TBPS from two perspectives:

1) Data augmentation. It is a prevalent and effective tech-
nique to increase the generalization of models by learning
augmentation-invariant representations between the original
input and the augmented version. Until now, none of the
TBPS methods have deeply and systematically explored this
technique. Instead, they typically employ a simple utiliza-
tion of random horizontal flip for the image while not ap-
plying any augmentation to the text (Wang et al. 2020; Chen
et al. 2022; Ding et al. 2021). In this study, we comprehen-
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sively evaluate various data augmentation strategies, thereby
deriving a powerful data augmentation strategy for TBPS.

2) Loss function. Designing rational and practical loss
functions is critical to improving performance and has been
an increasingly active research direction in TBPS commu-
nity (Zhang and Lu 2018; Bai et al. 2023a). We take CLIP as
a hotbed and conduct a series of probing studies to analyze
the effectiveness of various loss functions in TBPS. Unlike
the loss functions in existing TBPS methods that are well-
designed mainly from exploring the TBPS task and belong
to the task-oriented loss functions, the loss functions probed
in this study are primarily inspired by VLP communities and
are pretty generic to various cross-modal tasks.

These empirical studies above, combined with other valu-
able tricks detailed in later sections, enable us to develop
a strong TBPS-CLIP baseline. Unlike other methods of de-
signing sophisticated modules, TBPS-CLIP attains compet-
itive performance under a very lightweight and low-cost ar-
chitecture. It blends only a few common training tricks, data
augmentations, and loss functions into CLIP. To thoroughly
verify the effectiveness and generalization of TBPS-CLIP,
we further develop some valuable probing experiments.

1) Model generalization. For one thing, CLIP has become
a baseline of various tasks due to its effectiveness and sim-
plicity, likewise, TBPS-CLIP is targeted as the baseline of
TBPS, for which its effectiveness as the baseline is experi-
mentally proved. For another thing, beyond only employing
CLIP for the supervised TBPS, we provide a preliminary
exploration of the few-shot TBPS under CLIP and the supe-
riority of TBPS-CLIP in the few-shot setting is also proved.

2) Model compression. We provide insights into the inter-
nal properties of TBPS-CLIP by investigating the contribu-
tion of each module to the final retrieval performance. These
insights offer the guidance for compression of TBPS-CLIP.

In short, this paper contributes a strong TBPS-CLIP
baseline to the TBPS community. TBPS-CLIP offers high-
performance, lightweight, cost-effective architecture and
ease of use. We also show its advantage in model general-
ization and model compression. All these manifest the ap-
plicability of TBPS-CLIP in both academia and industry.

2 Related Work
2.1 Text-based Person Search
TBPS is closely connected with person re-identification (Ye
et al. 2021) and image-text retrieval (Cao et al. 2022). Con-
ventional TBPS methods mainly adopt unimodal pre-trained
models as backbones (Wang et al. 2020; Wu et al. 2021;
Li et al. 2017a; Li, Cao, and Zhang 2022). These methods
typically use ResNet-50 or ViT as the image encoder and
LSTM or BERT as the text encoder. Some works (Zhang
and Lu 2018; Sarafianos, Xu, and Kakadiaris 2019; Li et al.
2017a; Li, Cao, and Zhang 2022) design specific losses to
learn discriminative representations based on the unimodal
backbones. Some extract fine-grained information from im-
ages and text to align cross-modal fine-grained features. For
instance, partitioning images into horizontal stripes is a tech-
nique used to obtain fine-grained image information (Chen
et al. 2022; Zheng et al. 2020; Ding et al. 2021), while fine-

grained text information can be obtained by parsing a set of
noun phrases using the NLTK Toolbox (Wang et al. 2020).

Witnessing VLP’s great success on cross-modal tasks in
recent years, researchers (Han et al. 2021; Yan et al. 2022;
Wang et al. 2023; Jiang and Ye 2023; Bai et al. 2023a) have
begun pushing the frontier of TBPS solutions with VLP. Han
et al. (Han et al. 2021) enhance text feature encoding by us-
ing CLIP (Radford et al. 2021) as the backbone and merg-
ing a Bi-GRU after its text encoder; CFine (Yan et al. 2022)
leverages CLIP image encoder to enhance cross-modal cor-
respondence, replacing the text encoder with BERT to pre-
vent distortion of intra-modal information; TP-TPS (Wang
et al. 2023) probes textual capabilities of CLIP by align-
ing images with multi-integrity descriptions and attribute
prompts; IRRA (Jiang and Ye 2023) designs an implicit re-
lation reasoning module above CLIP to align fine-grained
information across modalities; RaSa (Bai et al. 2023a) de-
velops two novel losses under ALBEF (Li et al. 2021a); Bai
et al. (Bai et al. 2023b) leverage VLP knowledge to solve
TBPS without parallel image-text data. Unlike these meth-
ods that exploit specific modules beyond VLP to improve
performance, this paper aims to maximize the potential of
CLIP itself for TBPS without relying on additional modules,
resulting in TBPS-CLIP with competitive performance.

2.2 Vision-Language Pre-training
In recent years, VLP (Lu et al. 2019; Li et al. 2022) has
emerged as a dominant solution for various cross-modal
tasks. VLP methods leverage large-scale pre-training on
abundant image-text pairs, enabling the models to learn ro-
bust cross-modal representations that can be further fine-
tuned for different downstream tasks. Among various VLP
methods, CLIP (Radford et al. 2021) stands out for its excel-
lent performance (Wang et al. 2022b,a). Furthermore, sev-
eral works are carried out to enhance the data efficiency
of CLIP. For example, SLIP (Mu et al. 2022) introduces a
self-supervised learning loss alongside the contrastive loss
in CLIP; FILIP (Yao et al. 2021) employs a token-wise
maximum similarity between visual and textual tokens to
guide the contrastive loss in CLIP; DeCLIP (Li et al. 2021b)
exploits multiple supervisions, including self-supervision,
multi-view supervision and nearest-neighbor supervision, to
replace the single contrastive supervision. In addition, some
works concentrate on exploring CLIP’s few-shot capabili-
ties. For example, CoOp (Zhou et al. 2022) utilizes learnable
vectors as the prompts and achieves significant performance
gain in a few-shot regime, and CLIP-Adapter (Gao et al.
2021) appends the learnable module to CLIP and achieves
decent few-shot results by only fine-tuning this module.

3 Empirical Studies
Grounded on CLIP, we first introduce some practical train-
ing tricks to strengthen the CLIP baseline in Section 3.1, and
then elaborate data augmentations and loss functions for the
empirical study in Section 3.2 and Section 3.3, respectively.
Model generalization is examined in Section 3.4, and model
compression is discussed in Section 3.5 Additional details
on the following contents can be found in the Appendix. The
overview of the model is illustrated in Figure 1.
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3.1 Training Tricks
We investigate four common training tricks around CLIP.
They are: global gradients back-propagation, dropout, lock-
ing bottom layers and soft label.

3.2 Data Augmentations
Image Augmentation. We classify image augmentations
into two groups: removal and alteration. The first group
has operations that remove some information from the im-
age, including RandomResizedCrop, RandomErasing, Ran-
domGrayscale and GaussianBlur. The second alters the
color or orientation of the image with keeping the main con-
tent, including ColorJitter, RandomHorizontalFlip, Ran-
domVerticalFlip and RandomRotation.

Using multiple augmentations simultaneously can intro-
duce significant distortion to the original image, leading to a
decline in performance. Given that, we explore another set of
augmentations. (1) AutoAugment (Cubuk et al. 2018) auto-
matically searches for the best augmentation policy using re-
inforcement learning. We use its default settings on PyTorch
in the experiment. (2) RandAugment (Cubuk et al. 2020) re-
moves the searching stage in AutoAugment and instead ran-
domly selects from a pool of augmentation operations. It in-
volves two hyperparameters: the number of augmentations,
denoted as N , and the magnitude, denoted as M . The default
settings are N = 2 and M = 9. (3) TrivialAugment (Müller
and Hutter 2021) further drops the requirement of setting
hyperparameters in RandAugment, and instead randomly se-
lects one augmentation and its magnitude to apply on each
image. It is completely parameter-free. (4) An augmentation
pool strategy is designed in this paper, inspired by the above-
mentioned automatic data augmentations. Specifically, two
augmentations are randomly applied to each image.

Text Augmentation. Text augmentation options are rela-
tively more limited compared to image augmentation due to
the abstract and discrete nature of language. (1) Back trans-
lation translates the original text to a specific language and
then translates it back, by which we can obtain more diverse
textual descriptions while preserving its original meaning.
We use French as the intermediate language due to its closer
linguistic resemblance to English, resulting in fewer seman-
tic changes in the translated back text. (2) Synonym replace-
ment randomly selects words from the sentence and replaces
with randomly chosen synonyms. (3) Random insertion ran-
domly chooses some words from the sentence and the syn-
onyms of selected words are then inserted into random posi-
tions of the sentence. (4) Random swap selects two words
from the sentence at random and interchanges their posi-
tions. (5) Random deletion randomly removes each word in
a sentence. (6) EDA (Wei and Zou 2019) randomly selects
one from synonym replacement, random insertion, random
swap and random deletion and applies it to the sentence.

3.3 Loss Functions
CLIP equips with an image-text contrastive loss to pull pos-
itive samples together while pushing negative ones apart.
Further, we normalize the label in the loss and obtain the

normalized image-text contrastive loss (N-ITC):

LN−ITC = − 1

2N
(

N∑
i=1

N∑
j=1

q̂i,j log pi,j +

N∑
i=1

N∑
j=1

q̂j,i log pj,i),

(1)
where q̂i,j is normalized by qi,j/

∑N
k=1 qi,k and qi,j is the

ground-truth label (1 for positive pair and 0 for negative
one). N is the number of samples, and pi,j represents the
pseudo-label that is the probability of matching the image Ii
to the text Tj and the reverse applies in pj,i,

pi,j =
exp(fIi · fTj/τ)∑N

k=1 exp(fIi · fTk/τ)
, pj,i =

exp(fTi · fIj/τ)∑N
k=1 exp(fTi · fIk/τ)

,

(2)
where f∗ is the ℓ2-normalized representations of the sample,
τ is the learnable temperature parameter.

Beyond N-ITC, we study other losses in two directions.
One focuses on enhancing data efficiency, and the other tar-
gets optimizing the relationship between samples.

Improving Data Efficiency

Self-Supervision. The self-supervised loss (SS) aims to
maximize the similarity between two different augmenta-
tions of an image and prompts learning robust feature rep-
resentations with limited data. It has shown effectiveness in
various visual tasks (Chen et al. 2020; Chen and He 2021),
and motivates us to explore it in TBPS. Specifically,

LSS = − 1

2N

2N∑
i=1

log
exp(sim(zi, zj)/τs)∑2N

k=1,k ̸=i exp(sim(zi, zk)/τs)
,

(3)
where τs is a hyper-parameter and set to 0.1, and zi and zj
are the feature representations of two augmentations of the
sample. The SS can be applied on the image or text or both
of them, denoted as SS-I, SS-T and SS-IT, respectively.

Multi-View Supervision. The N-ITC in Eq. 1 only lever-
ages one augmented data view. Inspired by DeCLIP (Li et al.
2021b), more views of samples can provide extra supervi-
sion to motivate the potential of limited data. Let Ĩ and T̃
denote another augmented view of I and T by data augmen-
tation, the N-ITC can be applied on (Ĩ , T ) or (I, T̃ ) or (Ĩ , T̃ ),
denoted as the multi-view supervision loss of image (MVS-
I), multi-view supervision loss of text (MVS-T), multi-view
supervision loss of image and text (MVS-IT), respectively.

Optimization for Retrieval

Reversed Image-Text Contrastive Loss. The N-ITC in
Eq. 1 approximates optimizing DKL(Q∥P ), with Q as the
label distribution and P as the optimized similarity distribu-
tion. It mainly focuses on assigning the image-text pair to
high similarity probability when its label distribution places
a high probability (i.e., positive pair). As a supplement to it,
we take inspiration from CMPM (Zhang and Lu 2018) and
optimize DKL(P∥Q), which have P and Q reversed in the
N-ITC, and the reversed image-text contrastive loss (R-ITC)
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Figure 2: Difference between C-ITC (right-hand) and other
matching losses (left-hand), e.g., N-ITC and R-ITC. (Ip, Tp)
and (In, Tn) are two paired cross-modal data and the query
text Tq shares the same identity with (Ip, Tp).

considers separating the negative pairs. Specifically,

LR−ITC =
1

2
(DKL(pi,j∥q̂i,j) +DKL(pj,i∥q̂j,i))

=
1

2N
(

N∑
i=1

N∑
j=1

pi,j log
pi,j

q̂i,j + ϵ
+

N∑
i=1

N∑
j=1

pj,i log
pj,i

q̂j,i + ϵ
),

(4)
where ϵ is a small non-zero value to prevent division by zero.

Cyclic Image-Text Contrastive Loss. The general match-
ing loss (e.g., N-ITC and R-ITC) aims to optimize the re-
lationship between the image and text, which may cause
the image and text to be irregularly positioned in the rep-
resentation space, and carries the risk that the query text Tq

mistakenly retrieves the negative image In instead of the in-
tended positive image Ip, as illustrated on the left-hand side
of Figure 2. Following CyCLIP (Goel et al. 2022), which en-
hances geometrical consistency in data representation space,
we study the cyclic image-text contrastive loss (C-ITC) to
mitigate the above problem. The right-hand side of Figure 2
shows the geometry of the resulting representation space.

Specifically, the learned representations are regularized
in two ways: in-modality and cross-modality. For the in-
modality regularization, the loss enables reducing the gap
between the distance of the similarity of two images and that
between the corresponding texts:

LCI−ITC =
1

N

N∑
i=1

N∑
j=1

(sim(Ii, Ij)− sim(Ti, Tj))
2. (5)

For the cross-modality regularization, given two image-
text pairs, the gap between their distances is minimized:

LCC−ITC =
1

N

N∑
i=1

N∑
j=1

(sim(Ii, Tj)−sim(Ij , Ti))
2. (6)

Together, the C-ITC can be formulated as:

LC−ITC = LCI−ITC + LCC−ITC . (7)

3.4 Model Generalization
Apart from the empirical study on data augmentation and
loss function, we also verify the model generalization from
two sides. (1) We evaluate the generalization of TBPS-CLIP
as a baseline by applying it to other TBPS methods. (2) We
fine-tune TBPS-CLIP using a small amount of TBPS train-
ing data to assess its generalization in the few-shot setting.

Methods Rank-1 Rank-5 Rank-10 mAP

CLIP 60.67 81.99 88.87 54.72
CLIP + GlobalGrad 63.66 84.08 90.11 56.46
CLIP + Dropout 61.06 82.00 88.95 55.10
CLIP + LockBL 61.27 82.23 88.79 55.43
CLIP + SLabel 61.53 81.99 88.71 55.22

CLIP∗ 64.34 84.05 90.51 57.53

Table 1: Ablations of training tricks on CUHK-PEDES.
CLIP∗ represents CLIP with all four training trick.

3.5 Model Compression
We provide insight into the model by evaluating the role of
each module to the final performance, which is valuable for
model compression in real-world applications. Two evalua-
tion metrics (Wang and Tu 2020) are adopted. The first one
evaluates a specific module’s contribution by removing the
module and observing the performance drop. The second
one examines the module’s importance by measuring how
closely the module’s weights can approach their initial val-
ues while maintaining a certain level of performance.

4 Experiments
The experimental analyses of the empirical studies are de-
tailed in this section. Also, although our studies are directed
at common technologies to keep the model simple, we pro-
vide insights from the TBPS-specific view in this section,
i.e., discussing why these technologies can work in TBPS.

Comparisons with other methods are carried out on
three datasets: CUHK-PEDES (Li et al. 2017b), ICFG-
PEDES (Ding et al. 2021), RSTPReid (Zhu et al. 2021).
Extensive ablation studies are on CUHK-PEDES. The eval-
uation of performance is based on Rank-k and mean Aver-
age Precision (mAP). The introduction of dataset, evaluation
metric and implementation detail are in the Appendix.

4.1 Ablations of Training Tricks
Starting from CLIP, we first perform experimental investi-
gations on the training tricks discussed in Section 3.1. As
shown in Table 1, all training tricks introduce a positive im-
pact into CLIP on the performance.

4.2 Ablations of Data Augmentation
We show the optimal results of each augmentation, and an-
alyze their effects. The ablation study of the augmentations
with different hyperparameters is shown in the Appendix.

Image Augmentations. Table 2 studies the effect of image
augmentations. (1) In the removal augmentations, Random-
ResizedCrop and RandomErasing enhance performance.
They randomly crop/erase the part of the image, empha-
sizing local details and supporting cross-modal fine-grained
learning in TBPS. Surprisingly, RandomGrayscale, which
eliminates color information, also improves results. By in-
putting the augmented grayscale image into the model, the
model is compelled to focus on other information like tex-
ture and shape during training. While color information is
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Methods Rank-1 Rank-5 Rank-10 mAP

CLIP∗ 64.34 84.05 90.51 57.53

The group of removal:

RandomResizedCrop (✓) 65.29 85.01 90.68 58.62
RandomErasing (✓) 64.64 84.34 90.74 58.08
RandomGrayscale (✓) 65.29 84.67 90.56 58.18
GaussianBlur 55.30 77.86 85.88 49.82

The group of alternation:

ColorJitter-BCS (✓) 64.86 84.65 90.47 57.85
ColorJitter-Hue 64.12 84.81 90.87 57.41
RandomHorizontalFlip (✓) 65.48 84.86 90.48 58.46
RandomVerticalFlip 64.23 83.98 90.16 57.35
RandomRotation (✓) 65.50 85.20 91.13 58.92

Applying multiple augmentations:

Stacking Together 65.92 85.33 90.89 59.43
AutoAug 65.43 84.84 91.07 58.55
RandAug 65.58 85.72 91.00 59.08
TrivialAug 65.59 84.58 90.81 58.58
Augmentation Pool 66.13 85.38 91.21 59.30

Table 2: Ablations of image augmentations on CUHK-
PEDES. ‘Stacking Together’ applies multiple removal and
alternation augmentations with the ‘✓’ symbol into the im-
age, while ‘Augmentation Pool’ randomly selects two of
them in each iteration. ‘AutoAug’, ‘RandAug’ and ‘Triv-
ialAug’ are applied at the default setting.

known to be critical in TBPS (Wu et al. 2021; Wang et al.
2022c), these empirical results suggest that other informa-
tion, apart from color, is also valuable for person retrieval.
Conversely, GaussianBlur, which blurs fine-grained details,
significantly degrades performance. Blurring the entire im-
age leads to the loss of crucial fine-grained information,
which is crucial for TBPS. (2) In the alternation augmen-
tations, most are beneficial for the performance, including
ColorJitter-BCS, RandomHorizontalFlip and RandomRota-
tion. They increase image diversity without altering image
semantics, enhancing the model’s robustness to different
images and leading to improved performance. By contrast,
ColorJitter-Hue and RandomVerticalFlip hurt performance.
The former alters the color, causing inconsistency between
the color information in the image and its corresponding
textual description, while the latter significantly alters the
overall shape of the image. (3) Beyond applying the single
augmentation to the image, we conduct experiments of ap-
plying multiple augmentations. Intuitively, we can stack the
above effective augmentations to the image (Stacking To-
gether), which leads to performance improvement. We also
explore automatic image augmentation strategies AutoAug-
ment (Cubuk et al. 2018), RandAugment (Cubuk et al. 2020)
and TrivialAugment (Müller and Hutter 2021). Neverthe-
less, the proposed augmentation pool that randomly selects
2 effective augmentations each time gets the best results.

Text Augmentations. Table 3 shows that back transla-
tion and random deletion are effective text augmentations

Methods Rank-1 Rank-5 Rank-10 mAP

CLIP∗ 64.34 84.05 90.51 57.53

Back Translation (✓) 64.77 84.67 90.56 57.49
Synonym Replacement 63.95 83.76 89.96 56.90
Random Insertion 63.71 84.29 90.03 56.77
Random Swap 56.41 79.08 86.14 49.29
Random Deletion (✓) 65.53 84.70 90.87 57.90
EDA 63.43 83.77 90.27 56.15

Stacking Together 65.72 84.62 90.76 58.68

Table 3: Ablations of text augmentations on CUHK-PEDES.
‘Stacking Together’ applies multiple augmentations with the
‘✓’ symbol into the text.

Methods Rank-1 Rank-5 Rank-10 mAP

CLIP∗ 64.34 84.05 90.51 57.53

Image Aug 66.13 85.38 91.21 59.30
Text Aug 65.72 84.62 90.76 58.68
Image & Text Aug 66.78 85.98 91.23 59.68

Table 4: Results of combining optimal augmentations within
each modality.

for TBPS. Back translation enriches the original texts,
while random deletion acts as a regularization technique by
randomly removing words. Both positively impact perfor-
mance. When combined (Stacking Together), they result in
a Rank-1 improvement of 1.38%. However, the synonym re-
placement, random insertion and random swap negatively
impact performance. They risk distorting the original mean-
ing of the text. Synonym replacement risks changing the se-
mantics of the original text due to the errors from searching
synonyms, while random insertion and random swap tend to
break the sentence structure. These make the text encoder
harder to comprehend the augmented text. Consequently, it
is reasonable that EDA (Wei and Zou 2019), selecting one
among these at random, does not enhance performance.

Together with Optimal Augmentations. As shown in Ta-
ble 4, based on the CLIP∗, after combining all optimal data
augmentations (i.e., ‘Augmentation Pool’ for image, ‘Stack-
ing Together’ for text), the Rank-1 accuracy is significantly
increased by 2.44%. It is worth stressing that the gain is only
from exploiting data augmentations.

4.3 Ablations of Loss Functions
Table 5 studies the effectiveness of the loss functions.
(1) Replacing the original image-text contrastive loss with
the normalized image-text contrastive loss (N-ITC) in
CLIP∗+Aug results in a slight improvement of 0.13% at
Rank-1. (2) Among the loss functions aimed at improv-
ing data efficiency, image self-supervision (SS-I) achieves
the best performance compared to SS-T and SS-IT. Simi-
larly, multi-view supervision of image (MVS-I) outperforms
MVS-T and MVS-IT. These findings indicate that leverag-
ing image data for improving data efficiency is more effec-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

469



Methods Rank-1 Rank-5 Rank-10 mAP

CLIP∗+Aug 66.78 85.98 91.23 59.68

N-ITC (✓) 66.91 85.98 91.68 60.01

Improving data efficiency:

SS-I (✓) 67.54 86.13 91.78 60.94
SS-T 65.97 85.40 90.72 59.10
SS-IT 66.81 86.09 91.63 59.82
MVS-I (✓) 67.50 86.45 91.63 60.84
MVS-T 66.46 85.96 91.13 60.24
MVS-IT 67.01 85.66 91.33 59.83

Optimization for retrieval:

R-ITC (✓) 68.19 86.01 90.94 60.90
C-ITC (✓) 67.15 86.31 92.04 60.58

Applying multiple losses:

Stacking Together (TBPS-CLIP) 69.54 86.99 91.24 61.57

Table 5: Ablations of loss functions on CUHK-PEDES.
‘Stacking Together’ denotes that multiple losses with the
‘✓’ symbol are used to CLIP∗+Aug .

tive than using text data in TBPS. (3) Both R-ITC and C-
ITC, which are loss functions optimized for retrieval, im-
prove performance. Notably, R-ITC leads to a significant
boost of 1.41% compared to CLIP+Aug, highlighting the
importance of R-ITC’s constraint in pulling negative sam-
ples apart. Finally, we combine all of these effective losses,
boosting performance by a large margin of 2.76% at Rank-1
based on CLIP∗+Aug, achieving 69.54% Rank-1 accuracy.

4.4 Comparisons with State-of-the-Art Methods
We compare TBPS-CLIP with other methods on three
datasets in Tables 6-8. We provide a visualization of the com-
parison of retrieval results in the Appendix.

(1) Compared to methods using CLIP, TBPS-CLIP with
ViT-B/16 as the image encoder outperforms the state-of-the-
art method IRRA on ICFG-PEDES and RSTPReid, while
achieving similar performance on CUHK-PEDES. Notably,
TBPS-CLIP maintains a simple network architecture, unlike
IRRA which incorporates a multimodal interaction encoder
after CLIP. Despite its simplicity, TBPS-CLIP achieves
promising results and is more lightweight than IRRA, as
shown in Table 9. Its efficient training allows for training
in just 5 epochs, making it a friendly baseline. (2) Com-
pared with the methods without CLIP, we notice that RaSa
performs strongly. It adopts ALBEF (Li et al. 2021a) as the
baseline and contains two models, an online model and its
momentum version, each consisting of an image encoder, a
text encoder and a cross-modal encoder. Although having
outstanding performance, RaSa is cumbersome and chal-
lenging to support its generalization, as shown in Table 9.
The proposed TBPS-CLIP, with very lightweight and low-
cost architecture and promising performance, has the poten-
tial as a baseline to provide broader applications. (3) Consid-
ering the convenience of applying TBPS-CLIP as the base-
line, we further provide a simplified TBPS-CLIP, in which

Methods Rank-1 Rank-5 Rank-10 mAP

w/o CLIP:

ViTAA (Wang et al. 2020) 55.97 75.84 83.52 -
SSAN (Ding et al. 2021) 61.37 80.15 86.73 -
LapsCore (Wu et al. 2021) 63.40 - 87.80 -
LGUR (Shao et al. 2022) 65.25 83.12 89.00 -
SAF (Li, Cao, and Zhang 2022) 64.13 82.62 88.40 58.61
IVT (Shu et al. 2023) 65.59 83.11 89.21 60.66
RaSa (Bai et al. 2023a) 76.51 90.29 94.25 69.38

w/ CLIP:

TBPS-LD (Han et al. 2021) 64.08 81.73 88.19 60.08
CFine (Yan et al. 2022) 69.57 85.93 91.15 -
TP-TPS (Wang et al. 2023) 70.16 86.10 90.98 66.32
IRRA (Jiang and Ye 2023) 73.38 89.93 93.71 66.13

CLIP (ViT-B/32) 60.67 81.99 88.87 54.72
TBPS-CLIP (ViT-B/32) 69.54 86.99 91.24 61.57
CLIP (ViT-B/16) 65.37 85.83 91.59 59.42
TBPS-CLIP (ViT-B/16) 73.54 88.19 92.35 65.38
Simplified TBPS-CLIP (ViT-B/16) 72.66 88.14 92.72 64.97

Table 6: Comparison with other methods on CUHK-PEDES.

there are only N-ITC and R-ITC losses. It still performs sat-
isfactorily, specifically, even beats IRRA on ICFG-PEDES
and RSTPReid. The simplified TBPS-CLIP equipped with
two losses can be more easily applied as a baseline in fur-
ther work.

4.5 More Probing Experiments of TBPS-CLIP
Model Generalization. (1) We select IRRA (Jiang and
Ye 2023), the most advanced CLIP-based TBPS method so
far, as the hotbed for verifying the generalization and ef-
fectiveness of TBPS-CLIP baseline. Specifically, we adopt
TBPS-CLIP (ViT-B/16) and its simplified version as the
IRRA’s baseline, respectively, instead of the original CLIP
(ViT-B/16). Table 10 demonstrates the generalization and
effectiveness of TBPS-CLIP. More experimental results on
other datasets are shown in the Appendix. (2) We study
the few-shot capabilities (5% training data) of TBPS-CLIP
in Table 11, and more experimental results with 1% train-
ing data and 10% one are shown in the Appendix. CLIP
presents a poor performance in few-shot TBPS, especially,
the representative few-shot CLIP variants (CoOp and CLIP-

(a) TBPS-CLIP (b) Simplified TBPS-CLIP

Figure 3: The trend of performance when dropping/freezing
some layers of the text encoder on CUHK-PEDES.
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Methods Rank-1 Rank-5 Rank-10 mAP

w/o CLIP:

ViTAA (Wang et al. 2020) 50.98 68.79 75.78 -
SSAN (Ding et al. 2021) 54.23 72.63 79.53 -
LGUR (Shao et al. 2022) 57.42 74.97 81.45 -
SAF (Li, Cao, and Zhang 2022) 54.86 72.13 79.13 32.76
IVT (Shu et al. 2023) 56.04 73.60 80.22 -
RaSa (Bai et al. 2023a) 65.28 80.40 85.12 41.29

w/ CLIP:

TP-TPS (Wang et al. 2023) 60.64 75.97 81.76 42.78
CFine (Yan et al. 2022) 60.83 76.55 82.42 -
IRRA (Jiang and Ye 2023) 63.46 80.25 85.82 38.06

CLIP (ViT-B/32) 53.96 73.69 80.43 32.37
TBPS-CLIP (ViT-B/32) 59.88 77.40 83.33 34.96
CLIP (ViT-B/16) 55.97 74.62 81.35 30.63
TBPS-CLIP (ViT-B/16) 65.05 80.34 85.47 39.83
Simplified TBPS-CLIP (ViT-B/16) 64.52 80.03 85.39 39.54

Table 7: Comparison with other methods on ICFG-PEDES.

Methods Rank-1 Rank-5 Rank-10 mAP

w/o CLIP:

SSAN (Ding et al. 2021) 43.50 67.80 77.15 -
SAF (Li, Cao, and Zhang 2022) 44.05 67.30 76.25 36.81
IVT (Shu et al. 2023) 46.70 70.00 78.80 -
RaSa (Bai et al. 2023a) 66.90 86.50 91.35 52.31

w/ CLIP:

CFine (Yan et al. 2022) 50.55 72.50 81.60 -
TP-TPS (Wang et al. 2023) 50.65 72.45 81.20 43.11
IRRA (Jiang and Ye 2023) 60.20 81.30 88.20 47.17

CLIP (ViT-B/32) 50.10 76.10 84.95 41.14
TBPS-CLIP (ViT-B/32) 56.65 80.75 87.30 44.00
CLIP (ViT-B/16) 56.15 78.30 86.60 43.26
TBPS-CLIP (ViT-B/16) 61.95 83.55 88.75 48.26
Simplified TBPS-CLIP (ViT-B/16) 62.10 81.90 87.75 48.00

Table 8: Comparison with other methods on RSTPReid.

Adapter) are even worse in performance. The three meth-
ods are skilled in the few-shot image classification since the
large-scale data knowledge of CLIP from the pre-training
phase shares the same data characteristics as the downstream
classification task. However, TBPS is a fine-grained person-
specific task and has a noticeable gap with the pre-trained
data in CLIP. The TBPS performance will be poor if there
is insufficient training data to fine-tune CLIP, and CoOp and
CLIP-Adapter with the locked CLIP backbone in the fine-
tuning phase also perform poorly in TBPS. Alternatively,
the proposed TBPS-CLIP with powerful learning capacity
in TBPS can alleviate these problems and brings promising
few-shot results. More than that, the simplified TBPS-CLIP
has superiority in the few-shot setting.

Model Compression. We compute the two metrics of
TBPS-CLIP in Section 3.5 as the guidance for the model
compression. The computation of the metrics, along with the

Methods Baselines Param.(M) Epoch Time(s)
Training Test

RaSa ALBEF 210.2 30 27967.5 869.8
IRRA CLIP (ViT-B/16) 194.5 60 6110.4 31.4
TBPS-CLIP CLIP (ViT-B/16) 149.2 5 1234.7 31.4

Table 9: Comparisons on CUHK-PEDES. Param.(M) and
Epoch denote the number of modal parameters (in millions)
and the number of epochs in training, respectively. Time(s)
represents the online running time (in seconds).

Methods Baselines Rank-1 Rank-5 Rank-10 mAP mINP

IRRA CLIP 73.38 89.93 93.71 66.13 50.24
IRRA∗ TBPS-CLIP 74.97 89.82 93.80 67.84 52.53
IRRA∗ S. TBPS-CLIP 74.56 89.26 93.52 67.52 52.58

Table 10: Results of using TBPS-CLIP as baseline on
CUHK-PEDES. The mean Inverse Negative Penalty (mINP)
is used in IRRA and also adopted here for comparison. ‘S.
TBPS-CLIP’ is the abbreviation for simplified TBPS-CLIP.

Methods Rank-1 Rank-5 Rank-10 mAP

CLIP (Radford et al. 2021) 38.37 62.26 72.34 35.39
CoOp (Zhou et al. 2022) 11.37 24.19 32.46 10.48
CLIP-Adapter (Gao et al. 2021) 11.96 25.45 33.56 10.91
TBPS-CLIP 42.98 66.26 74.94 38.86
S. TBPS-CLIP 43.65 66.60 75.91 39.30

Table 11: Performance under few-shot settings (5% training
data) on CUHK-PEDES.

investigation of TBPS-CLIP’s internal properties and a de-
tailed explanation of model compression, are provided in the
Appendix. Finally, from Figure 3, we can clearly see that
freezing some layers of the text encoder does not have much
impact on performance while the dropping operation can
negatively affect performance. As a result, we can compress
TBPS-CLIP during training by freezing part of text encoder.

5 Conclusion
This paper makes a thorough empirical study to explore
the potential of CLIP for TBPS. We empirically prove that
CLIP, only equipped with common data augmentations, loss
functions, and practical training tricks (without complex
modules), can achieve promising results on multiple TBPS
benchmarks. Further, we prove the effectiveness of the pro-
posed TBPS-CLIP in terms of model generalization and
model compression. Our empirical study aims to offer prac-
tical guidance for future research on CLIP-based TBPS.
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